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The Two-Higgs Doublet Model (2HDM) in the bilinear notation

Vo= m} ol + md,old, — [m3,dld, + h.el+
1 N 1 ,
fxl(cbicbm . *>\2(®£¢2)2 + A3(DI O ) DI D,) + M (D] Do) (LD, ) +

{ As(D]D,)? + [Ng(DID )+A7(¢T¢2)1®*®2+hc},

where m?, and s 67 might be complex.

An alternative notation uses four gauge-invariant bilinears
constructed from the doublets (Velhinho 1994, Nagel 2004,
lvanov 2005, Maniatis 2006, Nishi 2006):

n o= 3 (oo ol
h o= 1 (@Id)g + qagcbl) = Re (qnjcbz) :
n o= —f (oo - oo)=im(o]e),

no= 3 (oo - ole). ;



The Two-Higgs Doublet Model (2HDM) in the bilinear notation

The potential of may be written as

Vo= Myt + Ny rtr?,

where
rtt = (rOar17r27r3)=(r07F)7
Mr = (m%l +m3,, 2Re(m?,), —2Im(m3,), m3, — m%l) = (Mo, M),
%()\1 + AQ) + A3 —Re (>\6 + )\7) Im ()\6 + )\7) %()\2 — )\1)
N —Re (/\6 + )\7) Mg + Re (/\5) —Im (/\5) Re (/\6 — /\7)
Im (A6 + )\7) —Im (/\5) A4 — Re ()\5) —Im (>\6 — )\7)

l()\2 — )\1) Re ()\6 — )\7) —Im (>\6 — )\7) %()\1 + )\2) — )\3
2

Ao A
NY =3



Basis transformations

Weak-basis transformation, U(2):

O))

O/ o cos 6 e~i€sing ®;
(oA —eixsing =% cosf

u(2)

The Higgs kinetic terms remain invariant



Basis transformations

Vo= M,rt + Ny r' r?
The basis rotation matrix
1
R;(U) = ETr (UTO','UUJ') ,

where o; (i = 1,2, 3) are the Pauli matrices.

The basis transformations:

F—=7 = RF
M—M = RM
A=N = RA
AN = RART

whereas ry, My and Agg do not change under basis transformations -
they are basis invariants.



Global symmetries of 2HDM

- Higgs-family symmetries, unitary transformations mix both
doublets,

2
O = D) =Y Uy P, U e u@2)
j=1

eg. Z:
CD1 *)@1 s CDQ — 7@2,

prevents the occurrence of tree-level flavour-changing neutral
currents (FCNQ).
- generalized CP (GCP), an anti-unitary field transformation,

2
j=1

e.g. “standard" CP transformation (CP1):

q),*)q);k



Global symmetries of 2HDM

In the bilinear formalism, both Higgs-family and GCP field
transformations are represented by rotations in the
3-dimensional space defined by the vector 7, namely

PP =SF,

where S € 0O(3) defines a rotation of 7.




Global symmetries of 2HDM

CP2: @y — @5, Dy — —BF

Secp2=| 0 -1 0|,
0 0 -1

A parity transformation about the three axes.

S miy m3 o mb | A A A3 Aa As A6 A7
CP1 real real real real
Z> 0 0 o]
uQ) 0 o o 0
CP2 m? 0 A1 -6
CP3 mfl (0] A1 134 (0] (0]
S0(3) m? 0 A1 AM—Xs O 0 o}

Table 1: Relations between 2HDM scalar potential parameters for each of the
six symmetries discussed, A134 = A1 — A3 — 4.



Running of parameters of 2HDM

The 1-loop S-functions for the quadratic couplings

1
Bmz, = 3A1m3; +(2A3 + M) m3, — 3 (A\g mi, +he.) — " (9g% +3g") m?,
Bty
Bz, = (2X3+ Aa) miy +3Xa m3y —3 (A; mi, +hie.) — (9g +3g"%) m3,
+ ﬁ,{;z )
22
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Running of parameters of 2HDM

and 1-loop g functions for the quartic ones,

By

By

ﬁ>\3

ﬁ)\s

Bxrg

ﬁ>\7

6T +222 v 2x30g + A2 ¢ [Ag[% 12 N6 |2

3 3
+=(3g% + 5" 1 26%¢"%) — “x1G3e% v g’ ¢ L,

8 2 1

2 2 2 2 2
63 +2X3 *2A304 + A7 * [Ag|% v 12| 27|

3 3
2 (ag% e gt 26202 - 20,0302 1 6'?) ¢ ﬂi )

8 2 2
(1 +22)@r3 +aa) 23323+ xs 2 (12612 14712 s e (1627
3 3
+=@g* g’ — 262" — “x38% <6/ + 8L,

8 2 3

A1 *A2)Ag +4x3hg +202+4 252 +5 (2|2 + [A7]2) +2Re (A2
1*2A2) 324 a 5 6 7 617
3 3
+Zg2g'% — Zag3g2 g2 s’ii s

2 2 4
(Mg + A2 +4X3 +62g) A5 +5 (A2 +22) + 2262

1+ A2 3 4) X5 6t 7 677

3

2 2 F

— Zag(3e%+ + 8L

2 5(3¢° +g'") A5
(6X1 + 323 +4Xg) Ag + (3A3 + 22g4) A7 +BAgAg + AgAg

3

2 2 F

— Zae(3g%+ IR

5 6(387 +g'7) * By
(6X2 +3X3 +4X4) A7 + (303 + 224) A *BAsAS * AsAg

3
2, 72 F
— —Xg(3g%+ + ,
> 7(3¢% + &'7) B>\7,
m

where the 8F terms contain all contributions coming from fermions.



Running of parameters of 2HDM

- If one imposes a Z, symmetry so that A\g = A7 =0 one
immediately obtains 8y, = £, =0, confirming that the
symmetry-obtained condition on the \'s is preserved under
radiative corrections at the one-loop order.

- For the Z, model

Brs = |[A1+ A2 +4A3+6); — %(3g2+g/2) As

A fixed point of this RG equation - if at any scale As =0,
that coupling will remain equal to zero for all
renormalization scales. Such fixed points of RG equations
are usually fingerprints of symmetries, and indeed that is
the case here: if A\g = A7 =0, the extra constraint A\s =0
takes us from a Z,-symmetric model to a U(1)-symmetric.




Running of parameters of 2HDM

~

We have noticed that

{mii+m3 =0, M1 —X2=0, Xs¢+ A7 =0}

- constitutes a fixed point of the 1-loop RG equations,

- are basis transformation invariants.

Bramna= 6 (38 = 33) +12 (1Mol — M) — 20 — 22 (382 + £)
Bag+rr = 0 (A1 + AaA7) + (BA3 + 2Xg) (A6 + A7) + 65 (Ag + A7)
206+ 2387+ £?)
Bz wmz, = 3Aamiy + Aam3y) + (2As + >\4)(m11 + mby)

=3 [(\g + A3)mi, +hee] — (9g +3g")(m?2, + m3,)




Running of parameters of 2HDM

It turns out that

{mii+m3 =0, A\1—X2=0, Xs¢+ A7 =0}

is also the 2-loop fixed point.

Conclusion:
Perhaps there is a symmetry behind the fixed point:

{m%1+m§2=0 , A1 — A =0, )\6*')\7:0}




New 2HDM symmetries/semisymmetries

Vo= M,rt + Ny r' r?

The rotation matrix R;(U) = Tr (UTo;Uo;) /2, and the basis
transformations:

Fr—r = RF
MM = RM
A=N = RA

A—>N = RART

whereas ry, My and Ago do not change under basis transformations -
they are basis invariants.

Ao A
A = [



New 2HDM symmetries/semisymmetries

Basis transformation invariants:

hi= Ao, ho= TrA
bhi=N-A, b= TrA?
1= N-AR, lo = TrA3
lo1= N-N2K,

To all orders of perturbation theory,

ﬂﬁ = 30R + alAK+azA2K

- N=0s a fixed point to all orders of perturbation theory.

where the a; are polynomial expressions involving invariants,

see AV. Bednyakov, "On three-loop RGE for the Higgs sector of 2HDM",
JHEP 11 (2018) 154, e-Print: 1809.04527



New 2HDM symmetries/semisymmetries

Bme = boMo + by N-M + by AA- (AM) + b\ (AZM)

c Iff\ =0, then Mo = 0 is a fixed point to all orders.

ﬁl\ﬁ = CoM*‘C1AM+C2A2M+C3IM3R+C4/M4AK+ C5IM5A2R

- If K =0, then M = 0 is a fixed point

where the ¢; are polynomial expressions involving invariants,

see AV. Bednyakov



New 2HDM symmetries/semisymmetries

Two all-order fixed points of the 2HDM RG equations:
- {M=0,A=0}.

2 _ 2 2 _ = =
mll - m22 5 m12-0 5 )\1—A2 5 Aﬁ—_)\7.

These are exactly the CP2 symmetry conditions.
- {Mo =0, A=0}.

Mo=m3+msy=0 , A =Xa, A¢=—A7.

These are the conditions mentioned before and they
coincide with the CP2 symmetry conditions for the
quartic couplings, but have different conditions for the
quadratic ones. The conditions are basis invariant, so
they are not a basis change of the previous ones.




New 2HDM symmetries/semisymmetries

Sym metry m%l mgz m%z A1 A2 A3 Aa A5 Y A7
o —mfl )\1 —Ae
oCP1 —m?, real A1 real  real —X¢
027> -m3 0 A1 0 0
ou(1) —m?; 0 A1 0 0 0
oCP2 (0] (0] (0] A1 — X6
0oCP3 (6] (6] (6] A1 134 (0] (6]
050(3) 0 0 0 A1 AM—X3 O 0 0

Table 2: Relations between 2HDM scalar potential parameters for each of the
new seven symmetries discussed, A13a = A1 — A3 — 4.
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The r, symmetry/semisymmetry

where

Vo= M,rt + Ny r' r?

= %((DICD1+CD£CDQ)

no= i(ofo;+ole;) = Re (o]0,
n o= —i (cp}% —qagcbl) = Im (cb}cb2)
no= i(ojo - olo,)

V=Mor0+/\00r027/\2~F72(7\'F)r0+F'(/\F)

- {M =0, A =0}. These are exactly the CP2 (7 — —7).

- {My=0, A= 6} These are new, perhaps ry EN —r

20



The r, symmetry/semisymmetry

$1* i ¢s * iPe
®, = D, =
' <<z>3 + f¢>4) L (¢>7 +ig

The transformation

¢1
®2
¢3
P4
¢s
D6 —i 0
o7 0 O
og 0 O

o O O O O

O O O O O o o
O O O O o o
o

o O O

O O O O O O -
O O O O O O O -
O O O O -

implies

)

o O

O O O O O -

o)
®2
o3
o
¢s
b6
o7
Gs

[ o — —h ri — *r;




The r, symmetry/semisymmetry

D —» -5 O - ®F,
D = D}, O - 0]

- Higgs kinetic terms
Ly = (D, ®1) (D Dy) + (D, D) (D*D,) ,
where

. /
D" ="+ 2o, +iS- B,

L, remains invariant if the above transformation of @, is
supplemented by

Oy — —i0,,
B, — iB,,
Wlu — I.W1/,,7 qu — —I.W2H, VV3H — I'W3H.

22



The r, symmetry/semisymmetry

- Gauge kinetic terms

1 1
B _ "7 v
L8 = 2B B — Wi W,

where B* = 9V B* — 9#BY and W/ = 0" W/' — 0" WY + gepp W WY
Under ry transformation

BHY _ B/J.l/7

iz iz iz nz iz iy
Wi — wyr, W — —-Wo o WY — W

23



Fermionic digression

Remarks:

- The two fixed points
- {M=0,A=0}.
- {Mo=0,A=0}.
imply the same quartic scalar couplings, i.e. CP2 invariant.
-+ Yukawa couplings consistent with CP2 are known, see
P. M. Ferreira and J. P. Silva, “A Two-Higgs Doublet Model With
Remarkable CP Properties,” Eur. Phys. J. C 69 (2010), 45-52,
[arXiv:1001.0574 [hep-ph]].

- rp transformations of fermions are unknown,

- in the following we will adopt CP2 invariant Yukawas to calculate
fermionic contributions to beta functions.

24



Fermionic digression

—Ly = quM®1+M®)ng + LA D1 +85D;)pr + I (M 1 +MoDs) /g + Hc.

- For the CP2 symmetry:

ail ai2 0 —3T2 a{l 0
M =1la2 —an Of , T2=1]a; ajp O
0 0 0 0 0 O

Similarly for A and M matrices, with different coefficients b; and
cj instead of aj;.

25



Fermionic digression

For the most general 2HDM

ghAt = {3Tr(A1AJ{) + 3Te(ryr7) + Tr(nlni)] m2,

2
mis

- { {3 Tr(AlA,) + 3Te(TITL) + Tr(n{n2)} m2, + h.c.} ,

ghIt = {3Tr(A2A§) + 3Tr(rorh) + Tr(r|2n§)} m2,
- { [3 Tr(AlA,) + 3Te(TITL) + Tr(n{nz)] m2, + h.c.} ,
It turns out that
Tr(01A]) = Tr(AoA]) | Ta(TyM]) = Te(Torf) | Te(NyN}) = Te(NMoNY),

as well as
Tr(A,AL) = Te(ry ) = Te(nynf) = o.
Hence,

B e = [3T(@a]) + 3T(rar]) + Te(Mun])] (mdy + m3,)

26



Fermionic digression

It could be shown that

( R

F,1L 2 2
m2 +m2, < (m11 + mzz)
and

FL ) 2
ﬁmz em2, X (m11 + mzz)

So m2, + m2, = 0 is preserved by fermionic contributions
up to 2 loops.

27



Phenomenology of the r, symmetry (semisymmetry)

The set of 11 independent physical parameters of 2HDM:
P={Mps, M7, M3, M3, e1, €2, €3,G1, G2, G3, G}
The kinetic Lagrangian:
Ly = (D;J,CDI)T(DM(DI) + (D,L(Dz)T(D”(Dz)

Coefficient (,Ck, ZH [HJ@H“H,D = m%-kek

2
Coefficient (Ly, H;Z"Z") = 4C0i7%?wei 8w

Coefficient (Lk, HW™H W*V) =

gi = Coefficient(V, HjH*H™)
g = Coefficient(V,H"H"H"H™)

28



Phenomenology of the r, symmetry (semisymmetry)

CP-sensitive invariants in the bilinear notation

= (v ) - (n4)

I = (/\2 x K) : (/\K)
Is = P\?f x /\/\71)] : (/\2/\/1)

Since the rp symmetry implies
automatically zero. However

I = —16Xs m3; Im(m3,) Re(m?,) [(Ar — As — M) — AZ] 70

explicit violation of CP

29



Phenomenology of the r, symmetry (semisymmetry)

Stationary-point equations:

1
m%l = 5)\1 (V22 - V12) ’
1
Remf2 = Evlvzcosg()\1+)\3+)\4+)\5),
1 .
Imm?, = _§v1v25|n§()\1+)\3+)\4_)\5)_

The neutral sector rotation matrix is then given by

Va COS & viCosé o
v v sin¢
R = Y va 0
ine  wising 7
va Sin vy Sin

yielding masses
1
ME= oV *ds+ datds), M3 = A2,
1 1
M2 = Evz()q *A3*th—Xs), Mjs = 5()\1 +A3)v?

No decoupling limit! 30



Phenomenology of the r, symmetry (semisymmetry)

Assuming that M is the SM-like Higgs boson, we obtain from
unitarity and boundedness-from-below constraints:

My < 711 GeV,
M; < 712 GeV,
M; < 711 GeV

N IA

Input parameters:
= (M, M3, M3, M3, e1,€2,€3,q1, 2. G3, 9}
Constraints implied by the ry symmetry:
Vierqy — e2q1) + erea(M2 — M3) =0, v(e1qs — e3qr) + eres(M2 — M?) =0,

1
V0(eaqs — e3q2) + exe3(M5 — M3) =0, q= —— (] M7 + &I M3 + eI M3),

2v

1
M7: = Z(e1qu + e2q2 + e3q3) + V2(612 ME + &S M5 + e M3),

l\.)\»—l

31



Summary and conclusions

- A set of constraints on 2HDM scalar parameters which is RG
invariant to all orders with bosonic contributions to the
B-functions — and which can be invariant to at least two loops if
fermions are also included, have been found.

- The constraints are

2 2 _ — —
m11+m22—0 s )\1—)\2,)\6——/\7,

- The constraints are basis invariant.

- The constraints could be seeing as emerging from the "rg
symmetry" (semisymmetry): ry — —ro defined in terms of the
bilinears ro = 1 (G)’{d)l + ®;®2>.

- The constraints are fixed points of RGE equations for
corresponding quantities, however they do not imply an
existence of the corresponding symmetries.

- The ry symmetry can not be obtained in terms of the unitary or
anti-unitary transformations acting upon Higgs doubles, except
for an unusual transformation that involves x,, — i x,,. 32



Backup slides

1
N = (TrAN — % [(TEA)? = TEAP] A+ o [(TPA)? — STEATIA® + 270
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