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Entanglement is perhaps the aspect of quantum mechanics that shows the greatest 
departure from classical conceptions

Quantum Entanglement

Einstein, Podolsky, and Rosen 1935

Schrödinger 1935

1935:   a strange phenomenon of quantum mechanics, questioning the completeness 
of the theory

1964:   Bell realised that entanglement leads to experimentally testable deviations of 
quantum mechanics from classical physics

Bell  1964

With the emergence of quantum information theory, entanglement was recognized as 
a resource, enabling tasks like quantum cryptography, quantum teleportation or 
measurement based quantum computation:  a threat became an opportunity   

Worth mentioning:  the problem of classifying and quantifying the entanglement of 
general multipartite systems is still an open problem

O. Gühne,  G. Tóth 2009



  J.M. Moreno , IFT Madrid       Corfu 2023   

The ABC
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H = HA ⌦HB
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 6=  A ⌦  B

Pure states are entangled iff 

In general (pure or mixed) states are entangled iff

with 
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⇢ 6= ⇢A ⌦ ⇢B , ⇢ ⌘ | ih |

Let us consider an state of two subsystems,  Alice and Bob
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pn > 0
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Bell inequalities

The physical consequence of entanglement that departs from classical intuition is 
the violation of Bell inequalities, an impossible result in any local-realistic (“classical") 
theory of nature. 

CHSH 

Alice (Bob) chooses to measure certain (bi-valued) observables,  A, A′ (B, B′) . 
Clauser,  Horne,  Shimony and Holt,   1969

10 EXPERIMENTAL CONSEQUENCES OF OBJECTIVE. . .
than that previously employed, and prove that it
is sufficient to ensure the incompatibility of OLT
and the experimental results of Freedman and
Clauser. (e) We construct an explicit QLT model
which reproduces the results of that experiment.
We thereby prove that the Freedman-Clauser re-
sults constitute a refutation of only those OLT
which satisfy our (or some similar) supplementary
assumption.

During a period of time, while ihe adjustable
parameters have the values a and b, the source
emits, say, Nof the two-particle systems of in-
terest. ' For this period, denote by N, (a) and
N, (b) the number of counts at detectors 1 and 2,
respectively, and by N»(a, h} the number of simul-
taneous counts from the two detectors (coincident
counts) '.If N is sufficiently large, then the en-
semble probabilities of these results are

Artal y zer 2 Ana ly zer

Detector 2 b
Source Detector l

II. OBJECTIVE LOCAL THEORIES

We will formulate and motivate objective local
theories in the context of the experimental ar-
rangement shown schematically in Fig. 1. A
source of coincident two-particle emissions is
viewed by two analyzer-detector assemblies 1 and
2. Each apparatus has an adjustable parameter;
let a denote the value of the parameter at apparatus
1, and 5 that at apparatus 2. In Fig. 1, a and
b are taken to be angles specifying the orienta-
tions of the analyzers, e.g. , the axes of linear
polarizers for photons, or the directions of the
field gradients of Stern-Gerlach magnets for
spin--,' particles. However, neither of these
particular interpretations of the parameters a
and b is essential for the discussion which fol-
lows; a and b may denote the values of any ad-
justable parameter at apparatus 1 and 2, respec-
tively. Finally, in addition to an adjustable com-
ponent and a detector, each apparatus may (and in
practice does) contain various other components,
such as additional. filters to shield the detectors
from unwanted radiations, etc. Since we require
that these additional apparatus components re-
main in place during the experiment, we will ig-
nore them in the discussion. Similarly, we ignore
and assume constant any other macroscopic vari-
ables, such as those describing the source-ap-
paratus geometry.

Consider one of the two-component emissions
from the source. Physical theories, classical,
quantum-mechanical, and presumably more gen-
eral ones as well, characterize a physical system
with a state. Moreover, during the system's ex-
istence, its state in general evolves. Consider
the state specification of the above system at a
time intermediate between its emission and its
impingement on either apparatus. " Denote this
state by A. . Note that we do not necessarily make
a commitment to the completeness of this state
specification, i.e., it may or may not describe
the ultimate essence of the system at the chosen
time. But neither do we make any restriction on
the possible complexity of A. , nor do we assume it
has any special characteristics; in short, we as-
sume no model. As the state described initially
by A. subsequently evolves, it may or may not
trigger a count at apparatus 1, and similarly it
may or may notdo so at apparatus 2. The initial state
A. , if it serves the same role as in existing theo-
ries, will suffice to determine at least the proba-
bilities of these events. " Let the probabilities of
a count being triggered at apparatus 1 and 2 be
P, (X, a) and P,(X, h}, respectively, and let p»(A, a, b)
be the probability that both counts are triggered. "
Since, in general, every system in the ensemble

emitted by the source may not have the same ini-
tial state, we allow a mixture of states. Let p(A)
be the normalized probability density character-
izing the ensemble of emissions. " In terms of the
quantities just defined, the ensemble probabilities
given in Eqs. (1) are

Apparatus
2

Apparatus p, (a)= / Ch p(Z)p, (X, a},r
FlG. 1. Scheme considered for a discussion of objective

local theories. A source emitting particle pairs is viewed
by two apparatuses. Each apparatus consists of an an-
alyzer and an associated detector. The analyzers have
parameters, a and b respectively, which are externally
adjustable. 1n the above example, a and b represent
the angles between the analyzer axes and a fixed refer-
ence axis.

p„(a, b) = ah p(X}p„(Z, a, h),

~here 1" is the space of the states A. . The formula-
tion (2} is quite general. Nothing so far has been

From Clauser,  Horne,  PRD 10 (1974) 526
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The physical consequence of entanglement that departs from classical intuition is 
the violation of Bell inequalities, an impossible result in any local-realistic (“classical") 
theory of nature. 

CHSH 

Alice (Bob) chooses to measure certain (bi-valued) observables,  A, A′ (B, B′) . 
Then, classically, 

Clauser,  Horne,  Shimony and Holt,   1969

It is optimal for two qubits (e.g,  a state of two photons or two fermions)
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Bell inequalities



  J.M. Moreno , IFT Madrid       Corfu 2023   

The physical consequence of entanglement that departs from classical intuition is 
the violation of Bell inequalities, an impossible result in any local-realistic (“classical") 
theory of nature. 

CHSH 

Alice (Bob) chooses to measure certain (bi-valued) observables,  A, A′ (B, B′) . 
Then, classically, 

Clauser,  Horne,  Shimony and Holt,   1969

It is optimal for two qubits (e.g,  a state of two photons)
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Experimental loop-hole free Bell inequality violations have been shown in 2-photon experiments

- Closing the locality loophole:  pair of photons separated by a large distance

- Closing the detection loophole:   fair sampling

And also in atoms,  solid state systems, … 

Bell inequalities
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Exploring Bell inequalities in HEP

It is interesting to test both, entanglement and Bell inequalities,  at different energy scales, 

in particular at the highest possible energies

  Bell inequalities in a HEP experiment were first explored in meson-anti meson states, e.g.

See F. Botella talk on Entanglement in B factories
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⌥(4S) ! B0B̄0
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| i = 1p
2

h
|B0i1 ⌦ |B̄0i2 � |B̄0i1 ⌦ |B0i2

i Go (BELLE ) 2004

Bramon,  Escribano and Garbarino 2004….
Fabbrichesi, Floreanini, Gabrielli and Marzola 2023

Bertlmann, Grimus,and Hiesmayr 2001

I
ntroduction.— The violation of the Bell inequality [1] is a phenomenon that shows that quantum
mechanics cannot be explained by any local hidden variable theory, which assumes that physical

systems have definite properties independent of measurement and that no physical influence can
travel faster than light. It has been verified experimentally with the polarizations of low-energy (that
is, few eV) photons in [2, 3]: two photons are prepared into a singlet state and their polarizations
measured along different directions to verify their entanglement [4] and the consequent violation of
Bell inequality.

Verifying the violation of the Bell inequality in the presence of strong and weak interactions would
tell us whether these fundamental forces of nature exhibit quantum entanglement and non-locality,
which would have profound implications for our understanding of reality. In order to test the inequality
at higher energies, we need a sufficiently heavy scalar (or pseudo-scalar) particle decaying into two spin-
1/2 or spin-1 states. While we do not know of any data in the case of fermions, these are available for
the two final states being massive vector-like particles. The set-up in the latter case closely resembles
that in which the polarizations of two photons prepared into a singlet state are measured—except
that the photon polarizations are described by a two-value quantum state, or qubit, while those of the
massive spin-1 state have three values and are described by qutrits.

The most promising examples can be found among B mesons decaying into comparatively heavy
final states with approximately equal shares of longitudinal and transverse polarizations. In addition,
larger branching fractions make for better statistics. These requirements single out the decay B0 →
J/ψK∗(892)0 as the best candidate. The data analysis of the LHCb collaboration for this decay [5]
provides the helicity amplitudes necessary for the test. They make it possible to extend the testing of
the violation of Bell identities to energies of the order of 5 GeV—which are a billion times larger than
those utilized in [2,3,25]. The same decay has previously been studied by the experiments CLEO [6],
CDF [7], Belle [8], BaBar [9], and D0 [10]. We only utilize the most recent analysis because it is the
most precise.

In this work, we explain why the B0 → J/ψK∗(892)0 decay provides a most favorable setting,
introduce two operators to quantify entanglement and violation of the Bell inequality for a two-qutrit
system, compute the expectation values of these two operators using the polarization amplitudes
provided in [5] and show that the Bell inequality is violated with a significance of 36σ. This result
firmly establishes this quantum mechanical hallmark for a system of two qutrits, and it does it at high
energies and in the presence of strong and weak interactions—thereby extending what is known to be
true for qubits, at low energies and for the electromagnetic interactions.

We also analyze the decays B0 → φK∗(892)0, B0 → ρK∗(892)0, Bs → J/ψ φ and Bs → φφ, which
have sizable transverse polarizations, and find that they violate the Bell inequality with a significance
of 1.1σ, 1.6σ, 5.8σ and 6.2σ, respectively.

Previous inquires about Bell inequality violations with data from heavy-particle physics have been
presented for kaons [11] and for the B0-B̄ 0 system [12]. Both these examples, though providing
important clues, are indirect tests: the first relies on the measure of the CP violating parameter ε′/ε,
the second on oscillations in flavor space.

M
aterials.— The analysis of the decay B0 → J/ψK∗(892)0 in [5] is based on the data sample
collected in pp collisions at 7 TeV (part of run 1 of the LHC) with the LHCb detector and

corresponds to an integrated luminosity of 1 fb−1. The branching fraction for this decay is (1.29 ±
0.14) × 10−3 [13].

The selection of B0 → J/ψK∗(892)0 events, as explained in [5], is based upon the combined
decays of the J/ψ → µ+µ− and the K∗(892)0 → K+π− final states. The muons, as they leave two
oppositely-charged tracks originating from a common vertex, are selected by taking their transverse

2



  J.M. Moreno , IFT Madrid       Corfu 2023   

Bell inequalities in HEP

It is interesting to test both, entanglement and Bell inequalities,  at different energy scales, 

in particular at the highest possible energies

  Bell inequalities in a HEP experiment were first explored in meson-anti meson states, e.g.
See F. Botella talk on Entanglement in B factories
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  In last two years, test of entanglement and Bell-type inequalities have been proposed 

  at the LHC - and future colliders -  in several final states (                                 …. )

Bertlmann, Grimus,and Hiesmayr 2001
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tt̄, ZZ,WW, ⌧+⌧�

  > 30 papers

      Several devoted workshops (Oxford, Cracow, GGI)  ‘2023

Exp



Exploring Bell inequalities in HEP
Entanglement and Quantum tomography with tops at the LHC

Testing Bell Inequalities at the LHC with Top-Quark Pairs

Quantum tops at the LHC: from entanglement to Bell inequalities 

Quantum information with top Quarks

Improved tests of entanglement an Bell inequalities with LHC tops

Quantum discord and stearing and discord in top quarks at the LH

Testing Bell inequalities in Higgs  boson decays  

Bell-type inequalities for systems of relativistic vector bosons

Laboratory test frames of quantum entanglement in H  → WW

Testing entanglement and Bell-inequalities in H  → ZZ

Quantum state tomography, entanglement detection and Bell violation prospects ..

Constraining new physics in entangled two-qubit systems: top-quark,τ-lepton & γγ  

Quantum entanglement and top spin correlations in SMEFT at higher orders,

Quantum SMEFT tomography: Top quark pair production at the LHC

Post-decay quantum entanglement in top pair production

Quantum information and CP measurement in H → τ+τ- at future lepton colliders

Entanglement and Bell inequalities violation in H→ZZ with anomalous coupling

Decay of entangled fermion pairs with post-selection

Probing new physics through entanglement in diboson production

Isolating semi-leptonic H→WW* decays for Bell inequality tests

Y. Afik and J.R.M. de Nova, 2021

M. Fabbrichesi, R. Floreanini , G. Panizzo, 2021

C. Severi, CD.E. Boschi, F. Malton, M Sioli 2022 

Y. Afik and J.R.M. de Nova, 2022

J.A. Aguilar-Saavedra , J.A. Casas, 2022

Y. Afik and J.R.M. de Nova, 2022

A.J. Barr,  2022

A.J. Barr,  P. Caban, J. Rembieliński,  2022

J.A. Aguilar-Saavedra, 2022

J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, J. M. Moreno

R. Ashby-Pickering, A. J. Barr, A. Wierzchucka , 2022

M. Fabbrichesi, R. Floreanini, E. Gabrielli, 2023

C. Severi , E. Vryonidou, 2023

R. Aoude, E. Madge, F. Maltoni,  L. Mantani, 2022

J.A. Aguilar-Saavedra, 2023 

MM Altakach, P.  Lamba et al 2023 

A. Bernal, P.Caban, J. Rembieliński, 2023

J.A. Aguilar-Saavedra, 2023

R. Aoude, E. Madge, F. Maltoni, L. Mantani 2023

 F.Fabbri, J. Howarth, T. Maurin 2023

INCOMPLETE  LIST

  Entanglement and Bell-type inequalities @ the LHC: some references



Exploring Bell inequalities in HEP
Entanglement and Quantum tomography with tops at the LHC

Testing Bell Inequalities at the LHC with Top-Quark Pairs

Quantum tops at the LHC: from entanglement to Bell inequalities 

Quantum information with top Quarks

Improved tests of entanglement an Bell inequalities with LHC tops

Quantum discord and stearing and discord in top quarks at the LH

Testing Bell inequalities in Higgs  boson decays  

Bell-type inequalities for systems of relativistic vector bosons

Laboratory test frames of quantum entanglement in H  → WW

Testing entanglement and Bell-inequalities in H  → ZZ

Quantum state tomography, entanglement detection and Bell violation prospects ..

Constraining new physics in entangled two-qubit systems: top-quark,τ-lepton & γγ  

Quantum entanglement and top spin correlations in SMEFT at higher orders,

Quantum SMEFT tomography: Top quark pair production at the LHC

Post-decay quantum entanglement in top pair production

Quantum information and CP measurement in H → τ+τ- at future lepton colliders

Entanglement and Bell inequalities violation in H→ZZ with anomalous coupling

Decay of entangled fermion pairs with post-selection

Probing new physics through entanglement in diboson production

Isolating semi-leptonic H→WW* decays for Bell inequality tests

Y. Afik and J.R.M. de Nova, 2021

M. Fabbrichesi, R. Floreanini , G. Panizzo, 2021

C. Severi, CD.E. Boschi, F. Malton, M Sioli 2022 

Y. Afik and J.R.M. de Nova, 2022

J.A. Aguilar-Saavedra , J.A. Casas, 2022

Y. Afik and J.R.M. de Nova, 2022

A.J. Barr,  2022

A.J. Barr,  P. Caban, J. Rembieliński,  2022

J.A. Aguilar-Saavedra, 2022

J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, J. M. Moreno

R. Ashby-Pickering, A. J. Barr, A. Wierzchucka , 2022

M. Fabbrichesi, R. Floreanini, E. Gabrielli, 2023

C. Severi , E. Vryonidou, 2023

R. Aoude, E. Madge, F. Maltoni,  L. Mantani, 2022

J.A. Aguilar-Saavedra, 2023 

MM Altakach, et al 2023 (see P.  Lamba talk  <<<< )

A. Bernal, P.Caban, J. Rembieliński, 2023

J.A. Aguilar-Saavedra, 2023

R. Aoude, E. Madge, F. Maltoni, L. Mantani 2023

 F.Fabbri, J. Howarth, T. Maurin 2023

  Entanglement and Bell-type inequalities @ the LHC: some references

Exp >>



  J.M. Moreno , IFT Madrid       Corfu 2023   

Based on: 

Exploring Bell inequalities in H       ZZ

Testing entanglement and Bell inequalities in H → ZZ

J. A. Aguilar-Saavedra ,* A. Bernal ,† J. A. Casas ,‡ and J. M. Moreno §

Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,
Cantoblanco, 28049 Madrid, Spain

(Received 4 October 2022; accepted 3 January 2023; published 20 January 2023)

We discuss quantum entanglement and violation of Bell inequalities in the H → ZZ decay, in particular
when the two Z-bosons decay into light leptons. Although such process implies an important suppression
of the statistics, this is traded by clean signals from a “quasi maximally entangled” system, which makes it
very promising to check these crucial phenomena at high energy. In this paper we devise a novel framework
to extract from H → ZZ data all significant information related to this goal, in particular spin correlation
observables. In this context we derive sufficient and necessary conditions for entanglement in terms of only
two parameters. Likewise, we obtain a sufficient and improved condition for the violation of Bell-type
inequalities. The numerical analysis shows that with a luminosity of L ¼ 300 fb−1 entanglement can be
probed at > 3σ level. For L ¼ 3 ab−1 (HL-LHC) entanglement can be probed beyond the 5σ level, while
the sensitivity to a violation of the Bell inequalities is at the 4.5σ level.
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I. INTRODUCTION

Entanglement is possibly the aspect of quantum mechan-
ics that shows the greatest departure from classical con-
ceptions [1]. Such departure is evidenced by the violation
of Bell inequalities [2] by quantum mechanics, something
unfeasible in any theory consistent with the classical
notions of locality and realism. Let us recall here that
entanglement is a necessary but not sufficient condition for
the violation of the Bell inequalities. In consequence, it is
highly relevant to test both phenomena at different scales,
in particular at the highest possible energies [3,4].
This objective has recently been explored in several

articles [5–10], on the top-antitop system (tt̄) at the LHC.
On the other hand, a natural arena for these tests is provided
by the Higgs boson decays in various channels. Certainly,
the statistics is much smaller than for tt̄ production, but the
physical system is much closer to a maximally entangled
state. A first investigation in this sense was carried out in
Ref. [11], considering the decay of the Higgs boson (H)
into WþW−.

In this paper we will mainly focus on theH → ZZ decay,
in particular when the two Z-bosons decay into light
leptons. Admittedly, this amounts to an important suppres-
sion of the statistics, which is traded by clean signals from a
“quasi maximally entangled” system. On the other hand, an
important aspect in this kind of challenge is to devise a
framework to easily extract fromH → ZZ data all significant
information related to entanglement and the violation of Bell
inequalities, in particular the 80 spin and spin correlation
observables. Then we study necessary and sufficient con-
ditions for entanglement and violation of Bell inequalities in
terms of observable quantities and analyze the feasibility of
these checks by using actual experimental data. This repre-
sents the main goal of the paper.
In Sec. II we review the definition and conditions for

quantum entanglement and Bell inequalities, focusing on a
system with two dimension-3 subsystems. In Sec. III we
formulate the spin density matrix ρ associated to the ZZ
system that arises from Higgs decays. We describe there the
constraints on ρ from symmetry considerations and express
the matrix in an appropriate basis for Hermitian operators,
with coefficients that can be determined from experimental
data. In Sec. IV we give sufficient and necessary conditions
for entanglement in the ρ matrix, expressing them in terms
of the above coefficients. In Sec. V we perform a similar
task for the conditions for the violation of Bell inequalities,
introducing also a new Bell operator which is a more
powerful indicator of that violation than other proposals in
the literature. In Sec. VI we investigate the statistical
sensitivity of future experimental measurements to the
above described entanglement and violation of Bell
inequalities. We will show that there are good prospects
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Exploring Bell inequalities in vector boson Higgs decays

10 EXPERIMENTAL CONSEQUENCES OF OBJECTIVE. . .
than that previously employed, and prove that it
is sufficient to ensure the incompatibility of OLT
and the experimental results of Freedman and
Clauser. (e) We construct an explicit QLT model
which reproduces the results of that experiment.
We thereby prove that the Freedman-Clauser re-
sults constitute a refutation of only those OLT
which satisfy our (or some similar) supplementary
assumption.

During a period of time, while ihe adjustable
parameters have the values a and b, the source
emits, say, Nof the two-particle systems of in-
terest. ' For this period, denote by N, (a) and
N, (b) the number of counts at detectors 1 and 2,
respectively, and by N»(a, h} the number of simul-
taneous counts from the two detectors (coincident
counts) '.If N is sufficiently large, then the en-
semble probabilities of these results are

Artal y zer 2 Ana ly zer

Detector 2 b
Source Detector l

II. OBJECTIVE LOCAL THEORIES

We will formulate and motivate objective local
theories in the context of the experimental ar-
rangement shown schematically in Fig. 1. A
source of coincident two-particle emissions is
viewed by two analyzer-detector assemblies 1 and
2. Each apparatus has an adjustable parameter;
let a denote the value of the parameter at apparatus
1, and 5 that at apparatus 2. In Fig. 1, a and
b are taken to be angles specifying the orienta-
tions of the analyzers, e.g. , the axes of linear
polarizers for photons, or the directions of the
field gradients of Stern-Gerlach magnets for
spin--,' particles. However, neither of these
particular interpretations of the parameters a
and b is essential for the discussion which fol-
lows; a and b may denote the values of any ad-
justable parameter at apparatus 1 and 2, respec-
tively. Finally, in addition to an adjustable com-
ponent and a detector, each apparatus may (and in
practice does) contain various other components,
such as additional. filters to shield the detectors
from unwanted radiations, etc. Since we require
that these additional apparatus components re-
main in place during the experiment, we will ig-
nore them in the discussion. Similarly, we ignore
and assume constant any other macroscopic vari-
ables, such as those describing the source-ap-
paratus geometry.

Consider one of the two-component emissions
from the source. Physical theories, classical,
quantum-mechanical, and presumably more gen-
eral ones as well, characterize a physical system
with a state. Moreover, during the system's ex-
istence, its state in general evolves. Consider
the state specification of the above system at a
time intermediate between its emission and its
impingement on either apparatus. " Denote this
state by A. . Note that we do not necessarily make
a commitment to the completeness of this state
specification, i.e., it may or may not describe
the ultimate essence of the system at the chosen
time. But neither do we make any restriction on
the possible complexity of A. , nor do we assume it
has any special characteristics; in short, we as-
sume no model. As the state described initially
by A. subsequently evolves, it may or may not
trigger a count at apparatus 1, and similarly it
may or may notdo so at apparatus 2. The initial state
A. , if it serves the same role as in existing theo-
ries, will suffice to determine at least the proba-
bilities of these events. " Let the probabilities of
a count being triggered at apparatus 1 and 2 be
P, (X, a) and P,(X, h}, respectively, and let p»(A, a, b)
be the probability that both counts are triggered. "
Since, in general, every system in the ensemble

emitted by the source may not have the same ini-
tial state, we allow a mixture of states. Let p(A)
be the normalized probability density character-
izing the ensemble of emissions. " In terms of the
quantities just defined, the ensemble probabilities
given in Eqs. (1) are

Apparatus
2

Apparatus p, (a)= / Ch p(Z)p, (X, a},r
FlG. 1. Scheme considered for a discussion of objective

local theories. A source emitting particle pairs is viewed
by two apparatuses. Each apparatus consists of an an-
alyzer and an associated detector. The analyzers have
parameters, a and b respectively, which are externally
adjustable. 1n the above example, a and b represent
the angles between the analyzer axes and a fixed refer-
ence axis.

p„(a, b) = ah p(X}p„(Z, a, h),

~here 1" is the space of the states A. . The formula-
tion (2} is quite general. Nothing so far has beenH

  Z   Z* 

ZZ     ≈  maximally entangled state

 Barr,  2022
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In the CM reference,  z-axis along  Z1  momentum      
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|~k| fixed by  

Jz  - and parity - conservation imply

massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q
|~k|2 +m2

1 +
q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@
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m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)
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From the Lorentz  structure of SM  HZZ vertex:

massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
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p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former
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Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)

3

One obtains
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Exploring Bell inequalities in HEP
Typically, the largest Z�mass, say m1, is close to on-shell mZ . From Eq. (10) we see that � � 1,

with � = 1 corresponding to the decay into two at-rest Z’s. In the latter case the spin-state of the

ZZ system is the singlet one, which is maximally entangled, see Eq. (7). Likewise, as m2 decreases,

and so |~k| approaches its maximal value, the state goes to |00i. In consequence, the larger the mass

of the o↵-shell Z, the larger the entanglement and the opportunities to experimentally show both

entanglement and violation of Bell inequalities.

For a given value of � the final spin state is pure and the ⇢ matrix, say ⇢� , is completely

determined. However, when one gathers data from di↵erent kinematical configurations, the state

becomes a mixture

⇢ =

Z
d� P(�)⇢� . (11)

Once the probability P(�) is known, the final ⇢ becomes also well determined. Fig. 1 shows P(�)

when no cuts are imposed on the kinematical variables.

Figure 1: Probability distribution of �, see Eq. (10), obtained with a Monte Carlo simulation when

no cuts are implemented.

In general, the form of P(�) depends on the possible cuts in the kinematical variables. Still, due

to the symmetric form of the possible final states, Eq. (7), the density matrix has a very defined

structure, namely
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with y real. When one only considers final states with the same m1, and m2, and thus the same �,

the spin state is pure and the density matrix, ⇢� has the form (12) with w = y = �. Otherwise w and
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Exploring Bell inequalities in H       ZZ

The quantum ZZ state is a mixed state,  

shaped by the kinematics

The numerical probability          obtained with the Monte Carlo agrees (~3 %) with 
the analytical one obtained by phase space analysis of three body decay 
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y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
M1

⌦ TL2
M2

} [18], where
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Here, TL
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are normalized such that Tr
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= 3, where
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. More precisely,
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Hence, the spin density matrix of the two vector bosons can be parametrized as

⇢ =
1

9

h
13 ⌦ 13 +A1

LM TL

M ⌦ 13 +A2
LM 13 ⌦ TL

M + CL1M1L2M2 TL1
M1

⌦ TL2
M2

i
, (17)

where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL

M
, the coe�cients of the expansion

must fulfill A1,2
LM

= (�1)M (A1,2
L,�M

)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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Hence, the spin density matrix of the two vector bosons can be parametrized as
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where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL
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, the coe�cients of the expansion

must fulfill A1,2
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= (�1)M (A1,2
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)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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A convenient way to parametrize the 9 × 9 spin density-operator of the two vector 
bosons is to use the basis of irreducible tensor operators

80 components
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The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]
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where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and

⌘` =
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W
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+ 8s4
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' 0.13 , (19)

with sW the sine of the electroweak mixing angle [18]. The di↵erential cross section ZZ ! `+1 `
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is given by
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the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely
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where we have applied the orthonormality properties of spherical harmonics.
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where we have applied the orthonormality properties of spherical harmonics.

6

y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
M1
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M2

} [18], where
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Hence, the spin density matrix of the two vector bosons can be parametrized as
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where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL

M
, the coe�cients of the expansion

must fulfill A1,2
LM

= (�1)M (A1,2
L,�M

)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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with  Γ, the decay density matrix of a Z boson into           ,  given by
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the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely
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where we have applied the orthonormality properties of spherical harmonics.
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Exploring Bell inequalities in HEP

y are averages over the kinematical variables, as expressed in Eq. (11). Of course, when the ⇢ matrix

is extracted from experimental data, it does not present the exact form (12) due to systematic and

statistical errors, and the existence of (small) background.

3.2 The irreducible tensor operator parametrization

A convenient way to parametrize the 9⇥ 9 spin density-operator of the two vector bosons is to use

the basis of irreducible tensor operators {TL1
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} [18], where
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M
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. More precisely,
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Hence, the spin density matrix of the two vector bosons can be parametrized as
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LM 13 ⌦ TL

M + CL1M1L2M2 TL1
M1

⌦ TL2
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i
, (17)

where we are summing in L = 1, 2 and �L  M  L (likewise with L1,2 and M1,2). In order for ⇢

to be hermitian, and taking into account that
�
TL

M

�†
= (�1)M TL

M
, the coe�cients of the expansion

must fulfill A1,2
LM

= (�1)M (A1,2
L,�M

)⇤ and CL1M1L2M2 = (�1)M1+M2(CL1,�M1,L2,�M2)
⇤. Altogether

these are the 80 independent real parameters of the 9⇥ 9 ⇢ matrix.
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where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference

system in which the Z is at rest, and
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the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely
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where we have applied the orthonormality properties of spherical harmonics.
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=
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Y M
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the fully di↵erential distribution, c.f. (20) can be writen in a very compact form (the sum in the L

and M indices is implicit):
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1

(4⇡)2
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1 +A1

LMBLY
M
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i
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with
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p
2⇡⌘` , B2 =

r
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5
. (24)

Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�
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Y M
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Aj
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where we have applied the orthonormality properties of spherical harmonics.
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The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]

� =
1

4

0

B@
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2
(sin 2✓ + 2⌘` sin ✓)e�i' 1 + cos2 ✓ � 2⌘` cos ✓
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where ✓,� are the polar angles of the momentum of the negative charged lepton in the reference
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+ 8s4
W

' 0.13 , (19)
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the various coe�cients in Eq. (17) from the di↵erential cross section, namely

Z
1

�

d�

d⌦1d⌦2
Y M

L (⌦j)d⌦j =
BL

4⇡
Aj

LM
, j = 1, 2 .

Z
1

�

d�

d⌦1d⌦2
Y M1
L1

(⌦1)Y
M2
L2

(⌦2)d⌦1d⌦2 =
BL1BL2

(4⇡)2
CL1M1L2M2 , (25)

where we have applied the orthonormality properties of spherical harmonics.

6

<latexit sha1_base64="2WgbMLxmvwnXw+Y5kle36dnuFyA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuykNxkyO7vOzAZCyEd48aCIV7/Hm3/jbLIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8y/zmCJXmsXw04wT9iPYlDzmjxkrNDj6lfFTslspuxZ2BLBMvJ2XIUeuWvjq9mKURSsME1brtuYnxJ1QZzgROi51UY0LZkPaxbamkEWp/Mjt3Sk6t0iNhrGxJQ2bq74kJjbQeR4HtjKgZ6EUvE//z2qkJb/wJl0lqULL5ojAVxMQk+530uEJmxNgSyhS3txI2oIoyYxPKQvAWX14mjfOKd1W5fLgoV2/zOApwDCdwBh5cQxXuoQZ1YDCEZ3iFNydxXpx352PeuuLkM0fwB87nD/wXj1o=</latexit>⌘

  J.M. Moreno , IFT Madrid       Corfu 2023   

The great advance of this parametrization over e.g. the one given by the Gell-Mann matrices, is

that it allows to easily extract the values of the A and C coe�cients from angular distributions of

the final leptons. The decay density matrix of a Z boson into charged leptons is given by [19]
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system in which the Z is at rest, and
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and M indices is implicit):
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Now, using the appropriate spherical harmonics as integration kernels, one can derive the values of

the various coe�cients in Eq. (17) from the di↵erential cross section, namely
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Exploring Bell inequalities in HEPNotice that the theoretical form of the density matrix (12) imposes strong constraints on the

various Aj

LM
, CL1M1L2M2 coe�cients. At the end of the day it simply reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
6

�p
2A1

2,0 + 2
�

0 1
3C2,1,2,�1 0 1

3C2,2,2,�2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,1,2,�1 0 1

3

�
1�

p
2A1

2,0

�
0 1

3C2,1,2,�1 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3C2,2,2,�2 0 1

3C2,1,2,�1 0 1
6

�p
2A1

2,0 + 2
�

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

. (26)

with
1p
2
A1

2,0 + 1 = C2,2,2,�2. (27)

We do not replace the latter relation in (26). It could be used, for example, as a way to estimate

the uncertainties in the experimental determination of the density matrix, or to improve the deter-

mination of the independent coe�cients and thereby improve the precision in the measurement of

the entanglement observables. An investigation of the optimal way to extract the latter from data

is beyond the scope of the present work.

4 Conditions for entanglement

Intuitively, a “classical” system of two vector bosons with vanishing spin-third-component can only

be in three states: |+�i , |00i or |�+i. Any superposition of these possibilities implies an entangled

quantum state. Hence, one can expect that if the ⇢�matrix is non-entangled, it can contain just

three non-vanishing entries, namely the diagonal ones: ⇢+�,+�, ⇢00,00 and ⇢�+,�+. Thus, if any

of the six remaining entries is di↵erent from zero, that would be a signal of entanglement. It is

interesting to show that this is indeed the case, by using the above-mentioned Peres-Horodecki

criterion, see Eq. (2) and below. For a generic spin-density matrix with vanishing third-component,

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 a 0 b 0 c 0 0

0 0 0 0 0 0 0 0 0

0 0 b⇤ 0 d 0 f 0 0

0 0 0 0 0 0 0 0 0

0 0 c⇤ 0 f⇤ 0 g 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (28)
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ENTANGLEMENT  ?

the corresponding partially transposed matrix reads

⇢ =

0

BBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 c

0 0 0 0 0 b 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 0 0 0 0 f 0

0 0 0 0 d 0 0 0 0

0 b⇤ 0 0 0 0 0 0 0

0 0 0 0 0 0 g 0 0

0 0 0 f⇤ 0 0 0 0 0

c⇤ 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCA

, (29)

which has eigenvalues a, d, g,±|b|,±|c|,±|f |. Therefore if b 6= 0, c 6= 0 or f 6= 0 the density matrix

is entangled. Note that the reverse is also true: if b = c = f = 0 the state is obviously separable,

as ⇢ is diagonal in the separable basis. This represents a noteworthy example beyond a two-qubit

system, where, thanks to an underlying symmetry, the Peres-Horodecki condition for entanglement

is not just su�cient, but also necessary.

When applied this condition to our density matrix (26), it turns out that the ZZ system is

entangled if and only if

C2,1,2,�1 6= 0 or C2,2,2,�2 6= 0 . (30)

5 Conditions for violation of Bell inequalities

As mentioned in section 2, the explicit form of the CGLMP inequality depends on the specific choice

of the four observables, A1, A2, B1, B2 associated to the Alice and Bob Hilbert spaces. The optimal

choice, i.e. the one that leads to a larger violation of the inequality, depends on the state at hand

(in our case the density operator, ⇢).

This issue was considered in Ref. [15] in a more abstract context. Namely, denoting by |ii
A
, |ji

B

(i, j = 1, 2, 3) two orthonormal bases of HA, HB, if the state at hand is the maximally entangled

state of the form �� 0↵ =
1p
3
(|11i+ |22i+ |33i) , (31)

where |iji = |ii
A
|ji

B
, then a particular choice of the four observables A1, A2, B1, B2 was argued to

maximize the violation of the CGLMP inequality. A compact way to express this optimal choice is

by building the corresponding Bell operator, say O0
Bell

[20]. In terms of the TL

M
matrices of Eqs.(14,

16) O0
Bell

reads

O0
Bell

=
4

3
p
3

�
T 1
1 ⌦ T 1

1 + T 1
�1 ⌦ T 1

�1

�
+

2

3

�
T 2
2 ⌦ T 2

2 + T 2
�2 ⌦ T 2

�2

�
. (32)

Coming back to the H ! ZZ decay, and working in the usual spin basis

{|+i , |0i , |�i}A ⌦ {|+i , |0i , |�i}B , (33)

for a particular event, the spin state of the ZZ system is given by Eq. (7), which in general does not

have the form (31). However, in the non-relativistic limit, which corresponds to � = 1 in Eq. (7),

8

BELL INEQUALITIES ?

- Checking separability is not , in general, an easy task

We are dealing with  “qutrits” ( - ,  0,  + )   

The optimal inequalities are not CHSH  but CGLMP

Technical issue:

A. Peres 1996
 P Horodecki 1997

- BUT in this case, symmetries come to rescue: 

  entanglement  IFF one of the  spin correlations is non vanishing, ie
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where pn > 0 are classical probabilities, with
P

pn = 1, and ⇢An , ⇢
B
n are density matrices acting

in the Alice and Bob Hilbert spaces. A general test for a density matrix to determine whether it

corresponds to a separable or an entangled state is not known. The most popular one is the Peres-

Horodecki criterion [12,13], which provides a su�cient condition for entanglement: denoting |ii, |µi
two orthonormal bases of the HA, HB Hilbert spaces, and ⇢iµ,j⌫ the density matrix of the global

system, then a new matrix is constructed by transposing only the indices of Bob (or Alice),

⇢T2 = ⇢i⌫,jµ . (2)

If ⇢T2 has at least one negative eigenvalue, then the ⇢ matrix describes an entangled state. This

su�cient condition is also necessary in two general cases: dimHA = dimHB = 2 (qubits) and

dimHA = 2, dimHB = 3 (and vice-versa), but not for dimHA = dimHB = 3 (qutrits) or larger.

This is the case of the spin states of the massive vector bosons. However, as we will see soon, for

the ZZ system stemming from a Higgs decay, the Peres-Horodecki is a necessary condition as well.

Concerning the Bell inequalities, for subsystems of dimension 3, as the case at hand, several Bell-

like relations have been explored. Typically, when the system is not very far from a maximally

entangled state the popular CHSH inequality [14], which is optimal for qubits, does not provide the

maximal departure from local realism predictions [15]. A much more powerful relation is given by

the so-called CGLMP inequality [15]. Namely, if A1, A2 and B1, B2 are observables in HA, HB that

take (or are assigned to take) three possible values, ±1, 0 then the following inequality should hold

in any local-realistic theory

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

� [P (A1 = B1 � 1) + P (B1 = A2) + P (A2 = B2 � 1) + P (B2 = A1 � 1)]  2 , (3)

where P (Bi = Aj + a) denotes the probability that the measurement of the observable Bi gives the

same result as the one of Aj plus a (mod. 3).

In quantum mechanics the above probabilities are expressed in terms of expectation values of

the appropriate projectors; e.g. P (A1 = 0) = hP 0
A1

i = Tr
�
⇢ P 0

A1
⌦ 13

 
, where P 0

A1
is the projector

associated to the eigenvalue 0 of A1. Consequently, the value of I3 can be expressed as the expectation

value of a certain operator, I3 = hOBelli, and the CGLMP inequality reads

I3 = hOBelli = Tr{⇢ OBell}  2 . (4)

The general expression of the “Bell operator” OBell, in terms of the four chosen observables,

A1, A2, B1, B2, is given in detail in Appendix A. Of course, in order to optimize the violation of

the CGLMP-inequality (4) in quantum mechanics, a smart choice of the A1, A2, B1, B2 has to be

made depending on the state ⇢ at hand. This issue will be examined in detail in section 5 below.

3 The H ! ZZ system

3.1 Expected form of the density matrix

The general spin state of the ZZ system is described by a density operator, ⇢, acting on the (dim 9)

Hilbert space defined by the three spin states of each Z. It is important to note that the propagator

of the o↵-shell Z boson also has a scalar component, whose contribution cancels when coupled to

2

Qutrits:  CGLMP Bell-type inequality

Collins,  Gisin,  Linden,  Massar,  Popescu, 2002

A1 (-1, 0, 1)

A2 (-1, 0, 1)

B1 (-1, 0, 1)

B2 (-1, 0, 1)

      (A1,2 ,  B1,2) chosen 
      to optimize I3 

the state is a pure singlet,

| si
1p
3
(|++i � |00i+ |��i) , (34)

which can be written in the form (31) by a change of basis defined by the unitary transformation

| si ! UOA ⌦ U⇤ | si , (35)

where

OA =

0

B@
0 0 1

0 �1 0

1 0 0

1

CA (36)

and U is an arbitrary 3⇥ 3 unitary matrix, U 2 U(3).

Hence, in the non-relativistic limit and working in this new basis, an optimal choice for the Bell

operator is the operator O0
Bell

, given in Eq. (32). Then the violation of the CGLMP inequality (4)

reads

I3 = Tr
n
(UOA ⌦ U⇤)⇢(UOA ⌦ U⇤)†O0

Bell

o
> 2 (37)

where ⇢ = | si h s| is the density operator in the basis (33). Note that ⇢ has the form (12) with

y = w = � = 1. Then, using the invariance of the trace under cyclic permutations, the violation of

the CGLMP inequality can be expressed as

I3 = Tr {⇢ OBell} > 2 (38)

with

OBell = (UOA ⌦ U⇤)†O0
Bell

(UOA ⌦ U⇤) . (39)

In other words, this operator represents the optimal choice for the Bell operator when the spin state

is the singlet (y = w = 1) and one is working in the physical spin basis (33). Note that in this limit

all the choices of U give equivalent results for the violation of the CGLMP inequality, Eq. (38).

Of course, in general � 6= 1, so the spin state | ZZi (7) is not a singlet. Thus one should in

principle explore all the possible Bell operators in order to find the optimal one. This represents a

huge parameter space. However, since � is typically not far from 1, see Fig. 1, a reasonable strategy

is to consider Bell operators of the form (39), exploring the space of U -matrices (notice that now

not all choices of U are equivalent).

This exploration is greatly simplified by noting that the | ZZi state (7) is still invariant under

transformations UOA ⌦ U⇤, where U is a unitary matrix acting only in the subspace spanned by

{|+i , |�i}, as well as under a redefinition via a global phase. Hence, the non-equivalent choices of

U are those belonging to the U(3)/ (U(2)⌦ U(1)) coset. For each one of them we get a di↵erent

OBell operator (39) and a prediction for I3 = hOBelli, say I3(�, U). We have explored the form of U

that maximizes I3(�, U) and found that, in the region of interest, a convenient choice is:

U0 =

0

B@

1
2 � 1p

2
1
2

� 1p
2

0 1p
2

1
2

1p
2

1
2

1

CA . (40)
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     In terms of the (Bell) operator associated to  I3 

Optimal operator for the pure singlet (β=0) 
<latexit sha1_base64="+dkeg6bloaSbGd1mazMsxPmvXV0="></latexit>

OBell ⌘
4

3
p
3

�
T 1
1 ⌦ T 1

1 + T 1
�1 ⌦ T 1

�1

�
+

2

3

�
T 2
2 ⌦ T 2

2 + T 2
�2 ⌦ T 2

�2

�

     for ρsinglet ,     I3   ≈ 2.8
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OBellImproved   

Sizeable improvement in the k-momentum peak region 

We have built an improved version of              for β ≠ 0
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In terms of spin polarization and  spin correlations:

This is illustrated in Fig. 2, where the functions

I3(�, 1) =
12 + 8

p
3�

3(2 + �2)
,

I3(�, U0) =
(1 + �)(3 + 4

p
3 + 3�)

3(2 + �2)
,

(41)

are displayed, showing the improvement provided by this non-trivial choice.

Figure 2: Functions (I3(�, 1), I3(�, U0)) defined in Eq. (41). We have also displayed the local-realistic

upper bound for the Bell inequality (gray dashed horizontal line) as well as the mean value of � with

respect to the probability distribution P(�) shown in Fig. 1 (red dashed vertical line).

For completeness, we give the expression of the Bell operator (39) for U = U0:
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(42)

In general, the state of the ZZ system is given by the density operator ⇢ shown in Eq. (26) and the

corresponding prediction for I3 = Tr {⇢ OBell} reads

I3 =
1

36

⇣
18 + 16

p
3�

p
2
⇣
9� 8

p
3
⌘
A1

2,0 � 8
⇣
3 + 2

p
3
⌘
C2,1,2,�1 + 6C2,2,2,�2

⌘
. (43)

In other words, the ZZ system violates the GCLMP inequality whenever this expression for I3 is

larger than 2. Notice that the A1
2,0 parameter is related to C2,2,2,�2 by Eq. (27). However, we

will keep it as an independent parameter when extracting its value from data, as a possible handle

to estimate the involved uncertainties1. This may not be convenient, however, in the presence of

systematic uncertainties, but such a study is beyond the scope of the present work.

1
Actually, in this way the statistical uncertainty in I3 becomes 5% smaller in the simulations discussed in section

6.

10



  J.M. Moreno , IFT Madrid       Corfu 2023   

Exploring Bell inequalities in HEP

<latexit sha1_base64="q+QS35qX87Lm5rs9Zux6BFuKwcg=">AAAB/nicbZDLSgMxGIUzXmu9jbrsJlgEcVFmpF6WRTddVrAX2hlLJv2nDc1cSDJCGQr6MroSdedD+AK+jek4C239F+HLf04g53gxZ1JZ1pextLyyurZe2Chubm3v7Jp7+y0ZJYJCk0Y8Eh2PSOAshKZiikMnFkACj0PbG1/P9PY9CMmi8FZNYnADMgyZzyhRetU3S3GMHRXhenZ2u3cnGVQd4Lxvlq2KlQ1eBDuHMsqn0Tc/nUFEkwBCRTmRsmdbsXJTIhSjHKZFJ5EQEzomQ+hpDEkA0k2zEFN85EcCqxHg7P7bm5JAykngaU9A1EjOa7Plf1ovUf6lm7IwThSEVFu05icc64CzLvCACaCKTzQQKpj+JaYjIghVurGijm/Ph12E1mnFPq+c3VTLtau8iAIqoUN0jGx0gWqojhqoiSh6RM/oDb0bD8aT8WK8/liXjPzNAfozxsc3yeWUBg==</latexit>

pp ! H ! ZZ
⇤ ! 4`

We have generated

using MadGraph and implementing our analysis in                          final state
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Some technical details:

-  Axis orientation:      along       ,     in the production plane     
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ẑ

BR 1.24 x 10-4

 - Cross section NNNL order is 48.61 pb at a centre-of-mass energy of 13 TeV

  (6.02 fb in the specific final state)

- Lepton detection efficiency:  0.7 (ie, overall 0.25 )

- Luminosity:   300 fb-1  (3. ab-1 ) for LHC Runs 2+3 (HL-LHC) respectively

Numerical Results

- Stat. uncertainty in the observables is determined by performing 103 pseudo-experiments.

- Results are presented  with / without cuts in mZ2
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ity, and calculate the observables from the di↵erential distribution, as aforementioned. Repeating

this procedure, we obtain the mean and standard deviation for each observable. The mean value

resulting from the pseudo-experiments is quite close to the theoretical value calculated with the full

Monte Carlo sample, and the standard deviation corresponds to the expected statistical uncertainty.

Systematic uncertainties are not included in our analysis. Given the clean final state and the good

experimental resolution for charged leptons, these uncertainties are expected to be small. In any

case, they must be addressed within an experimental analysis using a full detector simulation.

As discussed in section 3.1, the larger the mass m2 of the o↵-shell Z boson, the more entangled

the ZZ state is. However, requiring a lower cut on mZ2 also decreases the statistics, increasing

the uncertainty in the measurements. We give results without any cut and also with lower cuts

mZ2 � 10, 20, 30 GeV.

Table 1 gives the results for L = 300 fb�1. The entanglement can be probed at the 3� level using

C2,1,2,�1, and below the 2� level using C2,2,2,�2, see Eq. (30). A combination of both observables,

which is beyond the scope of this work, would improve the sensitivity. On the other hand, the

sensitivity to the violation of the Bell inequalities, see Eq. (43), is below the 2� level.

min mZ2

0 10 GeV 20 GeV 30 GeV

N 450 418 312 129

C2,1,2,�1 �0.98± 0.31 �0.97± 0.33 �1.05± 0.38 �1.06± 0.61

C2,2,2,�2 0.60± 0.37 0.64± 0.38 0.74± 0.43 0.82± 0.63

I3 2.66± 0.46 2.67± 0.49 2.82± 0.57 2.88± 0.89

Table 1: Values of the spin correlation coe�cients C2,1,2,�1 and C2,2,2,�2 signaling quantum entan-

glement, and the Bell operator I3 signaling violation of the Bell inequalities, obtained from 1000

pseudo-experiments with with L = 300 fb�1.

Table 2 gives the results for L = 3 ab�1. In this case, the entanglement can be probed beyond

the 5� level using both coe�cients, reaching a 10% precision in the case of C2,1,2,�1. The sensitivity

to a violation of the Bell inequalities is at the 4.5� level.

min mZ2

0 10 GeV 20 GeV 30 GeV

N 4500 4180 3120 1290

C2,1,2,�1 �0.95± 0.10 �1.00± 0.10 �1.04± 0.12 �1.04± 0.19

C2,2,2,�2 0.60± 0.12 0.64± 0.12 0.74± 0.14 0.83± 0.20

I3 2.63± 0.15 2.71± 0.16 2.81± 0.18 2.84± 0.28

Table 2: The same as Table 1, for L = 3 ab�1.

12

 LHC Runs 2+3
300 fb-1 

              Bell  < 2 σ
          Entanglement  ~ 2 σ

Numerical results
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2 Model independent analysis of H → ZZ(∗)

For our study of possible CPV in the Higgs sector we will examine the decay of a Higgs

boson into two Z bosons with subsequent decay into two lepton pairs,

H → ZZ(∗) → (f1f̄1)(f2f̄2) . (1)

To perform a model-independent analysis we examine the most general vertex including

possible CPV for a spin-0 boson1 coupling to two Z bosons with four-momenta q1 and q2,

respectively. This can be written as

V µν
HZZ =

igmZ

cos θW

[

a gµν + b
pµpν
m2

Z

+ c εµναβ
pαkβ

m2
Z

]

, (2)

where p = q1 + q2 and k = q1 − q2, θW denotes the weak-mixing angle and εµναβ is the

totally antisymmetric tensor with ε0123 = 1. As can be inferred from Eq. (2) the CP

conserving tree-level Standard Model coupling is recovered for a = 1 and b = c = 0.

The terms containing a and b are associated with the coupling of a CP-even Higgs

boson to a pair of Z bosons, while that containing c is associated with that of a CP-

odd Higgs boson. In general these parameters can be momentum-dependent form factors

that may be generated from loops containing new heavy particles or equivalently from

the integration over heavy degrees of freedom giving rise to higher dimensional operators.

The form factors b and c may, in general, be complex. Since an overall phase will not

affect the observables studied here, we are free to adopt the convention that a is real. This

convention requires the assumption that the signal and background do not interfere, and

indeed in our approximation where the Higgs boson is taken on-shell, this interference is

exactly zero. Interference would be only manifest if the Higgs boson were taken off-shell

and since the dominant signal contribution arises from on-shell Higgs bosons, we expect

this interference to be small and neglect it.

In principle, the vertex is valid at all orders in perturbation theory. Contributions to

the HZZ vertex from loop corrections will not add any new tensor structures and will only

alter the values of a, b and c. More generally, a, b and c are momentum dependent form

factors obtained from integrating out the new physics at some large scale Λ. Since the

momentum dependence will involve ratios of typical momenta in the process to the large

scale Λ, we make the reasonable assumption that the scale dependence can be neglected

and keep only the constant part.

1In fact, in order to be as general as possible one should allow for a general CP violating coupling with

a “Higgs” particle of arbitrary spin, as in [30]. We keep this for future work.

4

At lowest other the Standard Model HZZ vertex is modified as:

 CP conserving tree-level SM coupling:         a=1,   (b, c)=0  
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The previous results can be generalized 
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massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q

|~k|2 +m2
1 +

q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@

0 |~k|
m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)

3

(kZ , b, c)
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massless final state fermions, as is our case; therefore, we can safely consider the o↵-shell Z boson

as a spin-1 particle too [16].

We will work in the conventional basis of eigenstates of the third component of the spin for each

boson, |+i, |0i, |�i, and in the center of mass (CM) reference system, defining the z�axis along the

3-momentum, ~k, of one of the Z’s. Furthermore, to avoid ambiguities, we will choose the latter as

the Z�boson with the largest invariant mass, which is always well defined in the H ! ZZ process.

Note that with this choice of reference system, the sign of third component of spin coincides with

the helicity for one of the bosons (and minus the helicity for the other).

It is interesting to discuss how far one can go to in determining the texture of the ⇢ matrix,

just based on the symmetries of the system. First of all, since in this case the two Z bosons arise

from the Higgs decay, the spin component along the momentum direction, i.e. Jz, is conserved and

vanishing for the joint system. This means that only the 9 entries of the ⇢ operator corresponding

to hui|⇢|uji, with |u1i = |+�i , |u2i = |00i , |u3i = |�+i, can be di↵erent from zero. In general, the

⇢ operator will be a convex combination

⇢ =
X

p`|`ih`|, with p` � 0,
X

p` = 1 (5)

and

|`i = ↵1 |+�i+ ↵2 |00i+ ↵3 |�+i , with
X

i=1,2,3

|↵i|2 = 1 . (6)

Since in the H ! ZZ process parity is conserved, for a particular event the ZZ state must be

necessarily of the form

| ZZi =
1p

2 + �2
(|+�i � � |00i+ |�+i) , (7)

with � real. Note that the ↵1 = ↵3 = 0 case in (6) is recovered for |�| ! 1. In the rest frame

the decay of the Higgs boson obviously has spherical symmetry, so the value of � just depends

on the non-trivial kinematical variables, namely the two invariant masses of the vector bosons,

m1,m2, and the modulus of the corresponding 3-momentum |~k|, which is related to the former

by
q

|~k|2 +m2
1 +

q
|~k|2 +m2

2 = mH . We can get an accurate expression for � using the Lorentz

structure of the interaction term / ⌘µ⌫HZµZ⌫ in the SM. Then the scalar state of the ZZ system

in the CM frame is given by [17]

| ZZi = ⌘µ⌫ eµ�(m1,~k) e
⌫

�
(m2,�~k) |~k,�iA|�~k,�iB , (8)

where �,� represent spin states and

eµ�(m,~k) =

0

BBBB@

0 |~k|
m

0

� 1p
2

0 1p
2

ip
2

0 ip
2

0 �
p

|~k|2+m2

m
0

1

CCCCA
. (9)

Comparing Eqs. (7), (8) we finally get

� = 1 +
m2

H
� (m1 +m2)2

2m1m2
. (10)

3

(b, c)
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The optimal Bell operator will depend on (b,c)



  J.M. Moreno , IFT Madrid       Corfu 2023   

The generated       system is in a (mixed) entangled state of spin, i.e. a 2-qubit system
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tt̄

and deriving the su�cient and necessary conditions in physically relevant limits. In section 3 we

expound the experimental strategy to probe both phenomena at the LHC, in particular we describe

the physical observables that give a direct test of both entanglement and CHSH violation. Section

4 is devoted to the numerical simulation of the described strategy, showing the advantage gained

thanks to the aforementioned improvements. Finally, in section 5 we discuss our results and the

future prospects. Additional results are presented in two appendices.

2 Conditions for entanglement and Bell inequalities

An entangled state of two subsystems (Alice and Bob) is by definition a non-separable one, i.e. one

that cannot be expressed as | 1iA ⌦ | 1iB. If the state of the global system is a statistical mixture,

described by a density matrix, ⇢, the separability condition reads

⇢sep =
X

n

pn⇢
A
n ⌦ ⇢Bn , (2)

where pn are classical probabilities and
P

pn = 1. If ⇢ cannot be expressed as (2), then the state is

entangled. Mathematically, a necessary and su�cient condition for entanglement in joint systems of

two qubits (i.e. each one having a Hilbert space of dimension 2) is provided by the Peres-Horodecki

criterion [14,15]: from the the initial density matrix, ⇢, a new matrix is constructed by transposing

only the indices associated to the Bob (or Alice) Hilbert space. If this partially transposed matrix,

say ⇢T2 , is not a legal density matrix, which in particular means that it has at least one negative

eigenvalue, then the ⇢ matrix corresponds to an entangled state.

Concerning the Bell inequalities, it has been shown that the so-called CHSH inequalities are

an optimal version of them for joint systems of two qubits [16] when Alice and Bob can measure

two di↵erent observables each, say A,A0 (Alice) and B,B0 (Bob), which take (or are assigned to

take) two possible values, ±1. In any local and realistic (‘classical’) theory, the averages of any such

observables must fulfill the CHSH inequality

��hABi � hAB0i+ hA0Bi+ hA0B0i
��  2 . (3)

For appropriate choices of the A,A0, B,B0 observables this inequality can be violated by quantum

mechanics in certain entangled ⇢ states.

Let us particularise the Peres-Horodecki criterion of entanglement and the CHSH inequali-

ties for a system of two qubits, such as the spin of the tt̄ system. An appropriate basis to ex-

pand any Hermitian operator acting in the global Hilbert space is provided by the 16 matrices�
1A,�A1 ,�

A
2 ,�

A
3

 
⌦
�

1B,�B1 ,�
B
2 ,�

B
3

 
. Hence the density matrix of the joint system, ⇢, can be writ-

ten as

⇢ =
1

4

0

@1 ⌦ 1 +
X

i

(B+
i �i ⌦ 1 +B�

i 1 ⌦ �i) +
X

ij

Cij�i ⌦ �j

1

A , (4)

where B±
i , Cij are real coe�cients and we have dropped the A,B superscripts in the matrices. The

Tr ⇢ = 1 condition is automatically taken into account by the coe�cient of the first term. The
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tt̄

3+3+9 components



ATLAS, Eur. Phys.J.C 80 (2020) 8, 754

One effect:  dilepton azimutal correlation in tt̄ → W+b W−b̄ → l+νb l−ν̄b̄

- At the LHC  top quark pairs are mainly produced via gluon 
fusion:  gg → tt 

- They are unpolarized at leading order (LO)

-  A small longitudinal polarization arises from electroweak 
corrections

-  The spins of the top quarks and antiquarks are strongly 
correlated

- The configuration of spins depends on mtt , the invariant mass 
of the tt pair with  same (oposite) helicity pairs dominating at 
low (high) mtt 

Origin of the correlation?
G. Mahlon, S.J. Parke, Phys.Rev.D81:074024,2010

  J.M. Moreno , IFT Madrid    Red LHC    

 spin correlations: origin & effects
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tt̄

Aguilar Saavedra, Fiolhais, Martin-Ramiro, Moreno, Onofre 2021

Extracting the spin correlations:



  J.M. Moreno , IFT Madrid       Corfu 2023   

Aguilar-Saavedra, Casas 2023  

The generated       system is in a (mixed) entangled state of spin, i.e. a 2-qubit system
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tt̄

and deriving the su�cient and necessary conditions in physically relevant limits. In section 3 we

expound the experimental strategy to probe both phenomena at the LHC, in particular we describe

the physical observables that give a direct test of both entanglement and CHSH violation. Section

4 is devoted to the numerical simulation of the described strategy, showing the advantage gained

thanks to the aforementioned improvements. Finally, in section 5 we discuss our results and the

future prospects. Additional results are presented in two appendices.

2 Conditions for entanglement and Bell inequalities

An entangled state of two subsystems (Alice and Bob) is by definition a non-separable one, i.e. one

that cannot be expressed as | 1iA ⌦ | 1iB. If the state of the global system is a statistical mixture,

described by a density matrix, ⇢, the separability condition reads

⇢sep =
X

n

pn⇢
A
n ⌦ ⇢Bn , (2)

where pn are classical probabilities and
P

pn = 1. If ⇢ cannot be expressed as (2), then the state is

entangled. Mathematically, a necessary and su�cient condition for entanglement in joint systems of

two qubits (i.e. each one having a Hilbert space of dimension 2) is provided by the Peres-Horodecki

criterion [14,15]: from the the initial density matrix, ⇢, a new matrix is constructed by transposing

only the indices associated to the Bob (or Alice) Hilbert space. If this partially transposed matrix,

say ⇢T2 , is not a legal density matrix, which in particular means that it has at least one negative

eigenvalue, then the ⇢ matrix corresponds to an entangled state.

Concerning the Bell inequalities, it has been shown that the so-called CHSH inequalities are

an optimal version of them for joint systems of two qubits [16] when Alice and Bob can measure

two di↵erent observables each, say A,A0 (Alice) and B,B0 (Bob), which take (or are assigned to

take) two possible values, ±1. In any local and realistic (‘classical’) theory, the averages of any such

observables must fulfill the CHSH inequality

��hABi � hAB0i+ hA0Bi+ hA0B0i
��  2 . (3)

For appropriate choices of the A,A0, B,B0 observables this inequality can be violated by quantum

mechanics in certain entangled ⇢ states.

Let us particularise the Peres-Horodecki criterion of entanglement and the CHSH inequali-

ties for a system of two qubits, such as the spin of the tt̄ system. An appropriate basis to ex-

pand any Hermitian operator acting in the global Hilbert space is provided by the 16 matrices�
1A,�A1 ,�

A
2 ,�

A
3

 
⌦
�

1B,�B1 ,�
B
2 ,�

B
3

 
. Hence the density matrix of the joint system, ⇢, can be writ-

ten as

⇢ =
1

4

0

@1 ⌦ 1 +
X

i

(B+
i �i ⌦ 1 +B�

i 1 ⌦ �i) +
X

ij

Cij�i ⌦ �j

1

A , (4)

where B±
i , Cij are real coe�cients and we have dropped the A,B superscripts in the matrices. The

Tr ⇢ = 1 condition is automatically taken into account by the coe�cient of the first term. The

2
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enhancing the entanglement (larger near threshold) of the top pair system. 
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The generated   system is generically in a (mixed) entangled state of spin, 
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2

Bell (CHSH) inequalities

|Cii ± Cjj | > 2 CHSH

Simple linear (non-biased) combinations 

Opens the possibility to design dedicated observables to directly 
measure   and thus the CHSH violationCii ± Cjj

How far is this simple criterion from     ?λ1 + λ2 > 1

From the eigenvalue interlacing theorem:

λ + λ′� ≥ (C2)ii + (C2)jj ≥ (Cii)2 + (Cjj)2 ≥ 1
2

|Cii ± Cjj |

The   are close to equalities up to≥ # (
C2

ij

|Cii | + |Cjj |
,

( |Cii | − |Cjj | )2

|Cii | + |Cjj | ) corrections

Aguilar-Saavedra, JAC

12

Feasible to detect entanglement in Run 2 and CHSH violation at HL LHC

Also, dedicated observables have been proposed

ENTANGLEMENT

BELL

PROSPECTS

Afik , de Nova, 2021

(See previous list)
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Relevant (and perhaps crucial) aspects
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