Extended Dark Sectors, Neutrino Masses and the Baryon Asymmetry

Juan Herrero García 1st of September 2023

Corfu Summer Institute Workshop on the Standard Model and Beyond

Consejo Superior de Investigaciones Científica:

CONCENCS

- I Context
- 'II Extended dark sectors
 - III Neutrino masses from new Weinberg operators
 - IV EFT approach to proton decay
- V Conclusions

Visible matter

%

5

Dark Matter 27 %

68 %

Dark Energy

Coma cluster

Dark

Matter

4

Questions

i. What makes dark matter (DM)? How is DM produced in the early Universe? How can we detect in the Lab?

ii. How is $n_B/n_{\gamma} \simeq 6 \cdot 10^{-10}$ dynamically generated?

iii. By which mechanism do neutrinos obtain their tiny masses and large mixings?

iv. Are these problems related?

Possible energy scales

 $10^{>15} \text{ GeV}$ - Proton Decay, GUTs, SO(10)? 10^{14} GeV - m_{ν} (seesaw)? BAU (leptogenesis)?

ν, BAU at high scales?

KGAP?

1000 GeV - WIMPs? 100 GeV - SM

1 GeV - Asymmetric DM?

Partially -Asymmetric? Dark Sector at low scales?

II Extended dark sectors

"Asymmetries in extended dark sectors: a cogenesis scenario", JHEP05 (2023) 049 Giacomo Landini, JHG, Drona Vatsyayan

Bullet cluster

Visible Sector: Multi-component: γ, ν, e, p (H, He...)... Asymmetric: $n_B/n_{\gamma} \simeq 6 \cdot 10^{-10}$

Dark Sector: Several components? Partially-asymmetric?

"Multi-component dark sectors: symmetries, asymmetries and conversions", A. Bas, JHG, D. Vatsyayan, JHEP10 (2022) 075

DM production and nature

Mechanism	Symmetric $r_i > 0.9$	Partially – Asymmetric $0.01 < r_i < 0.9$	Asymmetric $r_i < 0.01$
Freeze-out	$\Omega_{\rm DM} \propto 1/\langle \sigma v \rangle$	$\Omega_{\rm DM} = f(\eta, m_{\chi}, \sigma v)$	$\Omega_{\rm DM} \propto \eta m_{\chi}$
Freeze-in	$\Omega_{\rm DM} \propto \langle \sigma v \rangle, \Gamma$?	?
		[See Hall 2010, H <u>ook 201</u>	1, Unwin 2014 ⁻

"Asymmetries in extended dark sectors: a cogenesis scenario" G. Landini, JHG, D. Vatsyayan; JHEP05 (2023) 049

- Late decays of an asymmetric particle
- Multicomponent DM naturally emerges
- Embedded in a cogenesis scenario (m_{ν} & BAU)

Cogenesis: connects m_{ν} , BAU and DM

[Falkowski et al *JHEP* 05 (2011) 106] [See also Hall et al 1010.0245, Cui et al 2020]

 $\begin{aligned} \mathscr{L}_{int} &= -y_{\nu}^{\alpha i} \, \bar{L}^{\alpha} \tilde{H} N_{R}^{i} - y_{\sigma}^{ij} \, \sigma \overline{N_{R}^{ic}} N_{R}^{j} - y_{S}^{i} \, S \bar{N}_{R}^{i} \chi + \mathrm{H.c.} \\ \text{At } T < M_{N}, \ \text{CPV decays of RHNs: } 2\text{-sector leptogenesis} \\ \Delta L \neq 0, \ \Delta \chi = \Delta S \neq 0 \text{ for } \mathcal{O}(1) \text{ complex } y_{\nu}, y_{S} \end{aligned}$

Extended cogenesis framework [G. Landini, JHG, D. Vatsyayan, JHEP05 (2023) 049] $\mathscr{L}_{int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_{R}^{i} - y_{\sigma}^{ij} \sigma \overline{N_{R}^{ic}} N_{R}^{j} - y_{S}^{i} S \bar{N}_{R}^{i} \chi - y_{\phi} \phi \bar{\psi} \chi + H.c.$ N

 $m_{\nu} \simeq -y_{\nu} \frac{v^2}{M_N} y_{\nu}^T$ H y_{ν} y_{s} y_{s} In equilibrium y_{ϕ} Freeze-in of ψ ψ, ϕ ϕ thermalises

Idea: Dark asymmetry transferred via late decays $\chi \rightarrow \psi + \phi$ after χ symmetric population has been erased We consider $\eta_{\chi} \equiv \eta_D \simeq \eta_B$

2DM asymmetric n	nod	el:	$\psi +$	S	
$\mathscr{L}_{\text{int}} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_{R}^{i} - y_{\sigma}^{ij} \sigma \overline{N_{R}^{ic}} N_{R}^{j} - y_{S}^{i} S \bar{N}_{R}^{i} \chi - y_{\phi} \phi$	bψχ + F	H.c.	$3N_i$ D	M stabi irac fe	lity & rmions
	Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
M $m_{N_1} \propto \langle \sigma \rangle \gtrsim 10^{11} \text{GeV}$	N_R^i	1/2	-1	0	0
y_{ν} y_{S}	σ	0	+2	0	0
$\begin{pmatrix} L \\ \mathbf{u} \end{pmatrix}$	χ_0	1/2	-1	+1	0
$H \qquad \qquad$	ψ_0	1/2	0	0	+1
$y_{\nu}, y_{S}, g_{B-L}, g_{D} \neq O(1)$ $q_{\nu} \ll 1 \implies \psi = 0 \qquad \qquad$	S	0	0	-1	0
$s_X \ll 1, y_\phi \ll 1 \longrightarrow \psi$ or c_1, c_1, ψ	ϕ	0	+1	-1	+1
$M_{N_1} \gg m_{\chi} \gg m_S \gtrsim m_{\psi} > m_{\phi}$			Z_{B-L}	Z_D	A_X
Gauge SSB: $U(1)_{B-L} \otimes U(1)_D \otimes U(1)_X - \frac{\langle a \rangle}{2}$	$\xrightarrow{\sigma} U(1$	$)_D \otimes$	$U(1)_{X}$ -	$\stackrel{\langle \phi angle}{\longrightarrow} U($	$(1)_{X+D}$
Remnant $U(1)_{X+D}$:	+ 1 Ψ		1		
	DM CO	ndida	tes		13

1DM: ψ

$$\begin{split} Y_{\psi}^{+} &\simeq Y_{\rm FI}/2 + \eta_D \\ Y_{\psi}^{-} &\simeq Y_{\rm FI}/2 + \eta_D r_{\chi} \end{split}$$

 $\chi \xrightarrow{y_{\phi}} \psi + \phi \implies y_{\phi}$ controls ψ nature

No ψ thermalisation: $y_{\phi} < 5 \cdot 10^{-7}$

2DM: $\psi + S$

- S from $N \rightarrow \chi + S$

- S from $\chi \to S^{\dagger} + \nu$: at $E \ll M_{N_1}$, $\mathcal{O}_5 = y_{\nu} y_S \frac{\bar{L} \tilde{H} S \chi}{M_N}$ mediates it $-R \equiv \frac{\text{BR}(\chi \to S^{\dagger}\nu)}{\text{BR}(\chi \to \psi\phi)} \simeq \frac{|y_S|^2 m_{\nu}}{y_{\phi}^2 M_{N_{\nu}}} \text{ [and } T_D^{(S)}/T_*^{(S)} \text{] control nature of } S$ S R > O(10): $R \ll 1$: Symmetric Asymmetric $Y_{S} + Y_{S}^{\dagger} \sim 2\eta_{D}$ $m_{S} = 2.5 \text{ GeV}\left(\frac{\eta_{B}}{\eta_{D}}\right)$ $Y_{\rm S}^+ = \eta_D$ Scenario 6: see later

2DM scenarios

Sc.	ψ population	S population	$10^{-10} y_{\phi}/\sqrt{\eta_D/\eta_B}$	R	$T_D^{(S)}/T_*^{(S)}$
1	Asymmetric	Asymmetric	≤ 0.06	$\ll 1$	Any
2	Asymmetric	Partially Asymmetric	≤ 0.06	$\mathcal{O}(1)$	< 1
1-2	Asymmetric	Asymmetric	≤ 0.06	$\mathcal{O}(1)$	> 1
3	Partially Asymmetric	Asymmetric	0.06 - 2	$\ll 1$	Any
4	Partially Asymmetric	Partially Asymmetric	0.06 - 2	$\mathcal{O}(1)$	< 1
3-4	Partially Asymmetric	Asymmetric	0.06-2	$\mathcal{O}(1)$	> 1
5	Symmetric	Asymmetric	$\gtrsim 2$	$\ll 1$	Any
6	Negligible 1DN	Symmetric	$y_\phi \lesssim 5 imes 10^{-7}$	$\gtrsim \mathcal{O}(10)$	< 1

$$g_D = 0.5, M_{N_1} = 10^{11} \text{ GeV}$$
$$m_{\chi} = 3.5 \text{ TeV}, m_{Z_D} = 500 \text{ GeV}$$
$$\frac{\Omega_{\psi}}{\Omega_S} \simeq \frac{m_{\psi}(\eta_D + Y_{\text{FI}})}{\eta_D m_S}$$

 $R \equiv \frac{\mathrm{BR}(\chi \to \mathrm{S}^{\dagger} \nu)}{\mathrm{BR}(\chi \to \psi \phi)}$

Smoking gun: v Line from S decays

At $E \ll m_{\chi} \ll M_{N_1}$, $\mathcal{O}_6 = \bar{L}\tilde{H}S\phi^{\dagger}\psi$ generates (for $m_S > m_{\psi}$): $\Gamma(S \to \bar{\psi} + \nu_L) \simeq \frac{|y_S|^2 y_{\phi}^2 m_S}{32\pi} \left(\frac{\nu_{\phi}}{m_{\chi}}\right)^2 \left(\frac{m_{\nu}}{M_{N_1}}\right) \left(1 - \frac{m_{\psi}^2}{m_S^2}\right)$

 y_S, y_ϕ

- S cosmologically stable: $\tau_S > t_U > 4 \times 10^{17} s$

- ID with
$$\nu$$
: $\tau_S > 10^{23} s$

[Palomares-Ruiz 2008 Garcia-Cely et al 2017, Coy et al 2021]

Prediction: ν line at $E_{\nu} = \frac{m_s}{2} \sim \mathcal{O}(\text{GeV})$

Results

[DM masses such that abundance reproduced at every point]

Scenario 6: 1 DM, S - $y_S \sim \mathcal{O}(1), y_\phi$ ting: $R \equiv \frac{BR(\chi \to S^{\dagger}\nu)}{BR(\chi \to \psi \phi)} \gtrsim \mathcal{O}(10)$ - Asymmetric production of S and S[†] from decays: 1) $N \xrightarrow{y_{\phi}} S + \chi$: S thermalises and is cold 2) $\chi \xrightarrow{\mathcal{O}_5} S^{\dagger} + \nu \ (m_{\chi} \gg m_S)$, after S f.o. $(T_D^{(S)} < T_*^S)$: S warm - $S + S^{\dagger}$: mix cold + warm, with abundance α asymmetry: $Y_S \simeq Y_S^{\dagger} \simeq \eta_D \implies m_S \simeq 2.5 \,\text{GeV}\left(\eta_B/\eta_D\right)$ - Enhanced ID, from Higgs portal $\lambda_{HS}(H^{\dagger}H)(S^{\dagger}S)$ Further studies may be interesting

[A. Giarnetti, JHG, S. Marciano, D. Meloni, D. Vatsyayan, 23XX.XXXX]

Homestake mine, 1970

• Standard seesaws from $c_5^{(0)}$: difficult to test • New genuine models: no $c_5^{(0)}$ generated

[See also McDonald JHEP 07 (2013) 020]

 $\frac{c_5^{(1)}}{\Lambda}LLH\phi_i + \frac{c_5^{(2)}}{\Lambda}LL\phi_i\phi_i + \frac{c_5^{(3)}}{\Lambda}LL\phi_i\phi_j + H.c.$

 $\overline{(SU(2), Y)}$

Model	New Scalar Multiplets	Fermion Mediator	Operator
\mathbf{A}_1	$\phi_1 = (4, -1/2)$	$\Sigma = (5,0) \ge 2$	${\cal O}_5^{(2)}$
$\mathbf{A_2}$	$\phi_1 = (4, -3/2)$	$\mathcal{F}=(3,-1)$	$\mathcal{O}_5^{(1)}$
B_1	$\phi_1 = (4, 1/2), \ \phi_2 = (4, -3/2)$	$\mathcal{F} = (5, -1)$	$\mathcal{O}_5^{(3)}$
B_2	$\phi_1 = (3,0), \ \phi_2 = (5,-1)$	$\mathcal{F}=(4,-1/2)$	$\mathcal{O}_5^{(3)}$
B_3	$\phi_1 = (5, -2), \ \phi_2 = (5, 1)$	$\mathcal{F}=(4,3/2)$	$\mathcal{O}_5^{(3)}$
$\mathbf{B_4}$	$\phi_1=(5,-1), \ \ \phi_2=(5,0)$	$\mathcal{F}=(4,1/2)$	${\cal O}_5^{(3)}$

Tree-level neutrino masses:

 $(m_{\nu})_{\alpha\beta} = \epsilon_2 v_1^2 \left(y_1 M_{\Sigma}^{-1} y_1^T \right)_{\alpha\beta} \quad \text{for } \mathbf{A1},$ $(m_{\nu})_{\alpha\beta} = \epsilon_1 v_1 v \left(y_H M_{\mathcal{F}}^{-1} y_1^T + y_1 M_{\mathcal{F}}^{-1} y_H^T \right)_{\alpha\beta} \quad \text{for } \mathbf{A2},$ $(m_{\nu})_{\alpha\beta} = \epsilon_3 v_1 v_2 \left(y_1 M_{\mathcal{F}}^{-1} y_2^T + y_2 M_{\mathcal{F}}^{-1} y_1^T \right)_{\alpha\beta} \quad \text{for } \mathbf{B_i},$

The ρ parameter at tree level

 \implies New VEVs always small, $v_i < O(GeV) \ll v$, so $\Lambda \Downarrow$

Naturally-small induced VEVs V_i For example, for A_1 , $\phi_1 = (4, -1/2)$: $V \supset \lambda_{\min,1}(\phi_1 H)(H^{\dagger}H) + H.c. \Longrightarrow V_i \simeq \lambda_{\min,i} \frac{v^3}{m_{\phi_i}^2}$ $\Longrightarrow v_i \ll v$ for $v \ll m_{\phi_i}$ and/or $\lambda_{\min,i} \ll 1$

D > 5 Weinberg operators with the Higgs doublet: $\frac{c_n^{(0)}}{\Lambda^{n-4}} LLHH(H^{\dagger}H)^{\frac{n-5}{2}}$

[Anamiati et al 2018]

Neutrino masses at one loop

In some cases, loop contribution may dominate

Rich phenomenology

- · Direct searches of new scalars at colliders
- Lepton flavour violation ($\mu \rightarrow e\gamma$, etc.)
- · EWPTS
- Modified gauge boson couplings to leptons and non-unitary PMNS from D = 6 operators like

$$\mathcal{O}_{6} = \left(\overline{L}_{\alpha}\tilde{\phi}_{1}\right)i\gamma_{\mu}D^{\mu}\left(\tilde{\phi}_{1}^{\dagger}L_{\beta}\right)$$

Doubly-charged scalars at colliders

mw and EMPT at one loop

Approack Lo proton decay

[J. Gargalionis, JHG, M. Schmidt, 23XX.XXXXX]

[A. Bas, J. Gargalionis, JHG, A. Santamaria, M. Schmidt, in preparation]

Super-Kamiokande

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of

B: Proton Decay

- B expected to be violated at large energies ($\leq M_p$)
- · BNV: necessary to generate the BAU [Shakarov 1967]
- Anomaly cancellation and GUTs: quarks leptons unify QQ = -QL• At D = 6, $\Delta(B - L) = 0$ operators ------

ue ud

• Ej. uued, SK $\tau(p \rightarrow e^+\pi^0) > 2.4 \cdot 10^{34} y \implies \Lambda_{\rm BNV} > 10^{15} \,{\rm GeV}$

Highest energies probed

Experimental perspectives [HK Design Report, 1805.04163]

BNV could be the next big discovery

EFT Proton decay at tree level, $D \leq 7$

[J. Gargalionis, JHG, M. Schmidt, 23XX.XXXXX]

Label	Operator	D	В	L
1	$L_p Q_q Q_r Q_s$	6	1	1
2	$ar{e}_p^\dagger Q_{\{q} Q_{r\}} ar{u}_s^\dagger$	6	1	1
3	$ar{e}_p^\dagger ar{u}_q^\dagger ar{u}_r^\dagger ar{d}_s^\dagger$	6	1	1
4	$L_p Q_q ar{u}_r^\dagger ar{d}_s^\dagger$	6	1	1
5	$L_p ar{d}_q ar{d}_{[r} ar{d}_{s]} H^\dagger$	7	-1	1
6	$DL_p Q_q^\dagger ar{d}_{\{r} ar{d}_{s\}}$	7	-1	1
7	$Dar{e}_p^\daggerar{d}_{\{q}ar{d}_rar{d}_{s\}}$	7	-1	1
8	$L_p Q_q^\dagger Q_r^\dagger ar d_s H$	7	-1	1
9	$ar{e}_p^\dagger Q_q^\dagger ar{d}_{[r} ar{d}_{s]} H$	7	-1	$\left 1 \right $
10	$L_p ar{u}_q ar{d_r} ar{d_s} ar{H}$	7	-1	1

Study of RGE and correlations [A. Bas, J. Gargalionis, JHG, A. Santamaria, M. Schmidt, in preparation]

						Lim	its on $\Delta B = \Delta L = -1$ dimension-8 operators	
EFT Proton decay						22	$p \xrightarrow[1111]{} \pi^0 e^+$	
			ת				24	$p \pi^0 e^+$
-		LOOP LEVEL,		<u>></u> 7			23	$p \rightarrow \pi^0 e^+$
J.	Gargal.	ionis, JHG, M. Schm —-	ldt,	23XX	.XXX	XX]	18	$p \rightarrow \pi^0 e^+$
	11	$\mid DL_pQ_qQ_rd_s^{}H$	8	1	1			
	12	$ig DL_p ar{u}_q^\dagger ar{d}_r^\dagger ar{d}_s^\dagger H$	8	1	1		13	$p \to K^+ \nu$ 1311
	13	$ig DL_p ar{u}_q^\dagger ar{u}_r^\dagger ar{d}_s^\dagger H^\dagger$	8	1	1		19	$p \to K^+ \nu$ 2113
	14	$\left ~~ L_p Q_q ar{u}_{[r}^\dagger ar{u}_{s]}^\dagger H^\dagger H^\dagger ight.$	8	1	1		12	$p \xrightarrow[1131]{} K^+ \nu$
	15	$\left \; ar{e}_p^\dagger Q_{[q} Q_{r]} ar{d}_s^\dagger H H ight.$	8	1	1		21	$p \pi^0 e^+$
	16	$\left \begin{array}{c} L_p Q_q ar{d}_{[r}^\dagger ar{d}_{s]}^\dagger H H \end{array} ight.$	8	1	1		11	$p \rightarrow K^+ \nu$
	17	$Dar{e}_p^\dagger Q_q ar{u}_r^\dagger ar{u}_s^\dagger H^\dagger$	8	1	1			2113
	18	$L_p Q_q Q_r Q_s H H^\dagger$	8	1	1		20	$\begin{array}{c} p \to K^+ \nu \\ {}_{3211} \end{array}$
	19	$DL_pQ_qQ_rar{u}_s^\dagger H^\dagger$	8	1	1		17	$\begin{array}{c} p \to K^0 e^+ \\ 1211 \end{array}$
	20	$Dar{e}_p^\dagger Q_q Q_r Q_s H$	8	1	1		14	$p \to K^+ \nu$ 1131
	21	$ig Dar{e}_p^\dagger Q_q ar{u}_r^\dagger ar{d}_s^\dagger H$	8	1	1		15	$p K^+ \nu$ 2113
	22	$\left ~ar{e}_p^\dagger Q_q Q_r ar{u}_s^\dagger H H^\dagger ight $	8	1	1		16	$p \rightarrow K^+ \nu$
	23	$\left ar{e}_{p}^{\dagger}ar{u}_{q}^{\dagger}ar{u}_{r}^{\dagger}ar{d}_{s}^{\dagger}HH^{\dagger} ight.$	8	1	1		10^1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

scale [GeV]

Conclusions

- Over-simplified dark sector? SM as "guide": multicomponent and asymmetric.
- · Cogenesis: interesting connection of DM, m, and BAU.
- · Asymmetric freeze-in model with 2DM and a v line.
- New testable Weinberg operators and seesaws for m_{ν} .
- EFT useful for tree/loop estimates of proton decay.

Thanks!

James Webb Pillars of creation

Farkially asymmetric DM [Graesser et al 2011]

$$\rho_{\rm DM} = s \sum_{i} m_i \eta_i \left(1 + 2 \frac{r_{\infty,i}}{1 - r_{\infty,i}} \right)$$

asymmetric symmetric

Erasing X symmetric population

Erasing S symmetric population

Decays $\chi \to S^{\dagger} + \nu$

After freeze-out of S, $T_D^{(S)} < T_*^{(S)} \implies$ Populate symmetric component, no active annihilations: $Y_S^+ = \eta_D, \quad Y_S^- = \frac{R}{1+R} \eta_D$

Before freeze-out of S, $T_D^{(S)} > T_*^{(S)} \Longrightarrow$ Annihilations active, partial washout, asymmetric:

$$Y_S^+ = \frac{1}{1+R} \eta_D, \quad Y_S^- \ll Y_S^+$$

Monochromatic v Line Limits

[Coy et al, *Phys.Rev.D* 104 (2021) 8, 083024]

41

Sc	C.	1a	ri	10	5
----	----	----	----	----	---

$$\frac{\Omega_{\psi}}{\Omega_{S}} = \frac{m_{\psi}(\eta_{D} + Y_{\text{FI}})}{\eta_{D}m_{S}f(R)}$$

$$\frac{\Omega_{DM}}{\Omega_{B}} = \frac{m_{\psi}(\eta_{D} + Y_{\text{FI}}) + \eta_{D}m_{S}f(R)}{\eta_{B}(1 + R)m_{p}}$$

$$f(R) = \frac{1 + 2R \quad \text{If } T_{D}^{(S)} < T_{*}^{(S)}}{1 \quad \text{If } T_{D}^{(S)} > T_{*}^{(S)}}$$

Sc.	ψ	S	$\Omega_{ m DM}/\Omega_B$	Ω_S/Ω_ψ
1	$\begin{array}{l} \text{Asymmetric} \\ \text{LD } \chi \rightarrow \psi \varphi \\ Y_{\psi}^{+} = \eta_{D} \\ Y_{\psi}^{-} \ll Y_{\psi}^{+} \end{array}$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $Y_{S}^{+} = \eta_{D}$ $Y_{S}^{-} \ll Y_{S}^{+}$	$rac{\eta_D}{\eta_B}rac{m_\psi+m_S}{m_p}$	$rac{m_\psi}{m_S}$
2	Asymmetric LD $\chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = \eta_D / (1 + R)$ $Y_{\psi}^{-} \ll Y_{\psi}^{+}$	Partially asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $+ \text{LD } \chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D$ $Y_S^- = \eta_D R/(1+R)$	$\frac{\eta_D}{\eta_B} \frac{m_{\psi} + (1+2R)m_S}{(1+R)m_p}$	$rac{m_\psi}{m_S(1+2R)}$
1-2	Asymmetric LD $\chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = \eta_D / (1 + R)$ $Y_{\psi}^{-} \ll Y_{\psi}^{+}$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi\varphi$ $+ \text{LD } \chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D/(1+R)$ $Y_S^- \ll Y_S^+$	$rac{\eta_D}{\eta_B}rac{m_\psi+m_S}{(1\!+\!R)m_p}$	$rac{m_\psi}{m_S}$
3	$\begin{array}{l} \text{Partially asymmetric} \\ \text{FI} + \text{LD } \chi \rightarrow \psi \varphi \\ Y_{\psi}^{+} = Y_{\text{FI}}/2 + \eta_{D} \\ Y_{\psi}^{-} = Y_{\text{FI}}/2 \end{array}$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $Y_{S}^{+} = \eta_{D}$ $Y_{S}^{-} \ll Y_{S}^{+}$	$rac{m_\psi(\eta_D+Y_{ m FI})+\eta_Dm_S}{\eta_Bm_p}$	$rac{m_\psi(\eta_D+Y_{ m FI})}{m_S\eta_D}$
4	Partially Asymmetric $FI + LD \ \chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = (Y_{FI}/2 + \eta_D)/(1+R)$ $Y_{\psi}^{-} = Y_{FI}/(2(1+R))$	Partially Asymmetric FO $S^{\dagger}S \rightarrow \varphi\varphi$ $+ \text{LD } \chi \rightarrow S^{\dagger}\nu_{L}$ $Y_{S}^{+} = \eta_{D}$ $Y_{S}^{-} = \eta_{D}R/(1+R)$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI}) + \eta_D(1 + 2R)m_S}{\eta_B(1 + R)m_p}$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI})}{m_S \eta_D (1 + 2R)}$
3-4	Partially Asymmetric $FI + LD \ \chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = (Y_{FI}/2 + \eta_D)/(1+R)$ $Y_{\psi}^{-} = Y_{FI}/(2(1+R))$	$\begin{array}{l} \text{Asymmetric} \\ \text{FO } S^{\dagger}S \rightarrow \varphi\varphi \\ + \text{ LD } \chi \rightarrow S^{\dagger}\nu_L \\ Y_S^+ = \eta_D/(1+R) \\ Y_S^- \ll Y_S^+ \end{array}$	$rac{m_\psi(\eta_D+Y_{ m FI})+\eta_Dm_S}{\eta_B(1+R)m_p}$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI})}{m_S \eta_D}$
5	$egin{aligned} { m Symmetric} & { m FI} \ \chi o \psi arphi \ Y_\psi^+ &= Y_{ m FI}/2 + \eta_D \simeq Y_{ m FI}/2 \ Y_\psi^- &= Y_{ m FI}/2 \end{aligned}$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $Y_{S}^{+} = \eta_{D}$ $Y_{S}^{-} \ll Y_{S}^{+}$	$rac{\eta_D}{\eta_B}rac{m_\psi(Y_{ m FI}/\eta_D)+m_S}{m_p}$	$rac{m_\psi Y_{ m FI}}{m_S \eta_D}$
6	Negligible production	Symmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $+ \text{LD } \chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D$ $Y_S^- = \eta_D$	< 1	$rac{\eta_D}{\eta_B}rac{2m_S}{m_p}$

2DM parameter space

• At $D = 5 \ LLHH$ [Weinberg], $\Delta L = 2 \implies$

$$m_{\nu} \simeq c \, \frac{v^2}{\Lambda} \gtrsim 0.05 \,\mathrm{eV} \Longrightarrow \Lambda \lesssim 10^{14} \,\mathrm{GeV}$$

• UV model: heavy ν_R , seesaw Type I

44

Leptogenesis?

Proton decay modes [JUNO, 1507.05613]

45