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still lead to su�ciently large deviations from the ⇤CDM
model resulting in better agreement with the observa-
tional data. Yet, at the end of the day, we may find
ourselves with a completely di↵erent outcome. In par-
ticular, given that there exist model-independent infer-
ences of H0 from the inverse distance ladder, which show
that combined dataset of BAO and Type Ia Supernovae
(SN) with/without Cepheids prefer low H0 values inde-
pendently of Planck data and the adopted dark energy
model suggesting late-time modifications alone is unable
to alleviate the H0 tension and turned attention to early-
time modifications (such as early dark energy) which low-
ers the sound horizon [76–80]. Also, notice that our dis-
cussions above also imply that the spatial curvature with
⌦k0 > 0 (spatially open universe) and the simple-gDE
with % > 0 (in this case the energy density increases
with increasing redshift, likewise the quintessence dark
energy models) would exacerbate both the H0 tension
and discrepancy with the BAO Ly-↵ measurements, both
which prevail within the ⇤CDM model. In what follows,
we explore in detail whether the spatial curvature (⌦k0)
and the simple-gDE (% = const) extensions, separately or
simultaneously, of the standard ⇤CDM model result in
improvements in fitting the observational data. We also
discuss the implications of our observational constraints
on the past and future history of the Universe and nature
of the vacuum energy.

II. MODEL

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique 4-
velocity u

µ (satisfying uµu
µ = �1 and r⌫u

µ
uµ = 0) in

the form of Tµ⌫ = (⇢+p)uµu⌫ +pgµ⌫ , where ⇢ is the (rel-
ativistic) energy density relative to u

µ, p is the isotropic
pressure and gµ⌫ is the metric tensor. In general rel-
ativity (GR)—described by the Einstein field equations
Gµ⌫ = �Tµ⌫—the set of equations arises from the twice-
contracted Bianchi identity implying rµG

µ⌫ = 0 and
hence resulting in rµT

µ⌫ = 0. Projecting parallel and
orthogonal to u

µ, we obtain the energy and momentum
conservation equations, correspondingly,

⇢̇+⇥% = 0 and Dµ
p+ %u̇

µ = 0, (1)

where ⇥ = Dµ
uµ is the volume expansion rate, a dot

denotes the derivative with respect to the comoving time
t, and we have used r⌫uµ = D⌫uµ�u̇µu⌫ [81, 82]. Notice,
in the momentum conservation equation in (1), that Dµ

p

is the pressure gradient and u̇
µ is the 4-acceleration, and

therefore % = ⇢+ p defines the inertial mass density.
The usual vacuum energy of the QFT (described by

the EoS pcc = �⇢cc) corresponds to the source that yields
null-inertial mass density,

%cc = 0, (2)

for which ⇢cc = const > 0, namely, the energy density
is a constant—via the energy conservation equation in

(1)—and supposed to be positive as suggested by the
cosmological observations. The simplest phenomenologi-
cal generalization of the usual vacuum energy (2) is then
to promote its null inertial mass density to an arbitrary
constant,

%ci = const, (3)

for which the energy density ⇢ci (supposed to be posi-
tive today, i.e., ⇢ci0 > 0) and the pressure pci are not
necessarily constant—here and in what follows the sub-
script 0 attached to any quantity denotes its present-day
(z = 0) value. It is worth noting that this promotion
corresponds to taking the inertial mass density, instead
of vacuum energy density (or ⇤), as one of the constants
of nature. We do not consider the possibility of ⇢ci0 < 0
throughout our study, as it obviously contradicts the ob-
servations. The energy density of this source, which we
call simple-graduated dark energy, reads

⇢ci = ⇢ci0 + 3%ci ln(1 + z), (4)

which satisfies the EoS parameter (w ⌘ �1 + %/⇢)

wci = �1 +
1 + wci0

1 + 3 (1 + wci0) ln(1 + z)
, (5)

where z = �1 + a0
a

is the redshift with a being the
scale factor of the Robertson-Walker (RW) metric. This
source, regardless of the sign of %ci, eventually becomes
indistinguishable from the ⇤ in the past (say, wci ⇡ �1
for z � 0), and thus the extension of the ⇤CDM model
via this source approximates indefinitely close to the
⇤CDM model as the dust dominates it in the past. Yet,
as the future Universe will eventually be dominated by
this source, the future will be drastically di↵erent de-
pending on the sign of %ci; the Universe hits a bounce
(H = 0) in the finite future if %ci > 0 and exhibits LSBR
singularity in the infinite future if %ci < 0 [72]. The latter
case, %ci < 0, is of particular interest to us, as in this case
⇢ci decreases as z increases; namely, the source exhibits a
phantomlike behavior as the logarithmic term (the new
term that arises due to the deviations from null inertial
mass density) dynamically screens ⇢ci0 in the finite past
(z > 0). However, in contrast to the usual phantom dark
energy models (described by w < �1 with ⇢ > 0), (i) its
energy density does not asymptotically approach zero as
z increases but crosses below zero at

zci⇤ = �1 + e�
1

3(1+wci0) (6)

and then keeps growing in negative values, and (ii) its
EoS parameter yields wci0 < �1 for z < zci⇤ and wci0 >

�1 for z > zci⇤. Unless wci0 6= �1, it yields wci ! �1
both in the far future (z ! �1) and in the very early
Universe (z ! 1) and exhibits a pole at zci⇤, i.e., when
the energy density crosses zero, which is in the finite past
for wci0 < �1 and in the finite future for wci0 > �1.
The case wci0 = �1 corresponds to the usual vacuum
energy—for this, we obtain either z⇤ = �1 or z⇤ = 1;
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r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

⇢inert = �⇢0
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where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
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. (3)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (4)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (5)

w = �1 +
�

1 + 3�(� � 1) ln a
. (6)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (4), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (4) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (4) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (7)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,
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latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,

3

from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

⇢inert = �⇢0

✓
⇢

⇢0

◆�

, (2)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (3)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (4)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (5)

w = �1 +
�

1 + 3�(� � 1) ln a
. (6)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (4), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (4) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (4) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (7)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,
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(Local energy conservation)
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from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

% = �⇢0
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, (2)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (3)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (4)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (5)

w = �1 +
�

1 + 3�(� � 1) ln a
. (6)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (4), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (4) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (4) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (7)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,
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from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

% = �⇢0

✓
⇢

⇢0

◆�

, (2)

%⇤ = 0 for usual vacuum energy of QFT, (3)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (4)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (5)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (6)

w = �1 +
�

1 + 3�(� � 1) ln a
. (7)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (5), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (5) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (5) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (8)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (9)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (10)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

Cosmological Constant 
or the usual vacuum energy of QFT

(Inertial mass density)

EoS parameter

Simple-gDE:
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from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

⇢inert = �⇢0
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, (2)

% = constant (3)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (4)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (5)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (6)

w = �1 +
�

1 + 3�(� � 1) ln a
. (7)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (5), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (5) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (5) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (8)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (9)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (10)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.
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from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + uµḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

⇢inert = �⇢0

✓
⇢

⇢0

◆�

, (2)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (3)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (4)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (5)

w = �1 +
�

1 + 3�(� � 1) ln a
. (6)

We note that w = �1 + � for today a = 1 (redshift
z ⌘ �1 + 1

a = 0), w ⇡ �1 for su�ciently large and small
a, in particular, w ! �1 in the far future (a ! 1) and
in the very early universe (a ! 0). Besides, provided
that the parameters � and � are chosen appropriately,
gDE can achieve transition from ⇢ > 0 to ⇢ < 0 at
a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (4), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (4) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (4) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (7)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,
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Under these conditions energy density takes negative values in the past 
and EoS exhibits singularity/pole during its sign change
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still lead to su�ciently large deviations from the ⇤CDM
model resulting in better agreement with the observa-
tional data. Yet, at the end of the day, we may find
ourselves with a completely di↵erent outcome. In par-
ticular, given that there exist model-independent infer-
ences of H0 from the inverse distance ladder, which show
that combined dataset of BAO and Type Ia Supernovae
(SN) with/without Cepheids prefer low H0 values inde-
pendently of Planck data and the adopted dark energy
model suggesting late-time modifications alone is unable
to alleviate the H0 tension and turned attention to early-
time modifications (such as early dark energy) which low-
ers the sound horizon [76–80]. Also, notice that our dis-
cussions above also imply that the spatial curvature with
⌦k0 > 0 (spatially open universe) and the simple-gDE
with % > 0 (in this case the energy density increases
with increasing redshift, likewise the quintessence dark
energy models) would exacerbate both the H0 tension
and discrepancy with the BAO Ly-↵ measurements, both
which prevail within the ⇤CDM model. In what follows,
we explore in detail whether the spatial curvature (⌦k0)
and the simple-gDE (% = const) extensions, separately or
simultaneously, of the standard ⇤CDM model result in
improvements in fitting the observational data. We also
discuss the implications of our observational constraints
on the past and future history of the Universe and nature
of the vacuum energy.

II. MODEL

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique 4-
velocity u

µ (satisfying uµu
µ = �1 and r⌫u

µ
uµ = 0) in

the form of Tµ⌫ = (⇢+p)uµu⌫ +pgµ⌫ , where ⇢ is the (rel-
ativistic) energy density relative to u

µ, p is the isotropic
pressure and gµ⌫ is the metric tensor. In general rel-
ativity (GR)—described by the Einstein field equations
Gµ⌫ = �Tµ⌫—the set of equations arises from the twice-
contracted Bianchi identity implying rµG

µ⌫ = 0 and
hence resulting in rµT

µ⌫ = 0. Projecting parallel and
orthogonal to u

µ, we obtain the energy and momentum
conservation equations, correspondingly,

⇢̇+⇥% = 0 and Dµ
p+ %u̇

µ = 0, (1)

where ⇥ = Dµ
uµ is the volume expansion rate, a dot

denotes the derivative with respect to the comoving time
t, and we have used r⌫uµ = D⌫uµ�u̇µu⌫ [81, 82]. Notice,
in the momentum conservation equation in (1), that Dµ

p

is the pressure gradient and u̇
µ is the 4-acceleration, and

therefore % = ⇢+ p defines the inertial mass density.
The usual vacuum energy of the QFT (described by

the EoS pcc = �⇢cc) corresponds to the source that yields
null-inertial mass density,

%cc = 0, (2)

for which ⇢cc = const > 0, namely, the energy density
is a constant—via the energy conservation equation in

(1)—and supposed to be positive as suggested by the
cosmological observations. The simplest phenomenologi-
cal generalization of the usual vacuum energy (2) is then
to promote its null inertial mass density to an arbitrary
constant,

%ci = const, (3)

for which the energy density ⇢ci (supposed to be posi-
tive today, i.e., ⇢ci0 > 0) and the pressure pci are not
necessarily constant—here and in what follows the sub-
script 0 attached to any quantity denotes its present-day
(z = 0) value. It is worth noting that this promotion
corresponds to taking the inertial mass density, instead
of vacuum energy density (or ⇤), as one of the constants
of nature. We do not consider the possibility of ⇢ci0 < 0
throughout our study, as it obviously contradicts the ob-
servations. The energy density of this source, which we
call simple-graduated dark energy, reads

⇢ci = ⇢ci0 + 3%ci ln(1 + z), (4)

which satisfies the EoS parameter (w ⌘ �1 + %/⇢)

wci = �1 +
1 + wci0

1 + 3 (1 + wci0) ln(1 + z)
, (5)

where z = �1 + a0
a

is the redshift with a being the
scale factor of the Robertson-Walker (RW) metric. This
source, regardless of the sign of %ci, eventually becomes
indistinguishable from the ⇤ in the past (say, wci ⇡ �1
for z � 0), and thus the extension of the ⇤CDM model
via this source approximates indefinitely close to the
⇤CDM model as the dust dominates it in the past. Yet,
as the future Universe will eventually be dominated by
this source, the future will be drastically di↵erent de-
pending on the sign of %ci; the Universe hits a bounce
(H = 0) in the finite future if %ci > 0 and exhibits LSBR
singularity in the infinite future if %ci < 0 [72]. The latter
case, %ci < 0, is of particular interest to us, as in this case
⇢ci decreases as z increases; namely, the source exhibits a
phantomlike behavior as the logarithmic term (the new
term that arises due to the deviations from null inertial
mass density) dynamically screens ⇢ci0 in the finite past
(z > 0). However, in contrast to the usual phantom dark
energy models (described by w < �1 with ⇢ > 0), (i) its
energy density does not asymptotically approach zero as
z increases but crosses below zero at

zci⇤ = �1 + e�
1

3(1+wci0) (6)

and then keeps growing in negative values, and (ii) its
EoS parameter yields wci0 < �1 for z < zci⇤ and wci0 >

�1 for z > zci⇤. Unless wci0 6= �1, it yields wci ! �1
both in the far future (z ! �1) and in the very early
Universe (z ! 1) and exhibits a pole at zci⇤, i.e., when
the energy density crosses zero, which is in the finite past
for wci0 < �1 and in the finite future for wci0 > �1.
The case wci0 = �1 corresponds to the usual vacuum
energy—for this, we obtain either z⇤ = �1 or z⇤ = 1;

Sign changing energy density requires an EoS exhibiting a 
singularity/pole.  (Özülker, PRD 2022, arXiv:2203.04167) 
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not continuous, between the ones we listed above, and so
we can treat � in (9) as if it is continuous since one can
always find an allowed � value indistinguishably close to
a forbidden � value.

Consequently, the gDE-CDM model replaces the ⇤ of
the Friedmann equation of the standard ⇤CDM model
by the gDE (9) serving our purposes and reads

H2

H2
0

= ⌦r,0a
�4 + ⌦m,0a

�3 + ⌦DE,0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� ,

(10)

from which we also read o↵

⇢DE

⇢c,0
= ⌦DE,0 sgn[1 � ln a]

��1 � ln a
�� 1
1�� , (11)

where  < 0 and � = 0,�2,�4, ... (For further possibili-
ties, see (9) and the explanations following it.). Here, the
subscripts r and m stand for relativistic source (wr =

1
3 )

and dust matter (wm = 0), respectively.
Regarding inertial mass density (5); when � < 0, if

1�� is odd then � is even, and consequently we have the
exponent �

1�� = [even]
[odd] in (5), which in turn implies that

⇢inert  0, that is, we can write

⇢inert = �⇢0 |1 + 3�(� � 1) ln a|
�

1�� , (12)

under the conditions derived above. It turns out that
⇢inert = 0 is the upper bound, viz., ⇢inert,max = 0.

We claimed above that gDE can also be viewed as a
phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late universe. Indeed, under the con-
ditions we consider, ⇢(a = 1) > 0 and ⇢(a ⌧ a⇤)/⇢(a �
a⇤) ⇡ �1 along with w(a ⌧ a⇤) ⇡ w(a � a⇤) ⇡ �1,
which imply that the energy density of the gDE at high
redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time
value and remains almost there, say, all the way to the
early times before which gDE is irrelevant to the dynam-
ics of the universe anymore. Note that the EoS parameter
is just slightly below (above) the phantom divide line for
a � a⇤ (a ⌧ a⇤) with a⇤ < 1, and w ! �1 only when
either a ! 0 or a ! 1. Therefore, the energy density
of gDE grows very slowly in the future and reaches ar-
bitrarily large values in the very remote future, and also
grows in negative values very slowly —obviously, much
slower than radiation and dust, both which then eventu-
ally dominate gDE in the finite past— with the increasing
redshift for a ⌧ a⇤, and reaches arbitrarily large nega-
tive values in the beginning of the universe. We note,
however, that for arbitrarily large negative values of �,
the energy density equation (11) (or (9)) transforms into
a step function;

⇢DE

⇢c,0
! ⌦DE,0 sgn[1 � ln a] as � ! �1 (13)

FIG. 1: We use ⌦m,0 = 0.30 and, for gDE-CDM, � = �0.03 along

with � = �10 (green). H(z)/(1 + z) vs. z for the gDE-CDM

(green) and ⇤CDM (black). H0 = 70km s
�1

Mpc
�1

(solid) and

H0 = 73km s
�1

Mpc
�1

(dashed). H0 = 69.8± 0.8 km s
�1

Mpc
�1

from the TRGB H0 [22], H(z = 0.57) = 97.9± 3.4 km s
�1

Mpc
�1

[23], and H(z = 2.34) = 222.4± 5.0 km s
�1

Mpc
�1

from the latest

BAO data [36]. H0 = 73.52± 1.62km s
�1

Mpc
�1

is independent

measurement from Gaia parallaxes [20].

with an EoS parameter w ! �1. In this case, the energy
density of gDE is non-dynamical except that it sponta-
neously changes sign at a = a⇤. Thus, for large nega-
tive values of �, gDE model is a very good approxima-
tion for describing a cosmological constant spontaneously
switching sign at z = z⇤, namely, in the limit � ! �1,
⇢DE

⇢c,0
= ⌦DE,0 for z < z⇤ and ⇢DE

⇢c,0
= �⌦DE,0 for z > z⇤.

The following may be useful as a demonstration of how
gDE-CDM model works and gives a guide to the values
of the parameters of the model. Let us choose a⇤ = e�1

(z⇤ ⇠ 1.7) in line with [37] (see Fig.11 in [37]). This
leads to � = 1 + 1

3� , where � must be a large negative

number as we must use � ⇠ 0 (it is observationally well
known that � = w0 + 1 ⇠ 0) along with � < 0 (our con-
dition derived above). For example, � = �0.03 (or w0 =
�1.03) predicted by the recent Planck release [9] leads to

� ⇠ �10. Accordingly, in Fig.1, we depict ⇢(z)
⇢c,0

, w(z) and

H(z)/(1 + z) by considering ⌦m,0 = 0.30 along with two
di↵erent Hubble constant values, H0 = 70 km s�1Mpc�1
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Fig. 1.— The Hubble parameter (left panel) and the effective equation of state of dark energy (right panel) are shown for the Braneworld
model described by (12) (solid red) and ΛCDM (dotted green). Also shown is the matter contribution: H0

√

Ω0m(1 + z)3 where H0 = 70
km/sec/Mpc and Ω0m = 0.28 (dotted blue). In the Braneworld model the cosmological constant is screened in the past as a result of
which the expansion rate drops below that in ΛCDM at high z. This feature permits the Braneworld to better account for the low value of
H(z = 2.34) discovered in Delubac et al. (2014). Note that HBrane ! H0

√

Ω0m(1 + z)3 at z ! 2.4. The associated pole in w(z) at z ! 2.4
is shown in the right panel. The parameters for the Braneworld model are Ω0m = 0.28 and Ω! = 0.025 in (12).
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Figure 9. Constraints on h and �w0 ⌘ 1 +w0 in the slow roll
dark energy model (eq. 24), in the same format as Fig. 8.

and BAO+SN+Planck data combinations appear in Fig-
ure 11 and Table V. As in our other models that allow
time-varying dark energy, BAO and SN data both con-
tribute significantly to the parameter constraints. Our
results show a clear detection of non-zero dark energy
density in each of the first two redshift bins at z < 1,
and they are consistent with a constant energy density
across this redshift range. Compared to [64], we obtain
a significantly tighter constraint in the 0.5 < z < 1.0
bin, where the CMASS BAO measurement makes an im-
portant di↵erence, but a slightly looser constraint in the
z < 0.5 bin, where we do not incorporate a direct H0

measurement. We obtain much poorer constraints in the
1 < z < 1.6 bin because the JLA sample contains only 8
SNe with z > 1 compared to 29 for the Union 2.1 sam-
ple. At z > 1.6 our constraint is stronger thanks to the
LyaF BAO measurement, but the uncertainty is large
nonetheless, and the low LyaF value of H(z) leads to a
preference for negative dark energy density in this bin,
although consistent with zero at 1�.

VI. ALTERNATIVE MODELS

We now turn to models with more unusual histories
of the dark energy, matter, or radiation components. In
part we want to know what constraints our combined
data can place on interesting physical quantities, such as
neutrino masses, extra relativistic species, dark energy
that is dynamically significant at early times, or dark
matter that decays into radiation over the history of the
universe. We also want to see whether any of these al-
ternative models can resolve the tension with the LyaF
measurements at z = 2.34, which persists in all of the
models considered in Section V. We begin with the early
dark energy model, because understanding the origin of
the constraints on this model informs the discussion of
subsequent models.

Figure 10. �
2 values for the best-fit versions of cosmologi-

cal models considered in the paper. Each bar represents the
minimum �

2 for the model listed at the left axis, and colors
show the �

2 contributions of individual data sets. For better
visualization, we subtract 30 from the SN �

2. CMB con-
tributions are not included but (with our 3-parameter com-
pression) are always close to zero. The total �2 and model
degrees-of-freedom (d.o.f., 40 data points minus number of fit
parameters, which includes the SNIa absolute magnitude nor-
malization as well as cosmological quantities) are listed to the
right of each bar. The bottom bar shows the number of d.o.f.
associated with each data set. For the �Ne↵ model we use
cosmomc rather than our compressed CMB description, but
we again omit CMB contributions to �

2.

Figure 11. Constraints on ⇢DE(z) assumed to be constant
within redshift bins, in units of the present-day critical den-
sity ⇢c. Shaded areas represent 68% confidence levels. Yellow
bands show constraints in the same bins from [64]. Our con-
straints in the z = 1.0� 1.6 bin are omitted.

A. Early Dark Energy

In typical dark energy models, including all of those
discussed in Section V, dark energy is dynamically neg-
ligible at high redshifts because its energy density grows
with redshift much more slowly than (1 + z)3. However,
some scalar field potentials yield a dark energy density
that tracks the energy density of the dominant species
during the radiation and matter dominated eras, then
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zeq

zeq

zeq

FIG. 4: The constraints on g(z) as a result of the data. These show the posterior probability Pr(g|z): the probability of g as normalized
in each slice of constant z, with color scale in confidence interval values. The 1� and 2� confidence intervals are plotted as black lines
and red lines correspond to the best-fit values found over the analysis, while dotted lines to the redshift of matter-radiation equality.
(Top): w̄DE(z) at low z values (left) and at high redshift values in log-scale (right). (Middle): �wDE(z) at low z values (left) and at
high redshift values in log-scale (right). (Bottom): ⌦DE(z) at low z values (left) and at high redshift values in log-scale (right).

(64) and (65). Evolving DE with an EoS parameter being
below �1 at present, evolved from w > �1 in the past is
named as quintom DE. We obtain the quintom DE as the
upper-left panel shows, whereas, the explicit construction
of quintom scenario is more di�cult than other dynami-
cal DE models, due to a no-go theorem which forbids the
EoS parameter of a single perfect fluid or a single scalar
field to cross the w = �1 boundary [43]. This property is
distinctive that single-scalar-field models with canonical
kinetic term are not allowed to satisfy, which also lead to
that the Hamiltonian is unbounded from below. Inter-
estingly this property is also achieved throughout some
model independent analyses [23, 29, 30]. The middle left
panel shows that, as can be deduced from (51) and (52),
the e↵ective DE becomes slightly more anisotropic with
the increasing redshift, viz., the anisotropy of the EoS
parameter �wDE increases only about an order of magni-
tude from its current value �wDE,0 . 10�7 (see Table I)
to the one at z = 2. Looking at the right panel we see

that after few redshifts, as pressureless matter becomes
dominant (see in the bottom panel that ⌦DE ⇠ 0.1 for
z ⇠ 1.75 and ⌦DE ⇠ 0 for z & 10), w̄DE starts to notice-
ably climb up and settles in the first plateau of w̄DE ⇠ 0
(see (64) and paragraph covering it) lying between z ⇠ 50
and z ⇠ zeq (viz., throughout the pressureless matter
dominated epoch). There is a period in this plateau dur-
ing which w̄DE > 0 [see (64)], viz., ⌦DE increases (i.e.,
the energy density of the e↵ective DE increases faster
than of the pressureless matter) with increasing redshift.
However, as can be seen in the bottom right panel, ⌦DE

during this period can never grow up to considerable val-
ues, viz., remains less than a percent at 1� C.L. and
few percents at 2� C.L.. The anisotropy of the e↵ec-
tive DE keeps on increasing with increasing redshift ap-
proximately in accordance with (52) during this plateau,
but it remains positive definite and insignificant (e.g.,
�wDE . 0.07 at photon decoupling redshift z ⇠ 1100)
until the e↵ective DE starts to leave this plateau as the

4

BD parameter since, here, we mainly consider the exten-
sion as a correction to the standard ⇤CDM.

2. ANISOTROPIC MASSIVE BRANS-DICKE
GRAVITY EXTENSION OF THE ⇤CDM MODEL

We consider the BD action [106, 110] written in the
Jordan frame in the following form:

SJBD =

Z
d4x

p
�g


'2

8
R � !

✓
1

2
rµ'rµ'+

1

2
M2'2

◆�

+ SMatter,
(1)

where ' = '(t) is the Jordan scalar field (function of
cosmic time t only) and ! = const. is the Brans-Dicke
parameter, R is the Ricci scalar, g is the determinant of
the metric gµ⌫ , and SMatter is the matter action, which is
independent of ' so that the weak equivalence principle
is satisfied. It is clear from the way of writing the action
that the term M2 stands as the bare mass-squared of the
Jordan field.3 We assume M2 = const. so that, as can
also be seen from the action, it stands like a cosmological
constant as 2!M2 ⌘ ⇤ and thereby can drive acceler-
ated expansion. Hence, switching to massive BD from
GR with a positive cosmological constant provides us
with an opportunity to construct ⇤CDM-type cosmolo-
gies, such that the mass of the Jordan field alone can play
the role of positive cosmological constant like in the stan-
dard ⇤CDM cosmology provided that 2!M2 ⌘ ⇤ > 0,
and the Jordan field ' varying slowly enough on the top
of this can account for small deviations from the standard
⇤CDMmodel in a particular way, which in turn may lead
to an improved fit to the observational data w.r.t. the
standard ⇤CDM model. In line with that, we intend to
study the BD extension of the standard ⇤CDM model as
a correction, and therefore we demand the term 2!M2

to be positive definite, which requires ! > 0 as long as
we keep M2 > 0 to avoid the Jordan field from having an
imaginary mass.4 Hence, in this study, unless otherwise

3 We consider the bare mass as it is done in [100], where it formally
appears as the mass of a minimally coupled canonical scalar field
when curvature scalar is dropped. On the other hand, when the
e↵ective mass of the Jordan field is considered there are various
definitions in the literature (see, e.g., [130] for a recent discussion
and further references), though one cannot say that these would
not fail from a strict particle physics point of view.

4 If this is not the case then 2!M2 = ⇤ will contribute to the
field equations like a negative cosmological constant, which may
be compensated by a rapidly changing Jordan field. Within the
standard BD gravity (i.e., massless BD gravity) in the presence
of pressureless source, there exist cosmological solutions with ac-
celerating expansion if �2 < ! < �1, and Jordan field is real
(i.e., the e↵ective cosmological gravitational coupling is positive
definite) as well if � 3

2 < ! < � 4
3 leading to deceleration pa-

rameter in the range 0 > q > �1, and to '
2 / (1 + z)2 and

'
2 / (1 + z)3 in the two boundaries of this range, correspond-

is mentioned, we carry out our investigations by assum-
ing ! > 0, which is already stronger than the assumption
! � �3/2 to avoid the Jordan field from yielding negative
energy density values in the Einstein frame that leads, for
instance the Minkowski vacuum to be unstable.
We consider the simplest anisotropic generalization of

the spatially flat and homogeneous spacetime, i.e., lo-
cally rotationally symmetric (LRS) Bianchi type I metric,
which can be written as follows;

ds2 = �dt2 + S2
⇥
e4�dx2 + e�2�(dy2 + dz2)

⇤
, (2)

where S = S(t) is the mean scale factor. Here, the ex-
ponent � = �(t) satisfies the relation �̇2 = 1

6�
2, where

�2 = �ij�ij and �ij are shear scalar and tensor, respec-
tively. The scalar curvature for this metric (2) may be
written in terms of the mean scale factor and shear scalar
as R = �6

⇣
S̈

S
+ Ṡ

2

S2

⌘
� �2. Throughout the paper a dot

denotes derivative w.r.t. cosmic time t.
We consider all types of matter distribution (namely,

the usual cosmological sources such as radiation, baryons,
etc.) as isotropic perfect fluids, which are described by
the following energy-momentum tensor (EMT)

Tµ
⌫ = diag[�⇢, p, p, p], (3)

where ⇢ and p are the energy density and pressure, re-
spectively.
The field equations for the action (1) within the frame-

work of the metric (2) in the presence of (3) read:
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ingly [131]. Hence, obviously, if we consider ! < 0 and M
2
> 0

leading to 2!M2
< 0 (i.e., e↵ectively negative cosmological con-

stant), then it will be necessary to confine ourselves to the range
� 3

2 < ! < � 4
3 , and moreover the decelerating e↵ect of the term

2!M2
< 0 would be compensated by bringing the value of the

BD parameter closer to �4/3, which in turn, implies a faster Jor-
dan field [viz., for ! ⇠ �4/3 Jordan field changes as fast as the
pressureless source, i.e., '2 ⇠ (1+z)3] whereas we are looking for
slowly changing Jordan field, say, '2 ⇠ const. since we demand
it to do only small modifications on the ⇤CDM dynamics.

l = -10
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community. In emergent dark energy models, the parametrization of the dark energy density is inserted into the
Hubble equation as

H2(z) = H2
0

h
⌦r(1 + z)4 + ⌦m(1 + z)3 + e⌦DE(z)

i
, (19)

where e⌦DE(a) = ⇢DE(z)/⇢crit,0 is the energy density of the DE fluid with respect to the critical energy density at
present, namely ⇢crit,0(z) = 3M2

PlH
2
0 . In Ref. [739], the authors introduced a very simple emergent dark energy

scenario, known as phenomenologically emergent dark energy (PEDE) scenario, where the dark energy sector evolves
as

e⌦DE(z) = ⌦DE [1 � tanh(log10(1 + z))] , (20)

where ⌦DE = 1 �⌦m �⌦r. It is important to mention that within the PEDE scenario, even if the dark energy sector
is dynamical, this scenario has exactly six free parameters as in the ⇤CDM model. For Planck 2018 alone, this model
takes a very high value of the Hubble constant H0 = 72.35+0.78

�0.79 km s�1 Mpc�1 at 68% CL [744] which is compatible
with Ref. [107] within 1�. Recently, in Ref. [747], the PEDE model has been further confronted in the presence of the
sterile neutrinos and perfectly agrees with the earlier observations [739, 740, 744].

A generalization of the PEDE scenario known as generalized emergent dark energy (GEDE) introduces a dark
energy evolution in terms of a free parameter � as [743]

e⌦DE(z) = ⌦DE

1 � tanh
⇣
�⇥ log10(

1+z
1+zt

)
⌘

1 + tanh (�⇥ log10(1 + zt))
. (21)

While the symbol zt is a derived parameter representing the epoch where the matter energy density and the DE
density are equal, that means equating, ⇢m(zt) = ⇢DE(zt) =) ⌦m(1 + zt)3 = e⌦DE(zt), one can derive zt. Although
this scenario does not o↵er a very large value of the Hubble constant compared with its value estimated in the PEDE
scenario, however, as explored in Ref. [746], within this GEDE scenario, the Hubble constant tension is reduced to
1.8� with [107] (see also [748]).

7. Graduated Dark Energy - AdS to dS Transition in the Late Universe

The positive cosmological constant assumption of the ⇤CDM model was investigated via the graduated dark energy
(gDE)—borrowed from the proposal of graduated inflation [749]—characterised by a minimal dynamical deviation
from the null inertial mass density % = 0 (where % ⌘ ⇢+ p) of the cosmological constant (or, the usual vacuum energy
of QFT) [574]. This deviation is in the form of

% / ⇢�, (22)

for which, provided that the conditions ⇢0 > 0 (present-day energy density), %0 < 0 (present-day inertial mass density),
and � = 1 �

n
m < 1 with n and m being odd numbers are satisfied, the energy density ⇢ dynamically takes negative

values in the past [574] (see also [750]). These three conditions lead to the gDE; the first two imply that gDE is
in the phantom region in the late/present-day universe, and the last one causes the energy density to take negative
values for redshifts larger than a certain redshift (see Ref. [574] for details). During the transition from negative to
positive energy density as the Universe expands, there comes a time t† (or a redshift z†) for which the energy density
passes through zero and the EoS parameter exhibits a pole. The gDE in fact exhibits a wide variety of behaviors
depending on �, but it is of particular interest that for large negative values of �, it establishes a phenomenological
model characterized by a smooth function that approximately describes a cosmological constant which switches sign
in the late Universe to become positive today.17 The energy density of the gDE model, in terms of redshift, reads

⇢gDE = ⇢gDE0 sgn[1 + ln(1 + z)]
��1 + ln(1 + z)

�� 1
1�� , (23)

where  < 0 is a negative constant. Here ”sgn” is the signum function that reads sgn[x] = �1, 0, 1 for x < 0, x = 0
and x > 0, respectively. This expression indicates if there exists a sign change in the energy density of the gDE
(accompanied by a pole in its EoS parameter [752]), it will happen at the redshift

z† = e� �1

� 1, (24)

17 The � = 0 case is called simple-gDE and investigated in [751].

gDE density changes sign at 

52

community. In emergent dark energy models, the parametrization of the dark energy density is inserted into the
Hubble equation as

H2(z) = H2
0

h
⌦r(1 + z)4 + ⌦m(1 + z)3 + e⌦DE(z)

i
, (19)

where e⌦DE(a) = ⇢DE(z)/⇢crit,0 is the energy density of the DE fluid with respect to the critical energy density at
present, namely ⇢crit,0(z) = 3M2

PlH
2
0 . In Ref. [739], the authors introduced a very simple emergent dark energy

scenario, known as phenomenologically emergent dark energy (PEDE) scenario, where the dark energy sector evolves
as

e⌦DE(z) = ⌦DE [1 � tanh(log10(1 + z))] , (20)

where ⌦DE = 1 �⌦m �⌦r. It is important to mention that within the PEDE scenario, even if the dark energy sector
is dynamical, this scenario has exactly six free parameters as in the ⇤CDM model. For Planck 2018 alone, this model
takes a very high value of the Hubble constant H0 = 72.35+0.78

�0.79 km s�1 Mpc�1 at 68% CL [744] which is compatible
with Ref. [107] within 1�. Recently, in Ref. [747], the PEDE model has been further confronted in the presence of the
sterile neutrinos and perfectly agrees with the earlier observations [739, 740, 744].

A generalization of the PEDE scenario known as generalized emergent dark energy (GEDE) introduces a dark
energy evolution in terms of a free parameter � as [743]

e⌦DE(z) = ⌦DE

1 � tanh
⇣
�⇥ log10(

1+z
1+zt

)
⌘

1 + tanh (�⇥ log10(1 + zt))
. (21)

While the symbol zt is a derived parameter representing the epoch where the matter energy density and the DE
density are equal, that means equating, ⇢m(zt) = ⇢DE(zt) =) ⌦m(1 + zt)3 = e⌦DE(zt), one can derive zt. Although
this scenario does not o↵er a very large value of the Hubble constant compared with its value estimated in the PEDE
scenario, however, as explored in Ref. [746], within this GEDE scenario, the Hubble constant tension is reduced to
1.8� with [107] (see also [748]).

7. Graduated Dark Energy - AdS to dS Transition in the Late Universe

The positive cosmological constant assumption of the ⇤CDM model was investigated via the graduated dark energy
(gDE)—borrowed from the proposal of graduated inflation [749]—characterised by a minimal dynamical deviation
from the null inertial mass density % = 0 (where % ⌘ ⇢+ p) of the cosmological constant (or, the usual vacuum energy
of QFT) [574]. This deviation is in the form of

% / ⇢�, (22)

for which, provided that the conditions ⇢0 > 0 (present-day energy density), %0 < 0 (present-day inertial mass density),
and � = 1 �

n
m < 1 with n and m being odd numbers are satisfied, the energy density ⇢ dynamically takes negative

values in the past [574] (see also [750]). These three conditions lead to the gDE; the first two imply that gDE is
in the phantom region in the late/present-day universe, and the last one causes the energy density to take negative
values for redshifts larger than a certain redshift (see Ref. [574] for details). During the transition from negative to
positive energy density as the Universe expands, there comes a time t† (or a redshift z†) for which the energy density
passes through zero and the EoS parameter exhibits a pole. The gDE in fact exhibits a wide variety of behaviors
depending on �, but it is of particular interest that for large negative values of �, it establishes a phenomenological
model characterized by a smooth function that approximately describes a cosmological constant which switches sign
in the late Universe to become positive today.17 The energy density of the gDE model, in terms of redshift, reads

⇢gDE = ⇢gDE0 sgn[1 + ln(1 + z)]
��1 + ln(1 + z)

�� 1
1�� , (23)

where  < 0 is a negative constant. Here ”sgn” is the signum function that reads sgn[x] = �1, 0, 1 for x < 0, x = 0
and x > 0, respectively. This expression indicates if there exists a sign change in the energy density of the gDE
(accompanied by a pole in its EoS parameter [752]), it will happen at the redshift

z† = e� �1

� 1, (24)

17 The � = 0 case is called simple-gDE and investigated in [751].

4

not continuous, between the ones we listed above, and so
we can treat � in (9) as if it is continuous since one can
always find an allowed � value indistinguishably close to
a forbidden � value.

Consequently, the gDE-CDM model replaces the ⇤ of
the Friedmann equation of the standard ⇤CDM model
by the gDE (9) serving our purposes and reads

H2

H2
0

= ⌦r,0a
�4 + ⌦m,0a

�3 + ⌦DE,0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� ,

(10)

from which we also read o↵

⇢DE

⇢c,0
= ⌦DE,0 sgn[1 � ln a]

��1 � ln a
�� 1
1�� , (11)

where  < 0 and � = 0,�2,�4, ... (For further possibili-
ties, see (9) and the explanations following it.). Here, the
subscripts r and m stand for relativistic source (wr =

1
3 )

and dust matter (wm = 0), respectively.
Regarding inertial mass density (5); when � < 0, if

1�� is odd then � is even, and consequently we have the
exponent �

1�� = [even]
[odd] in (5), which in turn implies that

⇢inert  0, that is, we can write

⇢inert = �⇢0 |1 + 3�(� � 1) ln a|
�

1�� , (12)

under the conditions derived above. It turns out that
⇢inert = 0 is the upper bound, viz., ⇢inert,max = 0.

We claimed above that gDE can also be viewed as a
phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late universe. Indeed, under the con-
ditions we consider, ⇢(a = 1) > 0 and ⇢(a ⌧ a⇤)/⇢(a �
a⇤) ⇡ �1 along with w(a ⌧ a⇤) ⇡ w(a � a⇤) ⇡ �1,
which imply that the energy density of the gDE at high
redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time
value and remains almost there, say, all the way to the
early times before which gDE is irrelevant to the dynam-
ics of the universe anymore. Note that the EoS parameter
is just slightly below (above) the phantom divide line for
a � a⇤ (a ⌧ a⇤) with a⇤ < 1, and w ! �1 only when
either a ! 0 or a ! 1. Therefore, the energy density
of gDE grows very slowly in the future and reaches ar-
bitrarily large values in the very remote future, and also
grows in negative values very slowly —obviously, much
slower than radiation and dust, both which then eventu-
ally dominate gDE in the finite past— with the increasing
redshift for a ⌧ a⇤, and reaches arbitrarily large nega-
tive values in the beginning of the universe. We note,
however, that for arbitrarily large negative values of �,
the energy density equation (11) (or (9)) transforms into
a step function;

⇢DE

⇢c,0
! ⌦DE,0 sgn[1 � ln a] as � ! �1 (13)

FIG. 1: We use ⌦m,0 = 0.30 and, for gDE-CDM, � = �0.03 along

with � = �10 (green). H(z)/(1 + z) vs. z for the gDE-CDM

(green) and ⇤CDM (black). H0 = 70km s
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(solid) and

H0 = 73km s
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�1

Mpc
�1
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with an EoS parameter w ! �1. In this case, the energy
density of gDE is non-dynamical except that it sponta-
neously changes sign at a = a⇤. Thus, for large nega-
tive values of �, gDE model is a very good approxima-
tion for describing a cosmological constant spontaneously
switching sign at z = z⇤, namely, in the limit � ! �1,
⇢DE

⇢c,0
= ⌦DE,0 for z < z⇤ and ⇢DE

⇢c,0
= �⌦DE,0 for z > z⇤.

The following may be useful as a demonstration of how
gDE-CDM model works and gives a guide to the values
of the parameters of the model. Let us choose a⇤ = e�1

(z⇤ ⇠ 1.7) in line with [37] (see Fig.11 in [37]). This
leads to � = 1 + 1

3� , where � must be a large negative

number as we must use � ⇠ 0 (it is observationally well
known that � = w0 + 1 ⇠ 0) along with � < 0 (our con-
dition derived above). For example, � = �0.03 (or w0 =
�1.03) predicted by the recent Planck release [9] leads to

� ⇠ �10. Accordingly, in Fig.1, we depict ⇢(z)
⇢c,0

, w(z) and

H(z)/(1 + z) by considering ⌦m,0 = 0.30 along with two
di↵erent Hubble constant values, H0 = 70 km s�1Mpc�1

4

not continuous, between the ones we listed above, and so
we can treat � in (9) as if it is continuous since one can
always find an allowed � value indistinguishably close to
a forbidden � value.

Consequently, the gDE-CDM model replaces the ⇤ of
the Friedmann equation of the standard ⇤CDM model
by the gDE (9) serving our purposes and reads
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H2
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= ⌦r,0a
�4 + ⌦m,0a

�3 + ⌦DE,0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� ,

(10)

from which we also read o↵

⇢DE

⇢c,0
= ⌦DE,0 sgn[1 � ln a]

��1 � ln a
�� 1
1�� , (11)

where  < 0 and � = 0,�2,�4, ... (For further possibili-
ties, see (9) and the explanations following it.). Here, the
subscripts r and m stand for relativistic source (wr =

1
3 )

and dust matter (wm = 0), respectively.
Regarding inertial mass density (5); when � < 0, if

1�� is odd then � is even, and consequently we have the
exponent �

1�� = [even]
[odd] in (5), which in turn implies that

⇢inert  0, that is, we can write

⇢inert = �⇢0 |1 + 3�(� � 1) ln a|
�

1�� , (12)

under the conditions derived above. It turns out that
⇢inert = 0 is the upper bound, viz., ⇢inert,max = 0.

We claimed above that gDE can also be viewed as a
phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late universe. Indeed, under the con-
ditions we consider, ⇢(a = 1) > 0 and ⇢(a ⌧ a⇤)/⇢(a �
a⇤) ⇡ �1 along with w(a ⌧ a⇤) ⇡ w(a � a⇤) ⇡ �1,
which imply that the energy density of the gDE at high
redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time
value and remains almost there, say, all the way to the
early times before which gDE is irrelevant to the dynam-
ics of the universe anymore. Note that the EoS parameter
is just slightly below (above) the phantom divide line for
a � a⇤ (a ⌧ a⇤) with a⇤ < 1, and w ! �1 only when
either a ! 0 or a ! 1. Therefore, the energy density
of gDE grows very slowly in the future and reaches ar-
bitrarily large values in the very remote future, and also
grows in negative values very slowly —obviously, much
slower than radiation and dust, both which then eventu-
ally dominate gDE in the finite past— with the increasing
redshift for a ⌧ a⇤, and reaches arbitrarily large nega-
tive values in the beginning of the universe. We note,
however, that for arbitrarily large negative values of �,
the energy density equation (11) (or (9)) transforms into
a step function;
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with an EoS parameter w ! �1. In this case, the energy
density of gDE is non-dynamical except that it sponta-
neously changes sign at a = a⇤. Thus, for large nega-
tive values of �, gDE model is a very good approxima-
tion for describing a cosmological constant spontaneously
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⇢DE
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The following may be useful as a demonstration of how
gDE-CDM model works and gives a guide to the values
of the parameters of the model. Let us choose a⇤ = e�1

(z⇤ ⇠ 1.7) in line with [37] (see Fig.11 in [37]). This
leads to � = 1 + 1
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number as we must use � ⇠ 0 (it is observationally well
known that � = w0 + 1 ⇠ 0) along with � < 0 (our con-
dition derived above). For example, � = �0.03 (or w0 =
�1.03) predicted by the recent Planck release [9] leads to
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around which, H(z) can exhibit a non-monotonic behavior. It was shown via the gDE that the joint observational
data, including but not limited to the Planck CMB and Ly-↵ BAO (BOSS DR11) data, suggest that the cosmological
constant changed its sign at z ⇡ 2.32 and triggered the late-time acceleration, the behaviour of which alleviates the
H0 tension by predicting H0 ⇡ 69.7 ± 0.9 km s�1 Mpc�1 and provides excellent fit to the Ly-↵ BAO (BOSS DR11)
data [753] at the e↵ective redshift z ⇠ 2.34, which is at ⇠ 2.5� tension with the Planck 2015 best-fit ⇤CDM. Note
that this tension is reduced to ⇠ 1.5� when the final eBOSS (SDSS DR16) measurement, which combines all the data
from eBOSS and BOSS [220, 753, 754], is considered, see Sec. VIII G 1.

Inspired by these observational findings, and the theoretically compelling fact that the gDE submits to the weak
energy condition and the bounds on the speed of sound only in the limit � ! �1 which corresponds to a cosmological
constant that rapidly changes sign at redshift z†, this limit was dubbed ⇤sCDM and further investigated in Ref. [558].
The ⇤sCDM model can be constructed phenomenologically by simply replacing the usual cosmological constant (⇤)
of the standard ⇤CDM model with a cosmological constant (⇤s) that switches its sign from negative to positive, and
thus attains its present-day value (⇤s0 > 0), when the Universe reaches a certain energy scale (redshift z†) during its
expansion,

⇤ ! ⇤s ⌘ ⇤s0 sgn[z† � z]. (25)

It was shown in Ref. [558] that, when the consistency of the ⇤sCDM model with the CMB data is guaranteed, (i) H0

and MB (SNIa absolute magnitude) values are inversely correlated with z† and reach H0 ⇡ 74.5 km s�1 Mpc�1 and
MB ⇡ �19.2 mag for z† = 1.5, in agreement with the measurements from SH0ES [93, 109], and (ii) H(z) presents
an excellent fit to the Ly-↵ data provided that z† . 2.34. The assessment of the model against Planck 2018 yields
H0 = 70.22± 1.78 km s�1 Mpc�1 and against Planck 2018 + SDSS DR16 yields H0 = 68.82± 0.55 km s�1 Mpc�1 with
z† = 2.44±0.29 [558]. It was found that the lower and upper limits of z† are controlled by the Galaxy and Ly-↵ BAO
data, correspondingly, and the larger z† values imposed by the Galaxy BAO data prevent the model from achieving
the largest estimations of H0 from the direct local distance ladder measurements. It is intriguing that, as long as
z† . 2.34, the model remains in excellent agreement with the Ly-↵ data even for z† ⇠ 1.1, which barely satisfies the
condition that we live in an ever-expanding Universe; a good agreement with the Ly-↵ data is an intrinsic feature of
the ⇤sCDM model as long as z† . 2.34.

Similar to the situation with the Ly-↵ data, alleviating the S8 discrepancy, prevailing within the ⇤CDM model and
its minimal extensions, usually results in exacerbating the H0 tension, see Sec. V and Ref. [3]. In addition to this, the
constraints on S8 based on the Ly-↵ data are in agreement with the weak lensing surveys that probe similar late-time
redshift scales as the Ly-↵ measurements [394]. Accordingly, it is conceivable that the ⇤sCDM model provides a
remedy for the S8 discrepancy while retaining the better fit to the local measurements of H0, like in the case of the
Ly-↵ discrepancy. Indeed, in the CMB-only analysis, it is found that S8 = 0.8071 ± 0.0210 for the ⇤sCDM model,
whereas S8 = 0.8332 ± 0.0163 for the ⇤CDM model. Although �8 is smaller for the ⇤CDM model, its ⌦m value
greater than 0.3 results in an increased S8 value compared to its �8 value. In contrast, the ⇤sCDM model has an ⌦m

value lower than 0.3 which results in a decreased S8 value compared to its �8 value. This results in the lower value of
S8 for ⇤sCDM compared to ⇤CDM. The ⇤sCDM and ⇤CDM models have similar S8 values when the BAO data are
also included in the analysis; this is due to the preference for larger z† values by the Galaxy BAO data, since ⇤sCDM
approaches ⇤CDM for larger z† values and the ⌦m value of ⇤sCDM becomes greater than 0.3. Thus, the ⇤sCDM
model partially reconciles the CMB data with the low redshift cosmological probes regarding S8, and can potentially
resolve the discrepancy in the absence of the Galaxy BAO data; however, for a robust conclusion, the constraints on
S8 from low redshift probes should also be explored within the ⇤sCDM model.

Ultimately, it turns out via the ⇤sCDM model that sign switch in the cosmological constant, viz., transition from
an Anti-de Sitter background (provided by ⇤ < 0) to a de Sitter one (provided by ⇤ > 0), at z ⇠ 2 (i) relaxes
the SH0ES H0 tension while being fully consistent with the TRGB measurement, (ii) relaxes the MB tension, (iii)
removes the discrepancy with the Ly-↵ measurements, (iv) relaxes the S8 tension, and (v) finds a better agreement
with the BBN constraints on the physical baryon density [558]. These results seem to encourage looking for a phase
transition from AdS vacua to dS vacua in the late-Universe.

It is reasonable to look for a potential origin of this phenomenon, viz. a very rapid single transition or its limiting case
a single instantaneous (discontinuous) transition in the value of the cosmological constant, in a theory of fundamental
physics by considering it as a first-order phase transition. The phase transition approach has been used to address
the H0 tension; see e.g. Refs. [755–757], which consider that the DE density resembles the magnetization of the Ising
model and present a realization of this behavior within the Ginzburg-Landau framework. Additionally, Ref. [758]
considers a gravitational phase transition that is justified from the e↵ective field theory point of view (see also
Ref. [759]). The model studied in Ref. [755] partially corresponds to a one-parameter phenomenological extension
of ⇤sCDM; it considers an arbitrary shift in the value of the cosmological constant, but does not allow negative
values of the cosmological constant in contrast to ⇤sCDM. It addresses the H0 tension with a shift in the value of
the cosmological constant, however, at very low redshifts, viz. zt = 0.092+0.009

�0.062, signaling that it could su↵er from
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not continuous, between the ones we listed above, and so
we can treat � in (9) as if it is continuous since one can
always find an allowed � value indistinguishably close to
a forbidden � value.

Consequently, the gDE-CDM model replaces the ⇤ of
the Friedmann equation of the standard ⇤CDM model
by the gDE (9) serving our purposes and reads
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from which we also read o↵

⇢DE

⇢c,0
= ⌦DE,0 sgn[1 � ln a]

��1 � ln a
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where  < 0 and � = 0,�2,�4, ... (For further possibili-
ties, see (9) and the explanations following it.). Here, the
subscripts r and m stand for relativistic source (wr =
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and dust matter (wm = 0), respectively.
Regarding inertial mass density (5); when � < 0, if

1�� is odd then � is even, and consequently we have the
exponent �
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[odd] in (5), which in turn implies that

⇢inert  0, that is, we can write

⇢inert = �⇢0 |1 + 3�(� � 1) ln a|
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1�� , (12)

under the conditions derived above. It turns out that
⇢inert = 0 is the upper bound, viz., ⇢inert,max = 0.

We claimed above that gDE can also be viewed as a
phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late universe. Indeed, under the con-
ditions we consider, ⇢(a = 1) > 0 and ⇢(a ⌧ a⇤)/⇢(a �
a⇤) ⇡ �1 along with w(a ⌧ a⇤) ⇡ w(a � a⇤) ⇡ �1,
which imply that the energy density of the gDE at high
redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time
value and remains almost there, say, all the way to the
early times before which gDE is irrelevant to the dynam-
ics of the universe anymore. Note that the EoS parameter
is just slightly below (above) the phantom divide line for
a � a⇤ (a ⌧ a⇤) with a⇤ < 1, and w ! �1 only when
either a ! 0 or a ! 1. Therefore, the energy density
of gDE grows very slowly in the future and reaches ar-
bitrarily large values in the very remote future, and also
grows in negative values very slowly —obviously, much
slower than radiation and dust, both which then eventu-
ally dominate gDE in the finite past— with the increasing
redshift for a ⌧ a⇤, and reaches arbitrarily large nega-
tive values in the beginning of the universe. We note,
however, that for arbitrarily large negative values of �,
the energy density equation (11) (or (9)) transforms into
a step function;
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with an EoS parameter w ! �1. In this case, the energy
density of gDE is non-dynamical except that it sponta-
neously changes sign at a = a⇤. Thus, for large nega-
tive values of �, gDE model is a very good approxima-
tion for describing a cosmological constant spontaneously
switching sign at z = z⇤, namely, in the limit � ! �1,
⇢DE

⇢c,0
= ⌦DE,0 for z < z⇤ and ⇢DE

⇢c,0
= �⌦DE,0 for z > z⇤.

The following may be useful as a demonstration of how
gDE-CDM model works and gives a guide to the values
of the parameters of the model. Let us choose a⇤ = e�1

(z⇤ ⇠ 1.7) in line with [37] (see Fig.11 in [37]). This
leads to � = 1 + 1

3� , where � must be a large negative

number as we must use � ⇠ 0 (it is observationally well
known that � = w0 + 1 ⇠ 0) along with � < 0 (our con-
dition derived above). For example, � = �0.03 (or w0 =
�1.03) predicted by the recent Planck release [9] leads to

� ⇠ �10. Accordingly, in Fig.1, we depict ⇢(z)
⇢c,0
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H(z)/(1 + z) by considering ⌦m,0 = 0.30 along with two
di↵erent Hubble constant values, H0 = 70 km s�1Mpc�1

LsCDM?

gDE-CDM, replaces the Λ of ΛCDM with the gDE

Akarsu, Katırcı, Özdemir & Vazquez, EPJC (2020) arXiv:1903.06679

Özülker, PRD 2022, 
arXiv:2203.04167 



5

[9] leads to � ⇠ �10. Accordingly, in Fig.1, we depict
⇢(z)
⇢c,0

, w(z) and H(z)/(1 + z) by considering ⌦m,0 = 0.30

along with two di↵erent Hubble constant values, H0 =
70 km s�1Mpc�1 and H0 = 73 km s�1Mpc�1, for both
the ⇤CDM model and gDE-CDM model with � = �10
and � = �0.03. We note that, in the gDE-CDM model,
the steep change in H(z)/(1 + z) at z ⇠ z⇤ = 1.7 – due
to the sign change/pole of the energy density/EoS of the
gDE– allows it to pass through all data points as well
as achieve larger H0 values, whereas in the case of the
⇤CDM model, it does not pass through Ly-↵ data at
z = 2.34 and the increased H0 value worsens this sit-
uation. This is signalling that, w.r.t. the ⇤, the gDE
would lead to improved fit to the observational data and
alleviate the tensions of various degrees of significance
between some existing data sets within the ⇤CDM cos-
mology. As, in the gDE-CDM model, we have ⇢ ⇠ ⇢0
and w . �1 (slightly in phantom region) for z ⌧ z⇤
(also for z ⇠ 0) and ⇢ ⇠ �⇢0 and w & �1 (slightly
in quintessence region with negative energy density) for
z � z⇤, from phenomenological point of view such an
achievement may be signalling that indeed the cosmolog-
ical constant is responsible for the current acceleration of
the universe, but it has changed sign at z⇤ ⇠ 2 and was
negative at the higher redshifts.

III. CONSTRAINTS FROM THE LATEST
COSMOLOGICAL DATA

This section provides constraints on the gDE-CDM
model using the latest observational data with a further
discussion of the model and its consequences.

In order to perform the parameter-space exploration
we implement a modified version of the simple and fast
Markov Chain Monte Carlo code which computes expan-
sion rates and distances from the Friedmann equation
named SimpleMC [95] and initially introduced in [34].
For a comprehensive review of the cosmological param-
eter inference see [96]. The SimpleMC code takes into
account a compressed version of recent datasets, for in-
stance the Planck information (PLK) (where the CMB
is treated as a “BAO experiment” at redshift z = 1090)
measured by the angular scale of the sound horizon at
that time, a recent analysis of Type Ia supernova (SN)
data called Joint Light-curve Analysis compressed into a
piece-wise linear function fit over 30 bins evenly spaced
in log z, and high-precision Baryon Acoustic Oscillation
measurements (BAO), from comoving angular diameter
distances, Hubble distance and the volume averaged dis-
tance, at di↵erent redshifts up to z = 2.36. For a more
detailed description about the datasets used see [34]. We
also include a collection of currently available cosmic
chronometer measurements (H), see [97].

In this analysis, the radiation content is assumed
by considering three neutrino species (Ne↵ = 3.046)
with minimum allowed mass

P
m⌫ = 0.06 eV and a

radiation density parameter given by ⌦r,0 = 2.469 ⇥
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FIG. 2: 1D marginalised posterior distributions for the graduated

� parameter (top left panel),  ⌘ 3�(1� �) (right) and the

redshift location of the pole (if present) given by Eqn. (14). For a

better display we have included some particular cases of � values.

10�5h�2
0 (1 + 0.2271Ne↵), where h0 is the present-day

value of the dimensionless reduced Hubble parameter
h(z) = H(z)/100 km s�1Mpc�1 [98]. The total radia-
tion content today is kept fixed in our analysis since it
is well constrained by the CMB monopole temperature,
TCMB,0 = 2.7255 ± 0.0006K [99]. Throughout our anal-
ysis we assume flat priors over our sampling parameters:
⌦m,0 = [0.05, 1.0] for the matter density parameter today,
⌦b,0h2

0 = [0.02, 0.025] for the physical baryon density pa-
rameter and h0 = [0.4, 1.0] for the reduced Hubble con-
stant. With regards to the gDE parameters, we assume
� = [�0.2, 0] and � = [�27, 0] (when � is free).

Table I summarises the observational constraints on
the free parameters –⌦m,0, h0, � and �– as well as the
derived parameters – , z⇤ and t0 (age of the universe
today)– of the gDE-CDM model using the combined
datasets PLK+BAO+SN+H; and for comparison shows
those parameters used on the standard ⇤CDM model
(� = 0). The columns for each parameter contain the
corresponding mean values and 1� errors, according to
the number of modes presented on the 1D marginalised
posterior distributions. In the last column we list the
�2� lnLmax = ��2

min values representing the improve-
ment in the fit to the data w.r.t. the ⇤CDM. At the
outset, we immediately notice that in our analyses the
gDE leads to an improvement of up to ��2

min = 6.4 (cor-
responding to about 2.5�) w.r.t. the cosmological con-
stant. In what follows we discuss in detail how this signif-
icant improvement is due to the fact that the gDE-CDM
alleviates some of the tensions the ⇤CDM experiences.

In Table I, for � = 0,�2, we observe nothing inter-
esting and no significant improvement to the fit w.r.t.
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This section provides constraints on the gDE-CDM
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discussion of the model and its consequences.

In order to perform the parameter-space exploration
we implement a modified version of the simple and fast
Markov Chain Monte Carlo code which computes expan-
sion rates and distances from the Friedmann equation
named SimpleMC [95] and initially introduced in [34].
For a comprehensive review of the cosmological param-
eter inference see [96]. The SimpleMC code takes into
account a compressed version of recent datasets, for in-
stance the Planck information (PLK) (where the CMB
is treated as a “BAO experiment” at redshift z = 1090)
measured by the angular scale of the sound horizon at
that time, a recent analysis of Type Ia supernova (SN)
data called Joint Light-curve Analysis compressed into a
piece-wise linear function fit over 30 bins evenly spaced
in log z, and high-precision Baryon Acoustic Oscillation
measurements (BAO), from comoving angular diameter
distances, Hubble distance and the volume averaged dis-
tance, at di↵erent redshifts up to z = 2.36. For a more
detailed description about the datasets used see [34]. We
also include a collection of currently available cosmic
chronometer measurements (H), see [97].

In this analysis, the radiation content is assumed
by considering three neutrino species (Ne↵ = 3.046)
with minimum allowed mass

P
m⌫ = 0.06 eV and a

radiation density parameter given by ⌦r,0 = 2.469 ⇥

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
z�

FIG. 2: 1D marginalised posterior distributions for the graduated

� parameter (top left panel),  ⌘ 3�(1� �) (right) and the

redshift location of the pole (if present) given by Eqn. (14). For a

better display we have included some particular cases of � values.

10�5h�2
0 (1 + 0.2271Ne↵), where h0 is the present-day

value of the dimensionless reduced Hubble parameter
h(z) = H(z)/100 km s�1Mpc�1 [98]. The total radia-
tion content today is kept fixed in our analysis since it
is well constrained by the CMB monopole temperature,
TCMB,0 = 2.7255 ± 0.0006K [99]. Throughout our anal-
ysis we assume flat priors over our sampling parameters:
⌦m,0 = [0.05, 1.0] for the matter density parameter today,
⌦b,0h2

0 = [0.02, 0.025] for the physical baryon density pa-
rameter and h0 = [0.4, 1.0] for the reduced Hubble con-
stant. With regards to the gDE parameters, we assume
� = [�0.2, 0] and � = [�27, 0] (when � is free).

Table I summarises the observational constraints on
the free parameters –⌦m,0, h0, � and �– as well as the
derived parameters – , z⇤ and t0 (age of the universe
today)– of the gDE-CDM model using the combined
datasets PLK+BAO+SN+H; and for comparison shows
those parameters used on the standard ⇤CDM model
(� = 0). The columns for each parameter contain the
corresponding mean values and 1� errors, according to
the number of modes presented on the 1D marginalised
posterior distributions. In the last column we list the
�2� lnLmax = ��2

min values representing the improve-
ment in the fit to the data w.r.t. the ⇤CDM. At the
outset, we immediately notice that in our analyses the
gDE leads to an improvement of up to ��2

min = 6.4 (cor-
responding to about 2.5�) w.r.t. the cosmological con-
stant. In what follows we discuss in detail how this signif-
icant improvement is due to the fact that the gDE-CDM
alleviates some of the tensions the ⇤CDM experiences.

In Table I, for � = 0,�2, we observe nothing inter-
esting and no significant improvement to the fit w.r.t.
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community. In emergent dark energy models, the parametrization of the dark energy density is inserted into the
Hubble equation as

H2(z) = H2
0

h
⌦r(1 + z)4 + ⌦m(1 + z)3 + e⌦DE(z)

i
, (19)

where e⌦DE(a) = ⇢DE(z)/⇢crit,0 is the energy density of the DE fluid with respect to the critical energy density at
present, namely ⇢crit,0(z) = 3M2

PlH
2
0 . In Ref. [739], the authors introduced a very simple emergent dark energy

scenario, known as phenomenologically emergent dark energy (PEDE) scenario, where the dark energy sector evolves
as

e⌦DE(z) = ⌦DE [1 � tanh(log10(1 + z))] , (20)

where ⌦DE = 1 �⌦m �⌦r. It is important to mention that within the PEDE scenario, even if the dark energy sector
is dynamical, this scenario has exactly six free parameters as in the ⇤CDM model. For Planck 2018 alone, this model
takes a very high value of the Hubble constant H0 = 72.35+0.78

�0.79 km s�1 Mpc�1 at 68% CL [744] which is compatible
with Ref. [107] within 1�. Recently, in Ref. [747], the PEDE model has been further confronted in the presence of the
sterile neutrinos and perfectly agrees with the earlier observations [739, 740, 744].

A generalization of the PEDE scenario known as generalized emergent dark energy (GEDE) introduces a dark
energy evolution in terms of a free parameter � as [743]

e⌦DE(z) = ⌦DE

1 � tanh
⇣
�⇥ log10(

1+z
1+zt

)
⌘

1 + tanh (�⇥ log10(1 + zt))
. (21)

While the symbol zt is a derived parameter representing the epoch where the matter energy density and the DE
density are equal, that means equating, ⇢m(zt) = ⇢DE(zt) =) ⌦m(1 + zt)3 = e⌦DE(zt), one can derive zt. Although
this scenario does not o↵er a very large value of the Hubble constant compared with its value estimated in the PEDE
scenario, however, as explored in Ref. [746], within this GEDE scenario, the Hubble constant tension is reduced to
1.8� with [107] (see also [748]).

7. Graduated Dark Energy - AdS to dS Transition in the Late Universe

The positive cosmological constant assumption of the ⇤CDM model was investigated via the graduated dark energy
(gDE)—borrowed from the proposal of graduated inflation [749]—characterised by a minimal dynamical deviation
from the null inertial mass density % = 0 (where % ⌘ ⇢+ p) of the cosmological constant (or, the usual vacuum energy
of QFT) [574]. This deviation is in the form of

% / ⇢�, (22)

for which, provided that the conditions ⇢0 > 0 (present-day energy density), %0 < 0 (present-day inertial mass density),
and � = 1 �

n
m < 1 with n and m being odd numbers are satisfied, the energy density ⇢ dynamically takes negative

values in the past [574] (see also [750]). These three conditions lead to the gDE; the first two imply that gDE is
in the phantom region in the late/present-day universe, and the last one causes the energy density to take negative
values for redshifts larger than a certain redshift (see Ref. [574] for details). During the transition from negative to
positive energy density as the Universe expands, there comes a time t† (or a redshift z†) for which the energy density
passes through zero and the EoS parameter exhibits a pole. The gDE in fact exhibits a wide variety of behaviors
depending on �, but it is of particular interest that for large negative values of �, it establishes a phenomenological
model characterized by a smooth function that approximately describes a cosmological constant which switches sign
in the late Universe to become positive today.17 The energy density of the gDE model, in terms of redshift, reads

⇢gDE = ⇢gDE0 sgn[1 + ln(1 + z)]
��1 + ln(1 + z)

�� 1
1�� , (23)

where  < 0 is a negative constant. Here ”sgn” is the signum function that reads sgn[x] = �1, 0, 1 for x < 0, x = 0
and x > 0, respectively. This expression indicates if there exists a sign change in the energy density of the gDE
(accompanied by a pole in its EoS parameter [752]), it will happen at the redshift

z† = e� �1

� 1, (24)

17 The � = 0 case is called simple-gDE and investigated in [751].
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Constraints on gDE-CDM from PLK+BAO+SN (JLA)+H (Cosmic Chronometers)
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� ⌦m,0 h0 � = w0 + 1  z⇤ t0[Gyr] �2� lnLmax

⇤CDM 0.302(6) 0.682(5) 0 0 � 13.806(22) 0.0

0 0.297(7) 0.689(7) > �0.08 > �0.25 � 13.796(24) 0.02

�2 0.297(7) 0.688(7) > �0.06 > �0.61 � 13.795(25) 0.02

�4 0.289(6), 0.298(7) 0.700(9), 0.686(7) �0.057(2), > �0.048 �0.86(3), > �0.73 2.31(12),� 13.714(25), 13.791(26) 1.0, 0.02

�6 0.292(6), 0.299(6) 0.699(9), 0.685(7) �0.039(1), > �0.037 �0.86(3), > �0.77 2.31(12),� 13.715(25), 13.792(27) 2.0, 0.01

�10 0.294(6), 0.299(6) 0.696(8), 0.684(7) �0.025(1), > �0.021 �0.86(3), > �0.69 2.32(12),� 13.722(27), 13.797(25) 4.4, 0.02

�14 0.296(6), 0.300(6) 0.695(8), 0.683(7) �0.019(1), > �0.017 �0.86(3), > �0.76 2.33(12),� 13.719(31), 13.794(27) 5.3, 0.01

�20 0.297(6), 0.300(6) 0.696(9), 0.683(7) �0.013(1), > �0.012 �0.86(3), > �0.76 2.32(12),� 13.718(31), 13.795(26) 6.0, 0.02

�17.9(5.8) 0.296(6), 0.299(7) 0.697(9), 0.684(8) �0.017(8), > �0.074 �0.85(4), > �0.69 2.32(19),� 13.719(30), 13.795(24) 6.4, 0.01

TABLE I: Mean values along with 1� constraints on the set of parameters used to described the gDE-CDM parameters. For one-tailed

distributions the upper limit 95% C.L. is given. For two-tailed the 68% C.L. is shown. The last column, �2 ln(L⇤,max/LgDE,max), is

used to compute best-fit di↵erences of gDE-CDM from ⇤CDM (�2 lnL⇤,max = 73.44) based on the improvement in the fit alone.

⇤CDM, viz., ��2
min < 0.02. However, we observe some-

thing surprising occurs when �  �4 (also when � is free)
that the data predict bimodal posterior probability dis-
tributions for the parameters of the gDE-CDM, for which
we observe two sets of constraint values in each column of
Table I. This may also be seen, for example, from the top
left panel of Fig. 2 which displays 1D marginalised poste-
rior distributions for the � parameters. Notice that, for
�  �4, as we move towards the larger negative values
of �, the existence of a second (new) maximum starts ap-
pearing significantly far away from � = 0 (⇤CDM). The
first (old) maximum containing � = 0 is always there,
but, when �  �6, it consistently shrinks with the larger
negative values of �, during which the new maximum
is getting relatively much higher and sharper. This im-
plies that the data significantly favour the new maxi-
mum over the old maximum when � . �6. Indeed, we
read from Table I that the improvement in the fit w.r.t.
⇤CDM reaches highly significant levels –e.g., ��2

min = 6
when � = �20 and ��2

min = 6.4 when � is free– for
the new maximum, while it remains always at insignif-
icant levels –��2

min . 0.02 irrespective of the value of
�– for the old maximum. The poor improvement level of
��2

min . 0.02 both in the old maximum (the maximum
containing � = 0 when � . �4 and � is free, and the
single maximum when � . 3) presents no evidence for
favouring these over the ⇤CDM and the constraints on
the parameters for these cases do not show a considerable
deviation from those of the ⇤CDM. Therefore, in what
follows we discard all these cases and proceed our dis-
cussions with reference to the ⇤CDM (� = 0), basically,
by considering only the new maximum that appear when
� . �6, e.g., by considering the one on the left of the
pair of constraints given in a column for a parameter of
the gDE-CDM in Table I.

The presence of these new maxima has important con-
sequences and may be better explained through the ex-
pression (7). This expression indicates if there exists a
sign change in the energy density of the gDE (or a pole
in its EoS parameter), it will happen at a redshift

z⇤ = e�
1
 � 1. (14)

Hence, the quantity  = �3�(��1) determines the posi-
tion of the pole and, if it is a real one, must yield a unique
value irrespective of the values � and �. That is, for a
given �, the � parameter selects its best position such
that  remains unchanged, and this can be seen in the
right-hand panel of Fig. 2 (see also Table I). We observe
that a peak at  = �0.86 –significantly away from  = 0
(⇤CDM)– emerges when � = �4 and as � takes more
negative values (see the cases �  �6) it becomes sig-
nificantly higher and sharper, fixed at  = �0.86, while
the old peak containing  = 0 becomes more prolate and
lower. This implies highly significant observational evi-
dence for the sign change of the energy density of the
gDE (or pole in its EoS parameter) at the redshift cor-
responding to  = �0.86. We have shown, according to
(14), in the bottom panel of Fig. 2, the 1D marginalised
posterior distribution of the redshift for this event per-
sistently located at z⇤ ⇡ 2.32 (see Table I). Interestingly,
but not surprisingly this particular position agrees with
the location of the Ly-↵ auto and cross-correlation BAO
(z = 2.34) data and the works [33–35]. This suggests
such a behaviour of DE for alleviating the tensions be-
setting this observation. We should note here that the
peaks containing  = 0 (⇤CDM) also predict the sign
change of the gDE, but we have discarded them for the
following reasons. Firstly, these cases correspond to the
ones we have discarded above, since they do not present
any statistical evidence for being favoured over ⇤CDM
(the  ! 0 limit leading to z⇤ ! 1). Secondly, in our
analyses, we observe that these cases predict completely
di↵erent z⇤ values for di↵erent � values (if they were real
the predictions need to have been stable at a certain red-
shift) and all of which are extremely large (even having
redshift values larger than the redshift of the big bang
nucleosynthesis epoch) at which dark energy is irrelevant
to the cosmological dynamics.

The bimodal distribution that  exhibits has a strong
impact on the posterior distribution of h0, and there-
fore on the Hubble constant H0, which also exhibits a
bimodal behaviour. Fig. 3 describes this behaviour; as
soon as the � parameter starts decreasing the bimodal
distribution on the panel {h0, } starts showing up for a

 l free
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from AdS vacua to dS vacua, at z ⇠ 2.3 and triggered
the observed late-time acceleration, and we suggest look-
ing for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uµ, in the form, Tµ⌫ = (⇢ + p)uµu⌫ + pgµ⌫ ,
where ⇢ is the relativistic energy density relative to uµ,
p is the isotropic pressure, gµ⌫ is the metric tensor, and
r⌫uµuµ = 0 and uµuµ = �1. The set of equations arise
from the twice-contracted Bianchi identities, by Einstein
field equations, Gµ⌫ = �Tµ⌫ , implies the conservation
equations. Projecting parallel and orthogonal to uµ, we
obtain the energy and momentum conservation equa-
tions, correspondingly,

⇢̇+⇥⇢inert = 0 and Dµp+ ⇢inertu̇
µ = 0, (1)

where ⇢inert = ⇢ + p, the multiplier of the four accel-
eration u̇µ, is the inertial mass density [62, 63]. Here,
D⌫ is the spatial gradient (the covariant derivative op-
erator orthogonal to uµ) defined by D⌫f = r⌫f + u⌫ ḟ ;
⇥ = Dµuµ is the volume expansion rate and overdots
denote derivatives w.r.t. the comoving proper time t.

Inspired by [66], we define a type of DE model, we
named as graduated Dark Energy (gDE), which yields an
inertial mass density exhibiting power-law dependence to
its energy density as follows;

⇢inert = �⇢0

✓
⇢

⇢0

◆�

, (2)

where ⇢0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today),
the parameters � and � are real constants. This can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density, viz., from the
conventional vacuum energy. So that equation of state
(EoS) parameter is w = p/⇢ = �1 + ⇢inert/⇢, and reads

w = �1 + �

✓
⇢

⇢0

◆��1

. (3)

We note that � = 0 corresponds to the conventional vac-
uum energy with w = �1 (leading to the ⇤CDM model)
and � = 1 corresponds to the perfect fluid with con-
stant EoS parameter w = �1+ � = const (leading to the
wCDM model). From the continuity equation (1), this

leads to d⇢+ 3�⇢0
⇣

⇢
⇢0

⌘�
da
a = 0, which is solved by

⇢ = ⇢0 [1 + 3�(� � 1) ln a]
1

1�� , (4)

which satisfies

⇢inert = �⇢0 [1 + 3�(� � 1) ln a]
�

1�� , (5)

w = �1 +
�

1 + 3�(� � 1) ln a
. (6)

We note that w = �1 + � today (when a = 1 or redshift
z ⌘ �1 + 1

a = 0) and w ⇡ �1 for su�ciently large and
small a, in particular, w ! �1 in the far future (a ! 1)
and in the very early universe (a ! 0). Besides, pro-
vided that the parameters � and � are chosen appropri-
ately, gDE can achieve transition from ⇢ > 0 to ⇢ < 0
at a certain redshift. Thus, gDE can also be viewed as a
phenomenological model described by a smooth function
for approximately describing the cosmological constant
switches sign at a certain redshift and, for instance, be-
comes positive just recently in the late universe.
The gDE (4), in fact, exhibits various types of dynam-

ics depending on its free parameters � and �, see [70] for a
comprehensive investigation. In this paper, we are inter-
ested in the case its energy density passes below zero at
high redshifts, which, so far, has not been paid much at-
tention, yet it is the case fitting the scenarios we discussed
in the Introduction I that most likely address the tensions
relevant to H0 and, in particular, to the high-precision
Ly-↵ data from z ⇡ 2.34. For instance, in the case � = 0
(⇢inert = �⇢0), (4) reduces to ⇢ = ⇢0 � 3⇢0� ln a, con-
sisting of a constant ⇢0 > 0 mimicking ⇤ > 0 and a
dynamically screening term, �3⇢0� ln a, in the past for

� < 0, viz., ⇢0 � 3⇢0� ln a = 0 at a = e
1
3� . Yet, the pres-

ence of the exponent 1
1�� in (4) will allow us to realise

such a scenario with additional features.
First, we define ⇢/⇢0 = xy along with ⇢0 > 0, where

x ⌘ 1+3�(��1) ln a and y ⌘ 1
1�� . We note that, unless

� = 0 (conventional vacuum) or � = 1 (perfect fluid with
constant EoS parameter), x changes sign at

a = a⇤ ⌘ e�
1
3

1
�(��1) , (7)

which is in the past (a⇤ < 1, the case we are interested in)
for �(��1) > 0, and in the future (a⇤ > 1) for �(��1) <
0. Next, y < 0 for � > 1 so that ⇢ ! ±1 as a ! a⇤
and y > 0 for � < 1 so that ⇢ ! 0 as a ! a⇤, where the
latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose:

� < 1 and � < 0, (8)

the latter of which implies w(a = 1) < �1, i.e., the gDE
must be in the phantom region today.

To get around a mathematical obstacle, when we inves-
tigate gDE computationally (see [110]), we continue by
writing ⇢

⇢0
= xy in an equivalent way as ⇢

⇢0
= sgn(x) |x|y

for y = m
n with m and n being odd integers, namely,

⇢ = ⇢0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� , (9)

for  ⌘ �3�(� � 1) < 0 (i.e., � < 0), � < 1 and the ex-
ponent 1

1�� = m
n with both m and n being odd integers.

For practical reasons, we will consider m = 1 and so � =
�2N with N = 0, 1, 2, ..., i.e., � = 0,�2,�4, ... . Here
sgn is the signum function that reads sgn(x) = �1, 0, 1
for x < 0, x = 0 and x > 0, respectively. Of course, in
principle, there is an infinite number of such � values,
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FIG. 3: Top panel: 1D marginalised posterior distributions of  , along with (bottom panel) 2D posterior distributions of { , h0} colour

coded by the � parameter.

particular � value (display in pink colour). This bimodal
distribution is summarised on the marginalised error bars
shown in Fig. 4. We observe that while the values (green)
associated with the old peak containing  ⇠ 0 (⇤CDM)
agree with the H0 values measured from the inverse dis-
tance ladder (e.g., H0 = 67.4 ± .5 from Planck 2018 [9]),
the ones (red) associated with the new peak stable at
 ⇠ �0.86 (away from  = 0) agree with the higher H0

values measured from the distance ladder measurements
(e.g., H0 = 69.8 ± 0.8 from a recent calibration of the
Tip of the Red Giant Branch (TRGB) applied to Type
Ia supernovae [22]). Therefore, the H0 predicted within
the ⇤CDM (matching our results from the old peak) has
deficiency w.r.t. the TRGB H0 value, while the ones
predicted by the new peak (appears for � . �4) per-
fectly match with it. It certainly favours the new peak
that it predicts a value matching the independent TRGB
H0 value. It is also significant that it uses the distance
ladder approach, rather than the inverse distance ladder
approach. Also, the latter BAO calibration of H0 is not
completely independent of the Planck measurement, as
both H0 determinations are based on the ⇤CDM and its
adopted value of the sound horizon scale. Moreover, the
independent TRGB H0 value (so the values from our new
peak) agrees with both Planck [9] and Cepheid [19–21]
H0 values. However, when combined with Cepheid mea-
surements the tension with the Planck value is relieved
only at about ⇠ 1� level and still remains significant [22].

We notice in Table I that the values of the parame-
ters  (�,�) –or z⇤(�,�)– and of the other cosmological
parameters ⌦0, h0 and t0 are quite stable for �  �10.
One may see from the last row in Table I that we confirm
this observation when we constrain the model by letting
also the parameter � free (we use flat prior � = [�27, 0]).
Left panel of Fig. 5 displays the 3D marginalised posterior
distribution of the { ,�} parameter region colour coded
with the � parameter. Here, the bimodality of the con-
straints on the gDE-CDM shows up as two detached 2D

FIG. 4: Means values along with 1� error bars from the 1D

marginalised posterior distributions of H0[km s
�1

Mpc
�1

]. Green

error bars are associated with the peak containing  ⇠ 0

(⇤CDM), whereas red with the new peak stable at  ⇠ �0.86.

outer contours. The narrow one located at  ⇠ �0.86
corresponds to the new maximum, while the wide one
corresponds to the old maximum containing the ⇤CDM
(top-right corner). In the right panel of the same figure
we present the 1D posterior distribution of the z⇤ asso-
ciated with the new maximum, which demonstrates that
the redshift at which the gDE energy density changes sign
(its EoS parameter exhibits a pole) is stable at z⇤ ⇠ 2.32.
It was shown in [35] through the Omh2 diagnostic (in-

troduced to test the ⇤ hypothesis in a model-independent
way) that the ⇤CDM is in tension with the BAO’s sta-
tistically independent measurements of H(z) at redshifts
of 0.57 and 2.34. It was shown that this tension is allevi-
ated in models in which the ⇤ was dynamically screened
(compensated) in the past and that the energy density
of such evolving DE models passes below zero (exhibits
pole in the e↵ective EoS) at z ⇠ 2.4. These are in line
with the new maxima of the gDE-CDM, yet in addition
the fact that the constant that plays the role of ⇤ in gDE
is embedded into a parenthesis raised to a power renders
our model more featured. Therefore, we also investigate

Old max.

Old max.

Old max. Old max.
Old max.

New max.?
New max.

New max. New max. New max.
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FIG. 3: Top panel: 1D marginalised posterior distributions of  , along with (bottom panel) 2D posterior distributions of { , h0} colour

coded by the � parameter.

particular � value (display in pink colour). This bimodal
distribution is summarised on the marginalised error bars
shown in Fig. 4. We observe that while the values (green)
associated with the old peak containing  ⇠ 0 (⇤CDM)
agree with the H0 values measured from the inverse dis-
tance ladder (e.g., H0 = 67.4 ± .5 from Planck 2018 [9]),
the ones (red) associated with the new peak stable at
 ⇠ �0.86 (away from  = 0) agree with the higher H0

values measured from the distance ladder measurements
(e.g., H0 = 69.8 ± 0.8 from a recent calibration of the
Tip of the Red Giant Branch (TRGB) applied to Type
Ia supernovae [22]). Therefore, the H0 predicted within
the ⇤CDM (matching our results from the old peak) has
deficiency w.r.t. the TRGB H0 value, while the ones
predicted by the new peak (appears for � . �4) per-
fectly match with it. It certainly favours the new peak
that it predicts a value matching the independent TRGB
H0 value. It is also significant that it uses the distance
ladder approach, rather than the inverse distance ladder
approach. Also, the latter BAO calibration of H0 is not
completely independent of the Planck measurement, as
both H0 determinations are based on the ⇤CDM and its
adopted value of the sound horizon scale. Moreover, the
independent TRGB H0 value (so the values from our new
peak) agrees with both Planck [9] and Cepheid [19–21]
H0 values. However, when combined with Cepheid mea-
surements the tension with the Planck value is relieved
only at about ⇠ 1� level and still remains significant [22].

We notice in Table I that the values of the parame-
ters  (�,�) –or z⇤(�,�)– and of the other cosmological
parameters ⌦0, h0 and t0 are quite stable for �  �10.
One may see from the last row in Table I that we confirm
this observation when we constrain the model by letting
also the parameter � free (we use flat prior � = [�27, 0]).
Left panel of Fig. 5 displays the 3D marginalised posterior
distribution of the { ,�} parameter region colour coded
with the � parameter. Here, the bimodality of the con-
straints on the gDE-CDM shows up as two detached 2D

FIG. 4: Means values along with 1� error bars from the 1D

marginalised posterior distributions of H0[km s
�1

Mpc
�1

]. Green

error bars are associated with the peak containing  ⇠ 0

(⇤CDM), whereas red with the new peak stable at  ⇠ �0.86.

outer contours. The narrow one located at  ⇠ �0.86
corresponds to the new maximum, while the wide one
corresponds to the old maximum containing the ⇤CDM
(top-right corner). In the right panel of the same figure
we present the 1D posterior distribution of the z⇤ asso-
ciated with the new maximum, which demonstrates that
the redshift at which the gDE energy density changes sign
(its EoS parameter exhibits a pole) is stable at z⇤ ⇠ 2.32.
It was shown in [35] through the Omh2 diagnostic (in-

troduced to test the ⇤ hypothesis in a model-independent
way) that the ⇤CDM is in tension with the BAO’s sta-
tistically independent measurements of H(z) at redshifts
of 0.57 and 2.34. It was shown that this tension is allevi-
ated in models in which the ⇤ was dynamically screened
(compensated) in the past and that the energy density
of such evolving DE models passes below zero (exhibits
pole in the e↵ective EoS) at z ⇠ 2.4. These are in line
with the new maxima of the gDE-CDM, yet in addition
the fact that the constant that plays the role of ⇤ in gDE
is embedded into a parenthesis raised to a power renders
our model more featured. Therefore, we also investigate

New max.

Old max.

TRGB
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FIG. 5: Graduated Dark energy model with varying the �
parameter. Left panel: 3D marginalised posterior distributions for

the graduated � and  parameters, coloured coded by the �
parameter. Right panel: 1D marginalised posterior of the redshift

position given by the pole. The vertical line is the mean value

z⇤ = 2.32.

gDE in the context of Omh2 diagnostic.
The Omh2 diagnostic is defined in [35] as follows:

Omh2(zi; zj) =
h2(zi) � h2(zj)

(1 + zi)3 � (1 + zj)3
, (15)

and depends only on H(z). Accordingly, knowing it at
two or more redshifts, one can obtain Omh2 value(s)
in a model-independent manner and thence conclude
whether or not the DE is a ⇤. For the ⇤CDM, omit-
ting radiation (negligible in the late universe), we have
h2 = h2

0

⇥
⌦m,0(1 + z)3 + 1 � ⌦m,0

⇤
leading to a constant

Omh2(zi; zj) = h2
0⌦m,0. (16)

For the gDE-CDM, using (10), we have

Omh2(zi; zj) = h2
0⌦m,0

+ h2
0 (1 � ⌦m,0)

sgn(xi)|xi|y � sgn(xj)|xj |y

(1 + zi)3 � (1 + zj)3
,

(17)

where have neglected radiation and used the zero-
curvature constraint, ⌦m,0 + ⌦DE,0 = 1. The second
line of the Omh2(zi; zj) for the gDE-CDM emerges as
a correction to the one for the ⇤CDM. We can calcu-
late the predicted Omh2(zi; zj) with these two equations
for any pair of chosen redshifts using the constraints on
the models and then compare the same with the model-
independent estimates obtained by (15).

We calculate, from (15), the model independent esti-
mates as Omh2(z1; z2) = 0.164 ± 0.024, Omh2(z1; z3) =
0.123± 0.006 and Omh2(z2; z3) = 0.119± 0.007 by using
H(z1 = 0) = 69.8 ± 0.8 km s�1Mpc�1 from the TRGB
H0 [22], H(z2 = 0.57) = 97.9 ± 3.4 km s�1Mpc�1 based
on the clustering of galaxies in the SDSS-III BOSS DR11
[23], and H(z3 = 2.34) = 222.4±5.0 km s�1Mpc�1 based
on the BAO in the Ly-↵ forest of SDSS DR11 data [33].
We notice that the constraint Omh2 = 0.140 ± 0.002
(Omh2 = 0.143 ± 0.001 in Planck 2018 [9]) we obtained
for the ⇤CDM is in clear tension with the latter two of
these estimates. We see in Table I that, for �  �10 as

� Omh2
(z1; z2) Omh2

(z1; z3) Omh2
(z2; z3)

⇤CDM 0.140(2) 0.140(2) 0.140(2)

0 0.134(4) 0.139(4) 0.140(4)

-2 0.135(4) 0.140(2) 0.140(2)

-4 0.136(3) 0.129(1), 0.140(2) 0.129(2), 0.140(2)

-6 0.137(2) 0.128(1), 0.140(3) 0.127(2), 0.140(2)

-10 0.137(2), 0.139(2) 0.127(2), 0.140(2) 0.123(2), 0.140(2)

-14 0.138(2), 0.139(2) 0.126(2), 0.140(2) 0.127(2), 0.140(2)

-20 0.139(2), 0.140(2) 0.125(2), 0.140(2) 0.124(2), 0.140(2)

Free 0.136(4), 0.139(2) 0.127(4), 0.140(2) 0.126(2), 0.140(2)

TABLE II: Mean values along with 1�� constraints on the set of

parameters that describe Om diagnostic.

FIG. 6: Omh2
diagnostic for the graduated dark energy model

with � = �20 using three redshifts {z1, z2} (left), {z1, z3}
(middle) and {z2, z3} (right). The colour code indicates the value

of � parameter, where the yellow points mimic the ⇤CDM

behaviour and the pink ones the new feature introduced by the

gDE model.

well as the � free case, the constraints for all of the three
Omh2 exhibit bimodal characteristic, i.e., there are two
valued constraints corresponding to the new (left) and
old (right) maxima. We notice Omh2(z1; z2) ⇠ 0.140
(as in the ⇤CDM) almost the same for both the new
and old maxima, yet it agrees with the corresponding
model independent estimate. However, when we consider
Omh2(z1; z3) and Omh2(z2; z3) we observe that while the
ones associated with the new maximum yield ⇠ 0.125 in
agreement with the corresponding model independent es-
timates, the ones associated with the old maximum yield
⇡ 0.140 in tension. For a visual demonstration, in Fig.
6, we show the marginalised posterior distributions for
the parameter � in the {�, Omh2(zi; zj), h0} subspace
for {z1, z2}, {z1, z3} and {z2, z3}, where the blue con-
tours and 3D scatter color plots described the gDE-CDM
model for � = �20. The color code indicates the value
of � labelled by the color bar. Black contours display 2D
marginalised posterior distributions for the ⇤CDM which
agree with the position of the yellow points correspond-
ing to the old maxima of the gDE-CDM. The contours
at about Omh2 ⇠ 0.125 correspond to the new maxima
of the gDE-CDM describing the case in which the energy
density of the gDE passes below zero z ⇠ 2.32.

9

All these superiorities in goodness of fit to the obser-
vational data arising in the case of the new maxima of
the gDE-CDM are obviously consequences of the fact
that the energy density of the gDE passes below zero
at z⇤ ⇡ 2.3 by exhibiting a certain type of dynamics. By
using the fgivenx package [100], we show in the upper
panel of Fig. 7 the probability (the more pink implies
more probable) distribution of the redshift dependency
of the energy density of gDE scaled to the critical energy
density of the present-day Universe, viz., ⇢DE/⇢c,0. We
observe that gDE, viz., ⇢DE(z)/⇢c,0, does not distinguish
from ⇤ (solid straight black line) at a value ⇠ 0.70 for
z . 2, but it reaches a junction at z ⇠ 2.3 and for larger
redshifts it either keeps tracking ⇤ by retaining the value
⇠ 0.70 (the one associated with the old maximum and
disfavoured by the data) or rapidly changes route and
starts to track a new value ⇠ �0.70 like a mirror image
of the former track at ⇢DE = 0 (the case associated with
the new maximum and favoured by the data). The rapid
sign switch of the gDE energy density at z ⇠ 2.3 implies
a rapid drop in the total energy density of the Universe,
and in H(z), at that redshift. This behaviour of H(z)
emerges in association with the new maxima of the gDE-
CDM for more negative values of �, as can be seen in
the lower panel of Fig. 7, reconciles it with the lower
H(z) value of the Ly-↵ data at z = 2.34 with respect
to the one predicted by ⇤CDM for that redshift. Fur-
thermore, this reconciliation between the gDE-CDM and
Ly-↵ data, in turn, provides the gDE-CDM with easiness
in achieving large H(z) values for z . 2 and thereby pre-
dicts larger H0, and so gDE-CDM relieves the H0 tension
that ⇤CDM has been su↵ering from.

We would like to conclude this section by comment-
ing on the implication of the dynamics of gDE that leads
to all these reconciliations with the observational data
on the nature of the dark energy. First, we note the
following features of gDE that we have further under-
stood upon confronting the observational data. We read
o↵ from Table I that, for larger negative values of �,
⇢DE/⇢c,0 = 0.70 and w0 ⇠ �1.01 (i.e., in the phantom
region but very close to the conventional vacuum energy)
at z = 0, its energy density switches sign rapidly (al-
most spontaneously) at z⇤ ⇡ 2.32 (which is quite stable)
and settles into a value ⇢DE/⇢c,0 ⇠ �0.70 (the oppo-
site of its present-day value) and remains (wDE ⇡ �1)
there for z⇤ & 2.3. Next, we observe in the same table
that the larger the negative values of �, the better fit
to the data (the larger ��2

min). This follows the trend
that makes ⇢DE(z) increasingly resemble a step function
centred at z⇤ with two branches yielding opposite values
about zero –a pattern of flat positive energy density for
z < z⇤ and flat negative energy density for z > z⇤, both
of which have the same absolute value– and indeed, we
know from (13), that ⇢DE transforms into a step func-
tion for arbitrary large negative values of �. The largest
negative � value we considered in our analyses is �27,
yet it is easy to check mathematically that considering
even larger negative values would not e↵ect our results
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FIG. 7: Top panel: ⇢gDE/⇢c0 versus redshift z for � = �20

displays the maximum predicted that ⇢gDE changes sign at

z ⇠ 2.3. Bottom: H(z)/(1 + z) function. Include the latest BAO

data points [34] (blue bars) where H0 = 67.3± 1.1, the Planck

2018 [9] H0 = 67.4± 0.5 data (red bar) and the TGRB model

independent [22] H0 = 69.8± 0.8 data (green bar). Black dashed

line corresponds to best-fit values of gDE and solid black line

corresponds to LCDM. We note that, due to the jump at z ⇠ 2.3,
the gDE model is not in tension with the BAO Ly-↵ data from

z = 2.34 in contrast to ⇤CDM model and also gDE gives larger

H0 values w.r.t. ⇤CDM model and thereby relaxes H0 tension.

considerably since, for this value, the function ⇢DE(z) al-
ready closely resembles a step function. Thus, our results
from the new maximum of the gDE for large negative
values of � can safely be interpreted as the results one
would obtain for a cosmological constant that achieved
its present-day positive value by spontaneously switching
sign at z⇤ ⇠ 2.3, but was negative in the earlier stage of
the universe.

IV. CONCLUSIONS

We have considered a type of dark energy that can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density –described by
the conventional vacuum (or cosmological constant, ⇤)–
in the form ⇢inert / ⇢� with � being a constant. This
source, we called graduated Dark Energy (gDE), presents
a wide variety of dynamics which were first studied in the
context of inflaton [63–65] and more recently of dark en-
ergy [66–69]. We focused on its dynamics (which has
not been studied in detail so far) that emerges when
⇢inert < 0, and � < 1 is written as a ratio of two odd
integers. In this case it yields an energy density that
dynamically assumes negative values in the recent past,
in line, for instance, with [27–35]. They proposed such

ΛCDM

Old max.
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R19
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All these superiorities in goodness of fit to the obser-
vational data arising in the case of the new maxima of
the gDE-CDM are obviously consequences of the fact
that the energy density of the gDE passes below zero
at z⇤ ⇡ 2.3 by exhibiting a certain type of dynamics. By
using the fgivenx package [100], we show in the upper
panel of Fig. 7 the probability (the more pink implies
more probable) distribution of the redshift dependency
of the energy density of gDE scaled to the critical energy
density of the present-day Universe, viz., ⇢DE/⇢c,0. We
observe that gDE, viz., ⇢DE(z)/⇢c,0, does not distinguish
from ⇤ (solid straight black line) at a value ⇠ 0.70 for
z . 2, but it reaches a junction at z ⇠ 2.3 and for larger
redshifts it either keeps tracking ⇤ by retaining the value
⇠ 0.70 (the one associated with the old maximum and
disfavoured by the data) or rapidly changes route and
starts to track a new value ⇠ �0.70 like a mirror image
of the former track at ⇢DE = 0 (the case associated with
the new maximum and favoured by the data). The rapid
sign switch of the gDE energy density at z ⇠ 2.3 implies
a rapid drop in the total energy density of the Universe,
and in H(z), at that redshift. This behaviour of H(z)
emerges in association with the new maxima of the gDE-
CDM for more negative values of �, as can be seen in
the lower panel of Fig. 7, reconciles it with the lower
H(z) value of the Ly-↵ data at z = 2.34 with respect
to the one predicted by ⇤CDM for that redshift. Fur-
thermore, this reconciliation between the gDE-CDM and
Ly-↵ data, in turn, provides the gDE-CDM with easiness
in achieving large H(z) values for z . 2 and thereby pre-
dicts larger H0, and so gDE-CDM relieves the H0 tension
that ⇤CDM has been su↵ering from.

We would like to conclude this section by comment-
ing on the implication of the dynamics of gDE that leads
to all these reconciliations with the observational data
on the nature of the dark energy. First, we note the
following features of gDE that we have further under-
stood upon confronting the observational data. We read
o↵ from Table I that, for larger negative values of �,
⇢DE/⇢c,0 = 0.70 and w0 ⇠ �1.01 (i.e., in the phantom
region but very close to the conventional vacuum energy)
at z = 0, its energy density switches sign rapidly (al-
most spontaneously) at z⇤ ⇡ 2.32 (which is quite stable)
and settles into a value ⇢DE/⇢c,0 ⇠ �0.70 (the oppo-
site of its present-day value) and remains (wDE ⇡ �1)
there for z⇤ & 2.3. Next, we observe in the same table
that the larger the negative values of �, the better fit
to the data (the larger ��2

min). This follows the trend
that makes ⇢DE(z) increasingly resemble a step function
centred at z⇤ with two branches yielding opposite values
about zero –a pattern of flat positive energy density for
z < z⇤ and flat negative energy density for z > z⇤, both
of which have the same absolute value– and indeed, we
know from (13), that ⇢DE transforms into a step func-
tion for arbitrary large negative values of �. The largest
negative � value we considered in our analyses is �27,
yet it is easy to check mathematically that considering
even larger negative values would not e↵ect our results
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FIG. 7: Top panel: ⇢gDE/⇢c0 versus redshift z for � = �20

displays the maximum predicted that ⇢gDE changes sign at

z ⇠ 2.3. Bottom: H(z)/(1 + z) function. Include the latest BAO

data points [34] (blue bars) where H0 = 67.3± 1.1, the Planck

2018 [9] H0 = 67.4± 0.5 data (red bar) and the TGRB model

independent [22] H0 = 69.8± 0.8 data (green bar). Black dashed

line corresponds to best-fit values of gDE and solid black line

corresponds to LCDM. We note that, due to the jump at z ⇠ 2.3,
the gDE model is not in tension with the BAO Ly-↵ data from

z = 2.34 in contrast to ⇤CDM model and also gDE gives larger

H0 values w.r.t. ⇤CDM model and thereby relaxes H0 tension.

considerably since, for this value, the function ⇢DE(z) al-
ready closely resembles a step function. Thus, our results
from the new maximum of the gDE for large negative
values of � can safely be interpreted as the results one
would obtain for a cosmological constant that achieved
its present-day positive value by spontaneously switching
sign at z⇤ ⇠ 2.3, but was negative in the earlier stage of
the universe.

IV. CONCLUSIONS

We have considered a type of dark energy that can be
viewed as characterising the minimum dynamical devi-
ation from the null inertial mass density –described by
the conventional vacuum (or cosmological constant, ⇤)–
in the form ⇢inert / ⇢� with � being a constant. This
source, we called graduated Dark Energy (gDE), presents
a wide variety of dynamics which were first studied in the
context of inflaton [63–65] and more recently of dark en-
ergy [66–69]. We focused on its dynamics (which has
not been studied in detail so far) that emerges when
⇢inert < 0, and � < 1 is written as a ratio of two odd
integers. In this case it yields an energy density that
dynamically assumes negative values in the recent past,
in line, for instance, with [27–35]. They proposed such
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FIG. 5: Graduated Dark energy model with varying the �
parameter. Left panel: 3D marginalised posterior distributions for

the graduated � and  parameters, coloured coded by the �
parameter. Right panel: 1D marginalised posterior of the redshift

position given by the pole. The vertical line is the mean value

z⇤ = 2.32.

gDE in the context of Omh2 diagnostic.
The Omh2 diagnostic is defined in [35] as follows:

Omh2(zi; zj) =
h2(zi) � h2(zj)

(1 + zi)3 � (1 + zj)3
, (15)

and depends only on H(z). Accordingly, knowing it at
two or more redshifts, one can obtain Omh2 value(s)
in a model-independent manner and thence conclude
whether or not the DE is a ⇤. For the ⇤CDM, omit-
ting radiation (negligible in the late universe), we have
h2 = h2

0

⇥
⌦m,0(1 + z)3 + 1 � ⌦m,0

⇤
leading to a constant

Omh2(zi; zj) = h2
0⌦m,0. (16)

For the gDE-CDM, using (10), we have

Omh2(zi; zj) = h2
0⌦m,0

+ h2
0 (1 � ⌦m,0)

sgn(xi)|xi|y � sgn(xj)|xj |y

(1 + zi)3 � (1 + zj)3
,

(17)

where have neglected radiation and used the zero-
curvature constraint, ⌦m,0 + ⌦DE,0 = 1. The second
line of the Omh2(zi; zj) for the gDE-CDM emerges as
a correction to the one for the ⇤CDM. We can calcu-
late the predicted Omh2(zi; zj) with these two equations
for any pair of chosen redshifts using the constraints on
the models and then compare the same with the model-
independent estimates obtained by (15).

We calculate, from (15), the model independent esti-
mates as Omh2(z1; z2) = 0.164 ± 0.024, Omh2(z1; z3) =
0.123± 0.006 and Omh2(z2; z3) = 0.119± 0.007 by using
H(z1 = 0) = 69.8 ± 0.8 km s�1Mpc�1 from the TRGB
H0 [22], H(z2 = 0.57) = 97.9 ± 3.4 km s�1Mpc�1 based
on the clustering of galaxies in the SDSS-III BOSS DR11
[23], and H(z3 = 2.34) = 222.4±5.0 km s�1Mpc�1 based
on the BAO in the Ly-↵ forest of SDSS DR11 data [33].
We notice that the constraint Omh2 = 0.140 ± 0.002
(Omh2 = 0.143 ± 0.001 in Planck 2018 [9]) we obtained
for the ⇤CDM is in clear tension with the latter two of
these estimates. We see in Table I that, for �  �10 as

� Omh2
(z1; z2) Omh2

(z1; z3) Omh2
(z2; z3)

⇤CDM 0.140(2) 0.140(2) 0.140(2)

0 0.134(4) 0.139(4) 0.140(4)

-2 0.135(4) 0.140(2) 0.140(2)

-4 0.136(3) 0.129(1), 0.140(2) 0.129(2), 0.140(2)

-6 0.137(2) 0.128(1), 0.140(3) 0.127(2), 0.140(2)

-10 0.137(2), 0.139(2) 0.127(2), 0.140(2) 0.123(2), 0.140(2)

-14 0.138(2), 0.139(2) 0.126(2), 0.140(2) 0.127(2), 0.140(2)

-20 0.139(2), 0.140(2) 0.125(2), 0.140(2) 0.124(2), 0.140(2)

Free 0.136(4), 0.139(2) 0.127(4), 0.140(2) 0.126(2), 0.140(2)

TABLE II: Mean values along with 1�� constraints on the set of

parameters that describe Om diagnostic.

FIG. 6: Omh2
diagnostic for the graduated dark energy model

with � = �20 using three redshifts {z1, z2} (left), {z1, z3}
(middle) and {z2, z3} (right). The colour code indicates the value

of � parameter, where the yellow points mimic the ⇤CDM

behaviour and the pink ones the new feature introduced by the

gDE model.

well as the � free case, the constraints for all of the three
Omh2 exhibit bimodal characteristic, i.e., there are two
valued constraints corresponding to the new (left) and
old (right) maxima. We notice Omh2(z1; z2) ⇠ 0.140
(as in the ⇤CDM) almost the same for both the new
and old maxima, yet it agrees with the corresponding
model independent estimate. However, when we consider
Omh2(z1; z3) and Omh2(z2; z3) we observe that while the
ones associated with the new maximum yield ⇠ 0.125 in
agreement with the corresponding model independent es-
timates, the ones associated with the old maximum yield
⇡ 0.140 in tension. For a visual demonstration, in Fig.
6, we show the marginalised posterior distributions for
the parameter � in the {�, Omh2(zi; zj), h0} subspace
for {z1, z2}, {z1, z3} and {z2, z3}, where the blue con-
tours and 3D scatter color plots described the gDE-CDM
model for � = �20. The color code indicates the value
of � labelled by the color bar. Black contours display 2D
marginalised posterior distributions for the ⇤CDM which
agree with the position of the yellow points correspond-
ing to the old maxima of the gDE-CDM. The contours
at about Omh2 ⇠ 0.125 correspond to the new maxima
of the gDE-CDM describing the case in which the energy
density of the gDE passes below zero z ⇠ 2.32.
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FIG. 5. The figure shows the posteriors of ⇢DE(z)/⇢c0 (top panels) and wDE(z) (bottom panels); the more frequent
the lines, the more probable. Violet is for the analysis with the Planck+PantheonPlus&SH0ES data set, and red is for
Planck+BAO+PantheonPlus&SH0ES. The bolder solid lines correspond to the best fit sample of their corresponding data set.
The horizontal grey dashed line in the top panels show the Plik best fit value in Ref. [7] for comparison, and the horizontal
black dashed line in the bottom panels is the PDL. The vertical dashed lines in the bottom panels show the redshifts DE crosses
to negative values for the best fit samples of the same color, i.e., they show the best fit zp; these dashed lines also correspond
to the asymptotes of wDE(z) for the best fit plots.

definitions of these parameters see Section III.

To discuss the features of DMS20 DE related to neg-
ative energy densities, we present Figs. 3, 5 and 6
showing constraints on some relevant functions and
parameters for our most extensive data combination,
viz., Planck+BAO+PantheonPlus&SH0ES, and also for
the Planck+PantheonPlus&SH0ES data combination in
which case the features related to negative DE density
are most emphasized within DMS20 DE.

We present the two-dimensional marginalized con-
straints of H0 versus ap in Fig. 3 to show the correla-
tion between the Hubble constant and the scale of the
universe at which n-quintessence–p-phantom crossing oc-
curs, along with those of H0 versus an and am. In the
Planck+PantheonPlus&SH0ES case, we see a positive
correlation between H0 and ap, while no correlation is

present with the other two parameters an and am. On
the other hand, once BAO data are included, the correla-
tion between H0 and ap becomes weak,7 and a slight neg-
ative correlation appears between H0 and am with still

7
This weakening of the correlation between H0 and the time

of crossing to negative densities, accompanying the lesser con-

straints on ap with the addition of the BAO data, was also found

within the ⇤sCDM model [73, 76] which has other parallelisms

with DMS20 DE as noted further below in the main text; com-

pare the leftmost panel of Fig. 3 with the bottom leftmost panel

of Fig. 2 in Ref. [76] and Fig. 8 in Ref. [73]. Within ⇤sCDM,

the strict CMB-based constraints on DM (z⇤) enforces a nonlin-

ear degeneracy between the time of crossing and H0; the shape

of this degeneracy (see also Fig. 2 in Ref. [73] and relevant dis-

cussions therein), which implies a weakened linear correlation

if the crossing happens at earlier times, explains these findings
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terized by ⇢DE > 0 and wDE < �1, are the epitome of
such models with a density that monotonically decreases
towards the past, and can solve the H0 tension1 [86, 108–
113]. Due to this unambiguous and promising connection
between higher H0 values and the scaling of phantom DE
densities with time, one may look for approaches that fur-
ther this characteristic of the phantom models. From a
purely phenomenological perspective on the background
dynamics of the universe, a DE density that monoton-
ically decreases to achieve negative values in the past
(unlike a phantom DE which is bound to have ⇢DE > 0)
constitute a natural extension of the phantom models.
Indeed, such models with negative DE densities amplify
the characteristics of the background dynamics of phan-
tom DE models and can achieve equivalently high H0

values with even milder/slower density scaling compared
to their phantom counterparts. Despite being a natural
extension of phantom models in the above sense, models
with negative densities are not very frequent in the cos-
mology literature. The ⇢DE(z ⇠ 0) > 0 requirement of
the present-day acceleration,2 and the singular behaviour
(discussed below) of wDE for a DE that crosses to neg-
ative densities, render these models elusive and easy to
miss, particularly in studies relying on parametrization
or reconstruction of wDE(z).

The similarities between phantom DE and its nega-
tive density extensions only go so far; the inequality
wDE < �1 that is the embodiment of phantom DE mod-
els, cannot hold everywhere for DE models that dynami-
cally attain negative densities in the past. For the frame-
work of this paper where only minimally interacting DE
models within GR are considered,3 the continuity equa-
tion in the redshift form reads, as usual,

d⇢DE(z)

dz
= 3

1 + wDE(z)

1 + z
⇢DE(z). (1)

It is clear from Eq. (1) that when ⇢DE < 0 is satis-
fied, a DE density that decreases towards the past, i.e.,
d⇢DE

dz < 0, requires a quintessence-like EoS parameter,
wDE > �1, in contrast with phantom DE models with
a positive density that also decreases towards the past.
Summary of all six potential scenarios with respect to
the sign of ⇢DE and how wDE compares to the PDL is

1
Unfortunately, they are known to be in disagreement with a com-

bination of Baryon Acoustic Oscillations (BAO) and Type Ia Su-

pernovae (SNIa) data, i.e., they su↵er from the so called “sound

horizon problem” [29, 106, 107].
2
Strictly speaking, it is possible to have accelerated present-day

expansion with ⇢DE0 < 0 and wDE0 > 0 (discussed further in

the main text), however, this case is rendered irrelevant by ob-

servations.
3
This is not very restrictive since modifications to the physics

underlying ⇤CDM, including those from alternative theories of

gravity, can be exactly mimicked at the background level with

an e↵ective DE source within GR that replaces the cosmological

constant. Note however, in general, they can be distinguished

with su�ciently precise tests beyond the background level [114].

TABLE I. An omnipotent DE is any DE model that is ca-
pable of incorporating all six behaviours in this table into a
single expansion scenario for at least one point in its param-
eter space. In the table we drop the DE subscript in ⇢DE and
wDE for brevity.

Density EoS Scaling in z Scaling in a Naming

⇢ > 0
w > �1 d⇢ / dz > 0 d⇢ / da < 0 p-quintessence
w = �1 d⇢ / dz = 0 d⇢ / da = 0 positive-CC
w < �1 d⇢ / dz < 0 d⇢ / da > 0 p-phantom

⇢ < 0
w > �1 d⇢ / dz < 0 d⇢ / da > 0 n-quintessence
w = �1 d⇢ / dz = 0 d⇢ / da = 0 negative-CC
w < �1 d⇢ / dz > 0 d⇢ / da < 0 n-phantom

presented in Table I. We name these scenarios in the
last column of the table; “p-” and “positive-” stand for
⇢DE > 0; “n-” and “negative-” stand for ⇢DE < 0; “CC”
stands for wDE = �1; phantom stands for wDE < �1;
and quintessence stands for wDE > �1.
A DE whose density is positive today (⇢DE0 > 0)

and is monotonically decreasing towards the past must
show the usual p-phantom behaviour at late times. How-
ever, if its density is to cross to negative values in the
past, it should also show n-quintessence behaviour at ear-
lier times. This requires a discontinuous EoS parameter
(even for a smoothly evolving ⇢DE), because, as the DE
density passes to negative values with increasing redshift,
its EoS parameter needs to shift from wDE < �1 to the
disjoint region wDE > �1 in a particular way. Let zp be
the redshift at which DE crosses to negative densities,
wDE diverges to negative infinity for z ! z

�
p and to pos-

itive infinity for z ! z
+
p (compare the energy densities

of the blue and yellow curves in the top panel of Fig. 1
with their EoS parameters in the bottom panel, and see
Ref. [74] for a detailed discussion). Note that, strictly
speaking, wDE crosses between w > �1 and w < �1
around zp; however, we use the term PDL crossing in
its established sense in the literature so far, that is, only
to refer to continuous crossings and not the above men-
tioned singular types.
The second major feature of omnipotent DE models

that we discuss, other than being able to attain neg-
ative energy densities, is the ability to incorporate a
non-monotonic and even oscillatory energy density evo-
lution. Such behaviours are suggested by parametric
and non-parametric reconstructions of both ⇢DE and
wDE [52, 78, 80, 87, 91–94]; also, they naturally arise
whenDM (z) to a redshift is strictly constrained and these
behaviours can be favored by the latest BAO measure-
ments [102]. Oscillatory or just non-monotonic evolution
of a DE density that is also continuous in time (for discon-
tinuous examples, see, e.g., Refs. [55, 73, 76, 115, 116]),
implies the existence of a redshift, zr, around which the
scaling of the DE density with the expansion is reversed.
The continuity of the density requires that the sign of
⇢DE does not change around zr, i.e., the reversal corre-
sponds either to a transition between p-quintessence and

4

p-phantom, or n-quintessence and n-phantom. More-
over, if the DE density is also di↵erentiable at zr,
d⇢DE / dz

��
z=zr

= 0 should be satisfied, which, if ⇢DE

does not vanish at zr, implies wDE(zr) = �1 correspond-
ing to negative-CC for a n-quintessence to n-phantom
transition, and to positive-CC for a p-quintessence to p-
phantom transition. In either case, under the above men-
tioned assumptions related to di↵erentiability, existence
of zr is necessary for an oscillating DE density, and it is
a redshift of PDL crossing.

We are now in a position to precisely define omnipotent
DE models. Motivated by the above discussions on the
phenomenology of DE based on observations, we define a
class of DE models that can simultaneously capture in its
parameter space both, transitions between negative and
positive energy densities, and non-monotonic behaviours
in its evolution. An omnipotent DE is any DE model
that is capable of incorporating all six combinations of
⇢DE < 0 and ⇢DE > 0 with wDE < �1, wDE = �1, and
wDE > �1 into a single expansion scenario for at least
one point in its parameter space. These six combinations
are summarized in Table I.

Finally, we briefly discuss the acceleration of an
expanding (ȧ > 0) universe in relevance with omnipo-
tent DE. The Friedmann equations in the presence
of only dust (⇢m > 0 with wm = 0) and DE read
3H2 = ⇢m + ⇢DE and ä

a
= � 1

6 [⇢m + (1 + 3wDE)⇢DE],
where we use 8⇡G = 1 and a dot denotes d/dt. From
the first Friedmann equation, a dynamical universe
(ȧ 6= 0) requires that ⇢m > �⇢DE. From the contri-
bution of the term relevant to the DE in the second
Friedmann equation, we see that, p-quintessence with
wDE < �1/3 or any p-phantom contributes positively to
the acceleration as familiar to all, but, there is an extra
scenario within our framework extended to negative DE
densities, that is, n-quintessence with wDE > �1/3 also
contribute positively to acceleration. However, recalling
that ⇢m > �⇢DE, while n-quintessence can contribute
positively to acceleration with wDE > �1/3, it can
result in ä > 0 only if 1 < � ⇢m

⇢DE
< 1 + 3wDE which

requires wDE > 0. It is important to note that this last
scenario is not relevant to the present-day accelerated
expansion4 since it would imply ⇢c0 < ⇢m0 (where
⇢c0 = 3H2

0 is the present-day critical energy density of
the universe) and result in an extremely small H0 value,
also it goes against the wDE ⇠ �1 consensus (although
the validity of this assumption is dubious for negative
energy densities). Thus, it is essential that if the DE
density attains negative values in the past, it should also
transit to the positive regime to drive the present-day
accelerated expansion. In the next section we investigate
a particular omnipotent DE model previously introduced
by Di Valentino, Mukherjee, and Sen in Ref. [72], and
dubbed phantom crossing or DMS20.

4
Still, an acceleration sourced by a negative DE density at earlier

times might be worthy of consideration.

III. DMS20 PARAMETRIZATION

In this section we first give a mathematical construc-
tion of an omnipotent DE model, namely, the DMS20
model, as it is introduced in Ref. [72], and then explore
its dynamical properties in detail. DMS20 parameterizes
⇢DE, such that it ensures an extremum at scale am that
satifies d⇢DE / da

��
a=am

= 0, and it proposes the follow-
ing expression for the DE density:

⇢DE(a) = ⇢DE0
1 + ↵(a� am)2 + �(a� am)3

1 + ↵(1� am)2 + �(1� am)3
, (2)

where ↵ and � are constants associated with the polyno-
mials of degree two and three — see Ref. [72] for details.
Notice the absence of polynomial of degree one as it van-
ishes (the associated coe�cient is null). It is important to
note the physical significance of am. The continuity equa-
tion, d⇢DE

da = � 3
a
(1 + wDE)⇢DE, implies wDE(am) = �1

provided that ⇢DE does not vanish at the extremum
a = am. Generically, am corresponds to a crossing of
the PDL; and particularly for ↵ > 0, it is a crossing
from wDE > �1 to wDE < �1 as the universe expands
(for ↵ < 0, it crosses in the opposite direction). More
generally, the EoS parameter corresponding to the DE
described in Eq. (2) reads

wDE(a) = �1� a[2↵(a� am) + 3�(a� am)2]

3[1 + ↵(a� am)2 + �(a� am)3]
(3)

by virtue of the continuity equation.
The DMS20 DE introduces three extra free parame-

ters on top of ⇤, say, {am,↵,�}; and, some features of
omnipotent DE may remain dormant for the DMS20 DE
depending on the values of these parameters in two dif-
ferent ways. First, it may be the case that some features
are completely absent; a trivial example is ↵ = � = 0 in
which case the DE reduces to ⇤. Second, it may happen
that these features are mathematically present in Eqs. (2)
and (3) but they are physically less relevant since they
happen at a > 1, i.e., in the future, or they are physically
irrelevant since they “happen” at a < 0, i.e., “before the
Big Bang”; two examples are am > 1 and am < 0 which
may correspond to, respectively, a PDL crossing that has
not happened yet and a virtual PDL crossing that never
happens. Fig. 1 presents a non-exhaustive collection of
qualitative scenarios sketching the potential behaviors
the DMS20 DE can describe.
Let us be more precise with the characteristics of the

DMS20 DE. The DE density in Eq. (2), being a cubic
function, has at least one and at most three distinct real
solutions to ⇢DE(a) = 0 — it is possible that no real
solutions exist when � = 0 in which case the density is
no more a cubic function. While it is possible that the
DE density tangentially touches zero from one side at
these roots for certain values of the parameters, generi-
cally they correspond to crossings between negative and
positive energy densities; see the yellow plot in the top
panel of Fig. 1 for which three distinct crossings exist in

An example: DMS20 parametrization, Di Valentino, Mukherjee 
& Sen, Entropy 2021, arXiv:2005.12587 10

FIG. 5. Functional posterior probability of the reconstruction by using a Binning scheme and w = w0. The probability as
normalised in each slice of constant z, with colour scale in confidence interval values. The 68% (1�) and 95% (2�) confidence
intervals are plotted as black lines. From left to right in the upper part: the reescalation function IQ(z), the Hubble Parameter,
the deceleration parameter and the e↵ective EoS parameter for DE. In the lower part: the e↵ective EoS parameter for DM, the
density for DM and DE respectively and the dimensionless interaction kernel ⇧DE. The dashed black line corresponds to the
standard ⇤CDM values and the dotted line in the ⇧DE(z) plot corresponds to the ⌦mH(z)2/H2

0 curve.

tional analysis and references therein for further reading.
This type of DE behavior was also predicted in a model-
independent manner in a recent study [119] that directly
reconstructed the DE density. Our findings here present
a noteworthy distinction with this recent study, as in the
current study we achieved a similar behavior by incor-
porating an interacting dark sector (dark matter+dark
energy) instead of employing a direct reconstruction of
the DE interacting only gravitationally. This observa-
tion holds significance as it indicates that the data sets
consistently favor (or at the very least allow for) a neg-
ative DE density for z & 2, irrespective of the method
employed. This finding, combined with the model’s po-
tential to address certain cosmological tensions (as ex-
tensively discussed in [63, 64]), emphasizes the notion
that this model emerges as a promising alternative to
the standard ⇤CDM model.

VI. CONCLUSIONS

Throughout this paper, we performed model-
independent reconstructions of the interaction kernel be-
tween DM and DE by implementing an interpolation
with both Gaussian Process and bins joined via hyper-
bolic tangents, using the SimpleMC code along with the
Nested Sampling algorithm. The main results showed

that particular features, such as oscillations are present,
but they remain still statistically consistent with the
⇤CDM model. By using these reconstructions some de-
rived functional posteriors were also obtained, which in-
herit the general characteristics of ⇧(z). These oscilla-
tory features can be more clearly observed through the
reescalation function introduced in [128], and it is worth
noting that similar shapes were also found in a model-
independent reconstruction in [126]; (see also [158], sug-
gesting that, in the relativistic cosmological models that
deviate from ⇤CDM, dark energies are expected to ex-
hibit such behaviors for the consistency with CMB data).
We noticed the Hubble parameter was slightly modified
in order to alleviate the tension created between low and
high redshift BAO data (reflected in the improvement
of the fit) which also causes a shift, to later times, for
the beginning of the acceleration epoch. When plot-
ting the functional posterior of the DE e↵ective EoS
parameter we observed a quintom-like behavior at low
redshift, with a preference zone of the 68% confidence
contour away from the ⇤CDM. Additionally, we observe
the presence of a pole at about z ⇠ 2.3 recovering a
shape with an asymptote, proposed and studied in other
works [62, 72, 119, 159, 160]. This particular shape is re-
quired when having a DE energy density that presents a
transition from positive to negative energy density or vice
versa. This transition is shown to be possible in the 68%
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high redshift BAO data (reflected in the improvement
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the beginning of the acceleration epoch. When plot-
ting the functional posterior of the DE e↵ective EoS
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FIG. 4. Functional posterior probability of the reconstruction by using a Binning scheme and w = �1. The probability as
normalised in each slice of constant z, with colour scale in confidence interval values. The 68% (1�) and 95% (2�) confidence
intervals are plotted as black lines. From left to right in the upper part: the reescalation function IQ(z), the Hubble Parameter,
the deceleration parameter and the e↵ective EoS parameter for DE. In the lower part: the e↵ective EoS parameter for DM, the
density for DM and DE respectively and the dimensionless interaction kernel ⇧DE. The dashed black line corresponds to the
standard ⇤CDM values and the dotted line in the ⇧DE(z) plot corresponds to the ⌦mH(z)2/H2

0 curve.

also see from the marginalized 1D posteriors that the
parameter ⇧4 is loosely constrained when using GP but
unconstrained with bins. This di↵erent behavior could
be attributed to the slight correlation imposed by the
GP method, but also when w0 is allowed to vary we see
it is correlated with ⇧4, and at the same time ⇧4 is corre-
lated with ⇧1 which is also constrained. ⇧5 is completely
unconstrained in all cases, but this was expected given
the lack of data in this region (z > 2.4). Despite the
significant findings presented above, it should be noted
that the standard ⇤CDM model still remains a viable
option within the 2� confidence level, which means that
we cannot definitely exclude it with the data we used
in this study, and we need additional and more precise
data sets to be able to say anything solid about this pos-
sibility. Let us continue with a brief discussion of the
di↵erences and similarities between the findings from the
two di↵erent reconstruction approaches we used. For in-
stance, it can be easily seen that certain characteristics
are more evident in the GP reconstruction than in the
binning method. This discrepancy could be attributed
to the inherent correlations existing within GP among
nodes, a correlation that is subtly reflected in the confi-
dence contours shown in Fig. 6. These correlations seem
to favor the GP approach, which is evidenced by a better
fit of this approach to the data as can be seen in Table II.
To reconcile these discrepancies among the approaches,

a straightforward solution involves increasing the num-
ber of parameters, thereby achieving higher resolution.
Nonetheless, this approach introduces the challenge of
potential overfitting of specific characteristics and un-
derfitting of others. To counterbalance this trade-o↵, we
may need to incorporate a correlation function into the
the binning method [119, 157], but the consideration of
this is beyond the scope of the present work although it
might be a promising direction for future investigations.
It seems reasonable to conclude from this discussion that
some of the observed features may be influenced by the
chosen reconstruction method, but certain general char-
acteristics persist regardless of the approach. These en-
during traits include the oscillatory behavior at 1�, the
asymptotic behavior of the e↵ective EoS and the possi-
bility of a transition to a negative DE density.

We conclude this section by commenting on one of the
most interesting findings of our study, the possibility of
the existence of a DE that can take negative density val-
ues at high redshifts (viz., for z & 2), regardless of the
approach used. Although this possibility may seem phys-
ically unexpected and challenging, it is not a new find-
ing in our study and has been studied in the previous
literature, especially recently, to address the cosmolog-
ical tensions such as the H0 and S8 tensions; see, for
instance, Refs. [60, 62–64, 66] considering models that
suggest such a transition at z ⇠ 2 from their observa-
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to favor the GP approach, which is evidenced by a better
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Nonetheless, this approach introduces the challenge of
potential overfitting of specific characteristics and un-
derfitting of others. To counterbalance this trade-o↵, we
may need to incorporate a correlation function into the
the binning method [119, 157], but the consideration of
this is beyond the scope of the present work although it
might be a promising direction for future investigations.
It seems reasonable to conclude from this discussion that
some of the observed features may be influenced by the
chosen reconstruction method, but certain general char-
acteristics persist regardless of the approach. These en-
during traits include the oscillatory behavior at 1�, the
asymptotic behavior of the e↵ective EoS and the possi-
bility of a transition to a negative DE density.

We conclude this section by commenting on one of the
most interesting findings of our study, the possibility of
the existence of a DE that can take negative density val-
ues at high redshifts (viz., for z & 2), regardless of the
approach used. Although this possibility may seem phys-
ically unexpected and challenging, it is not a new find-
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literature, especially recently, to address the cosmolog-
ical tensions such as the H0 and S8 tensions; see, for
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suggest such a transition at z ⇠ 2 from their observa-
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FIG. 3. Functional posterior probability of the reconstruction by using a Gaussian Process and w = w0. The probability as
normalised in each slice of constant z, with colour scale in confidence interval values. The 68% (1�) and 95% (2�) confidence
intervals are plotted as black lines. From left to right in the upper part: the reescalation function IQ(z), the Hubble Parameter,
the deceleration parameter and the e↵ective EoS parameter for DE. In the lower part: the e↵ective EoS parameter for DM, the
density for DM and DE respectively and the dimensionless interaction kernel ⇧DE. The dashed black line corresponds to the
standard ⇤CDM values and the dotted line in the ⇧DE(z) plot corresponds to the ⌦mH(z)2/H2
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ficult to spot than in the one performed using GP; the
results of the two cases, with fixed or varying EoS pa-
rameter, are very similar to each other. As far as the re-
constructed derived features, we have a similar behavior
to that found with GP. The re-escalation function IQ(z),
for example presents some oscillatory-like behavior, that
is less pronounced than the GP case, but lacks the first
peak at redshift z ⇠ 0.5. The Hubble parameter presents
a horizontal flat region (darker green). However, due to
the larger confidence contours, it causes the existence of
a region where the deceleration parameter equals zero,
z ⇠ 0.5 � 1.2. Finally, the e↵ective DE EoS parameter
presents again a pole, but in this case closer to z = 2,
which indicates that the DE density, or ⇢DE(z)/⇢c,0, is al-
lowed to transit to negative values; and the e↵ective DM
EoS parameter shows deviations from zero at more than
1� level. These similar behaviors were expected as both
model-independent reconstructions have similar degrees
of freedom and the demeanor in which the nodes/bins
are interpolated also have some visual similarities (as
seen in Fig. 1 depending on the smoothness of the bins).
However, it is crucial to emphasize here that while their
similarities are noteworthy, their di↵erences are of equal
importance. We will discuss this point in more detail at
the end of this section.

In Table II we have the mean values and standard de-
viations for our parameter estimation procedure. Every

model-independent reconstruction, regardless of its im-
provement in the fit of the data, presents a worse Bayes’
Factor when compared to ⇤CDM, because additional de-
grees of freedom are penalized by the Occam’s razor prin-
ciple. In Fig. 6 we plot the 1D and 2D marginalized
posteriors of the parameters corresponding to ⇧(z) and
in Table III we report their constraints at 68% CL, where
the error is shown in parenthesis. The parameter ⇧1,
which is located in z = 0 for GP, is clearly better con-
strained when taking w = �1, although its constraint
is around ⇧1 = 0, which indicates that, without a vari-
able EoS parameter, it is pretty much forced to behave
as ⇤CDM at low redshifts.

When allowing variations on w0, we note a separation
from a ⇤CDM-like behavior of around 1.5� in ⇧1 for GP.
In contrast, when using bins this parameter is well con-
strained with or without a varying w0. This happens
because each bin spans a range (�z = 0.6 in this case)
and, specifically the first bin, is fitting all the available
data in 0 < z < 0.6 with a single step function making it
very constrained, unlike its GP counterpart which uses
both ⇧1 and ⇧2 (interpolated in 0 < z < 0.75). Another
interesting observation is that the restriction in ⇧1 is re-
flected in the posterior of w0, allowing it to be higher than
�1 and presenting a negative correlation with ⇧1 when
using GP. The parameter ⇧3 on the other hand, appears
to be more constrained with GP than with bins. We can
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density for DM and DE respectively and the dimensionless interaction kernel ⇧DE. The dashed black line corresponds to the
standard ⇤CDM values and the dotted line in the ⇧DE(z) plot corresponds to the ⌦mH(z)2/H2
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grees of freedom are penalized by the Occam’s razor prin-
ciple. In Fig. 6 we plot the 1D and 2D marginalized
posteriors of the parameters corresponding to ⇧(z) and
in Table III we report their constraints at 68% CL, where
the error is shown in parenthesis. The parameter ⇧1,
which is located in z = 0 for GP, is clearly better con-
strained when taking w = �1, although its constraint
is around ⇧1 = 0, which indicates that, without a vari-
able EoS parameter, it is pretty much forced to behave
as ⇤CDM at low redshifts.

When allowing variations on w0, we note a separation
from a ⇤CDM-like behavior of around 1.5� in ⇧1 for GP.
In contrast, when using bins this parameter is well con-
strained with or without a varying w0. This happens
because each bin spans a range (�z = 0.6 in this case)
and, specifically the first bin, is fitting all the available
data in 0 < z < 0.6 with a single step function making it
very constrained, unlike its GP counterpart which uses
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with � = sgn(ã2), so that �1 < ã2 < 1, trading a2 for
a new ã2 covering the whole real line. We also redefine
the lapse function as

Ñ2 = �N2. (10)

Then, in terms of the new variables, the metric is

ds2 = sÑ2 dt2 + ã2 h0
ijdx

idxj (11)

which might be seen as a more economical parametrisa-
tion than (4), and (8) becomes

S =
3Vc

8⇡G

Z
dt

 
˙̃bã2 � Ñ ã

 
sb̃2 � k +

⇤̃

3
ã2
!!

(12)

with b̃ = �b and ⇤̃ = �⇤. Hamilton’s equations are

˙̃b = Ñ ã
⇤̃

3
, (13)

(ã2)· = �2Ñ ã sb̃. (14)

For Ñ2 < 0 (ã2 < 0), the quantity Ñ (ã) requires a choice
of complex square root (see Sec. VI); we have made a
choice in replacing Na by Ñ ã (rather than �Ñ ã). More-
over, ⇤̃ is no longer a fixed constant but changes sign
according to

⇤̃ = sgn(ã2)⇤ . (15)

In terms of ⇤̃, Lorentzian dS in “mostly plus” signature
has ⇤̃ > 0 but in “mostly minus” signature has ⇤̃ < 0.
This simply reflects our chosen assumptions for how ⇤
changes with changing signature. Had we started with
the opposite convention, i.e., ⇤ > 0 with “mostly minus”
signature gives Lorentzian AdS, ⇤̃ would be constant.

In general, ⇤̃ is locally constant in each region in which
the metric is non-degenerate, but can flip sign in passing
through a boundary of degenerate metric. We can use
this freedom to choose ⇤ as a general function of the
signature parameters � or s,

⇤ = ⇤(�, s) . (16)

Through the contracted Bianchi identities, the Einstein
equations imply

@µ(�⇤) = 0 (17)

whenever the Einstein equations are well-defined. At the
boundaries with degenerate metric, curvature tensors are
not defined and there are no Einstein equations imposing
such a restriction.

At the level of minisuperspace (12), the consistency
condition on ⇤̃ is obtained by taking the time derivative
of the Hamiltonian constraint and using the equations of
motion:

˙̃⇤ ã2 = 0 . (18)

Again this shows that ⇤̃ needs to be constant away from
degenerate points ã2 = 0.
The prescription of constant ⇤̃, which is the one we will

use below and the one also appearing in the quantum
cosmology literature [15], is evidently compatible with
the Bianchi identities in any case.

III. SIGNATURE CHANGE IN
EINSTEIN–CARTAN FORMALISM

To understand better the implications of the previous
Section, we now consider how it fits into the first order
formulation (in whatever guise) which allows for topol-
ogy and signature change even at the classical level [1].
For definiteness we take the Einstein–Cartan formalism.
The space-time metric is defined in terms of the tetrad
eaµ by gµ⌫ = ⌘abeaµe

b
⌫ , where by convention we put

the signature s and flip � into the tangent-space met-
ric ⌘ab = diag[�(s + ++)] rather than the tetrad. The
Levi-Civita symbol remains the same for ✏abcd, but ver-
sions with raised indices need to be adapted accordingly.
Then, the action for gravity with a cosmological constant
is

SG =
1

32⇡G

Z
✏abcd

✓
�eaebRcd � ⇤

6
eaebeced

◆
(19)

where Rab is the curvature 2-form associated to a connec-
tion �a

b. Under the usual conditions (zero torsion and
non-degeneracy of the metric) this action reduces to (1).
The flip � remains a notational nuisance without any

physical e↵ect until we realize that in the first-order for-
malism the signature can change across surfaces with de-
generate metric. In tandem with this, ⇤ (as defined by
any convention, e.g. (1) or (19)) can change sign and
value across such boundaries, indeed it can be any func-
tion ⇤ = ⇤(�, s). Each of these functions leads to physi-
cally di↵erent theories. To see how this is possible, con-
sider the equations of motion following from (19),

✏abcd
⇣
ebRcd � �

3
⇤ebeced

⌘
= 0 , (20)

T [aeb] = 0 . (21)

Usually the Bianchi identity DR = 0 forces ⇤ to be con-
stant; however, (setting the torsion to zero; see [16–18])
we have

✏abcde
becedd(�⇤) = 0 (22)

so that �⇤ can vary across surfaces where the tetrad
is degenerate, such as a 3-surface where at least one of
the tangent tetrads is zero, as is often the case in (not
necessarily isotropic) cosmology. Again, any prescription
⇤ = ⇤(�, s) seems consistent. Since s and � are scalars
this does not break di↵eomorphism invariance.

The meaning of imaginary space (Alexandre, Gielen & Magueijo arXiv:2306.11502)

Constructing 4D ΛsCDM models from the presence higher dimensions (Akarsu, Bulduk, Katırcı, 
Özülker, Perivolaropoulos, in progress)

They show that  a classical metric signature change across boundaries with a degenerate metric in different formulations of 
general relativity allows for classical solutions where the open dS patch can arise from a portion of AdS space time. 
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Robertson-Walker (RW) metric

ds
2 = �dt

2+a
2(t)

dx
2
1 + dx

2
2 + dx

2
3⇥

1 + kext
4 (x2

1 + x
2
2 + x

2
3)
⇤2

+s
2(t)

dy
2
1 + ...+ dy

2
n⇥

1 + kint
4 (y21 + ...+ y2

n
)
⇤2 .

(3)

Here a(t) is the scale factor, kext is the curvature index
of the 3-dimensional external space and s(t) is the scale
factor, kint is the curvature index of the n-dimensional
internal space where n = 1, 2, 3, ... is the number of the
internal dimensions.

The curvature indices kext(int) < 0, kext(int) = 0 and
kext(int) > 0 correspond to spatially open, flat, and
closed universes, respectively. We note that the manifold
R ⇥ M

3 is equipped with the usual Robertson-Walker
metric and M

3 can be either open, flat or closed, respec-
tively. On the other hand, it is important that the inter-
nal space is compact since we require internal space to
yield finite volume. It is known that there are non-trivial
global topologies that are compact for any sign of the sec-
tional curvature. In the case kint > 1 the n-dimensional
space is n-sphere (Kn = S

n), in the case kint = 0 the most
simple example for a compact n-dimensional space is the
n-dimensional torus (Kn = T

n). We note that we also
consider negative constant sectional curvature kint < 1
(hyperbolic geometry) for the internal space. Such spaces
are also compact if they have a quotient structure such
that K

n = H
n
/�, where H

n and � are n-dimensional
hyperbolic space and its discrete isometry group, respec-
tively. In the following we shall refer to the cases as the
open, flat and closed internal space in accordance with
the common usage in cosmology.

We describe the (1 + 3 + n)-dimensional fluid with
an energy-momentum tensor (EMT) that yields distinct
pressures in the external and internal spaces:

T̃
⌫

µ
= diag[�⇢̃, p̃ext, p̃ext, p̃ext, p̃int, ..., p̃int] (4)

where ⇢̃ is the energy density, p̃ext and p̃int are the pres-
sures that are associated with the external and internal
dimensions, respectively. In fact, this is the most general
form of the EMT that can be used for describing a fluid
at rest in comoving coordinates, i.e. whose (1 + 3 + n)-
velocity is u

µ = (1, 0, 0, ...), within the framework of the
spacetime defined by the metric (3). Since we do not
know the nature of the physical ingredients of the higher
dimensional universe, we conveniently allow the possibil-
ity of an EMT with distinct and dynamical pressures in
the external and internal spaces.

Einstein’s field equations (1) for the metric (3) in the
presence of the EMT given by (4) lead to the following
system of differential equations

3
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ṡ
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s2

i
= �̃p̃int + ⇤̃. (7)

Correspondingly the continuity equation for the (1+ 3+
n)-dimensional fluid is follows:

˙̃⇢+

✓
3
ȧ

a
+ n

ṡ

s

◆
⇢̃+ 3

ȧ

a
p̃ext + n

ṡ

s
p̃int = 0. (8)

A. Static internal dimensions

We study a higher dimensional geometric extension of
the ⇤CDM model we assume external space is flat and
internal space is static. For a static internal space, s =
const, it is necessary to simultaneously demand ṡ = s̈ = 0
in the Einstein field equations Eqs. (5)-(7), accordingly,
assuming external space is flat kext = 0, we have the
following set of equations;
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where the internal space curvature has the same con-
stant contribution to ⇤̃ in (9) and (10) acting exact cos-
mological constant with w = �1 in 1 + 3 dimension for
n 2 N \ {0, 1} as

�̃ = ⇤̃�
n(n� 1)

2

kint

s2

w̃�̃ = {�1,�1,�1,�1 +
2

n
,�1 +

2

n
, ...}

(12)

whereas the contribution of internal space curvature
anisotropies (1 + 3 + n) dimensional cosmological term
with a factor of �1 + 2/n in (11). This is interesting in
that infinite number of higher dimension limit n ! 1,
this factor tends to zero, it approximates cosmological
constant EoS, w ! {�1,�1,�1,�1,�1, ...} and Zel-
dovich (stiff) fluid (p = ⇢) which is the most rigid EoS
compatible with the requirements of relativity [18] re-
quires n > 1.

The similar structure discussed in [17], such that ge-
ometrical terms makes dark energy dynamical and di-
rection dependent, as in the dynamics of the Jordan

2

we can instead use the linearized conservation equation

�̇ + 3(1 + wext)�̇ext + n(1 + wint)�̇int = 0. (7)

which eq. (7) yields

� = C � 3�e �
n

2
�i. (8)

II. THE MODEL

As the theory of gravitation, we consider the extension of the conventional general theory

of relativity with a cosmological constant defined in 4-dimensional spacetime to (1+3+n)–

dimensional spacetime while preserving its mathematical structure;

R̃µ⌫ �
1

2
g̃µ⌫R̃� ⇤̃g̃µ⌫ = ̃T̃µ⌫ . (9)

where the indices µ, ⌫ run through 0, 1, ..., n + 4 and 0 is reserved for the cosmic (proper)

time t. R̃µ⌫ , R̃, and g̃µ⌫ are, respectively, the Ricci tensor, Ricci scalar, and the metric tensor

of the (1 + 3 + n)–dimensional spacetime. Here ̃ = 8⇡G̃ with G̃ being the (1 + 3 + n)–

dimensional gravitational coupling constant and ⇤̃ is a (1+3+n)–dimensional cosmological

constant.

We consider (1 + 3 + n)-dimensional spacetime manifold with product topology

M
1+3+n = R⇥M

3
⇥K

n
, (10)

where R is the manifold of time, M3 is the manifold of 3-dimensional external space that

represents the space we observe and K
n is the manifold of the n-dimensional compact internal

space that may be so small to be observed directly and locally. We define, on this manifold,

a spatially homogenous but not necessarily isotropic (1 + 3 + n)-dimensional synchronous

spacetime metric that involves 3-dimensional external space with constant curvature for M3

and n-dimensional internal space with constant curvature for K
n:
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Some theoretical realizations…?

3

scalar, dynamics of internal dimensions contribute to
effective energy-momentum source in the four dimen-
sional universe appears if anisotropy is allowed in the
external dimensions, although the isotropic pressures,
p̃x = p̃y = p̃z = p̃ext, are taken in the energy momentum
tensor of the external space. In [16], it was shown that
dynamics of internal dimensions are able depart from
isotropic pressures, anisotropy disappears if it static, but
we see that anisotropy is inevitable if the internal space
is spatially curved.

Eq. (8) reduces to

˙̃⇢+ 3
ȧ

a
(⇢̃+ p̃ext) = 0, (13)

considering

T̃
⌫

µ
= diag[�1, w̃ext, w̃ext, w̃ext, w̃int, ..., w̃int]⇢̃, (14)

where w̃ext = p̃ext/⇢̃ and w̃int = p̃int/⇢̃ are equation of
state (EoS) parameters of the fluid which yields in exter-
nal and internal spaces which has energy density

⇢̃ / e
�3

R
(1+w̃ext)d ln a

. (15)

Using these, it turns out that it is necessary that the
higher dimensional fluid satisfies the following property

⇢̃(1 + 2w̃int � 3w̃ext) =
(n� 1)(n+ 2)

̃

kint

s2⇤
� 2

⇤̃

̃
, (16)

to have static internal dimensions.
For post matter-radiation equality epoch, we assume

w̃ext = 0 giving ⇢̃m = ⇢̃m0a
�3 as in the usual (1 + 3)-

dimensional GR. However, we note that static internal
space requires

w̃int = �
1

2
+

 
(n� 1)(n+ 2)

2̃

kint

s2⇤
�

⇤̃

̃

!
a
3

⇢m0
. (17)

For small a values, say, in the early matter dominated,
a ! 0

w̃ext = 0, w̃int ! �
1

2
. (18)

It is remarkable that the only perfect fluid which, on the
one hand, has the dust-like EoS in the external (observ-
able) and, on the other hand, does not spoil the internal
space stabilization, is the perfect fluid with the param-
eter of EoS in the internal space wi = �1/2. That is,
it corresponds to the black strings/branes. This is the
cosmological aspect of the black strings/branes.

The black strings/branes are compact gravitat-
ing objects which have topology (four-dimensional
Schwarzschild spacetime) ⇥ (d-dimensional internal
space) with d � 1, d = 1 and d � 2 in the cases
of the black strings and black branes, correspondingly.
They have the dust-like EoS in the external space, viz.
w̃ext ⌘ p̃ext/⇢̃ = 0 and w̃int ⌘ p̃int/⇢̃ = �1/2 in the in-
ternal space. In [4],it has been obtained the metric coef-
ficients in the weak-field limit in the case of the Einstein

internal space (flat or curved). The advantages of the
black strings/branes are the following: (i) these multidi-
mensional astrophysical objects satisfy the gravitational
tests for the PPN parameter � at the same level of ac-
curacy as GR [5], (ii) they are preferable from the ther-
modynamical point of view [6]. It is well known that
compact nonrelativistic astrophysical objects such as our
Sun have the dust-like EoS since the pressure inside them
is much less than the energy density. In [6] it has been
shown that in the case of multidimensional models the
gravitating masses acquire effective relativistic pressure
in the external space. Certainly, such pressure contra-
dicts the observations. The equality w̃int = �1/2 (i.e.
tension) is the only possibility to preserve the dust-like
equation of state in the external space. These two points
are the astrophysical aspects of the black strings/branes.
The third point is connected with the cosmological as-
pect. We know that the stabilization of the compact
internal space is a necessary condition to be in agree-
ment with observations (e.g., it provides the absence of
the fifth force) [5]. This stabilization should be preserved
in the presence of the gravitating masses, which are the
black strings/branes. These objects, gathering in galax-
ies and groups of galaxies, form the large scale structure
of the Universe. At sufficiently large scales the Universe
looks isotropic and homogeneous and matter in it can be
considered in the form of a perfect fluid. In the realistic
models this perfect fluid corresponds to the CDM with
the dust-like EoS. It is remarkable that the only perfect
fluid which, on the one hand, has the dust-like EoS in the
external/our space and, on the other hand, does not spoil
the internal space stabilization, is the perfect fluid with
the parameter of EoS in the internal space w̃int = �1/2.
That is, it corresponds to the black strings/branes. This
is the cosmological aspect of the black strings/branes.

III. STABILITY IN THE PRESENCE STATIC
INTERNAL SPACE

We check the stability of this solution considering lin-
ear perturbations �ext(t), �int(t) and �(t) about the back-
grounds

a(t) = a(t)[1 + �ext(t)], (19)
s(t) = s(t)[1 + �int(t)], (20)
%̃(t) = ⇢̃(t)[1 + �(t)], (21)

respectively. Using definition given in (37) from (9), the
Hubble parameter of the external space background is
defined as

Hext =
ȧ

a
=

r
�̃+ ̃⇢̃

3
, (22)

and Hint ⌘ ṡ/s is written for the internal space, the gen-
eral perturbed modified Friedmann and continuity equa-
tions are:
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eter of EoS in the internal space wi = �1/2. That is,
it corresponds to the black strings/branes. This is the
cosmological aspect of the black strings/branes.

The black strings/branes are compact gravitat-
ing objects which have topology (four-dimensional
Schwarzschild spacetime) ⇥ (d-dimensional internal
space) with d � 1, d = 1 and d � 2 in the cases
of the black strings and black branes, correspondingly.
They have the dust-like EoS in the external space, viz.
w̃ext ⌘ p̃ext/⇢̃ = 0 and w̃int ⌘ p̃int/⇢̃ = �1/2 in the in-
ternal space. In [4],it has been obtained the metric coef-
ficients in the weak-field limit in the case of the Einstein

internal space (flat or curved). The advantages of the
black strings/branes are the following: (i) these multidi-
mensional astrophysical objects satisfy the gravitational
tests for the PPN parameter � at the same level of ac-
curacy as GR [5], (ii) they are preferable from the ther-
modynamical point of view [6]. It is well known that
compact nonrelativistic astrophysical objects such as our
Sun have the dust-like EoS since the pressure inside them
is much less than the energy density. In [6] it has been
shown that in the case of multidimensional models the
gravitating masses acquire effective relativistic pressure
in the external space. Certainly, such pressure contra-
dicts the observations. The equality w̃int = �1/2 (i.e.
tension) is the only possibility to preserve the dust-like
equation of state in the external space. These two points
are the astrophysical aspects of the black strings/branes.
The third point is connected with the cosmological as-
pect. We know that the stabilization of the compact
internal space is a necessary condition to be in agree-
ment with observations (e.g., it provides the absence of
the fifth force) [5]. This stabilization should be preserved
in the presence of the gravitating masses, which are the
black strings/branes. These objects, gathering in galax-
ies and groups of galaxies, form the large scale structure
of the Universe. At sufficiently large scales the Universe
looks isotropic and homogeneous and matter in it can be
considered in the form of a perfect fluid. In the realistic
models this perfect fluid corresponds to the CDM with
the dust-like EoS. It is remarkable that the only perfect
fluid which, on the one hand, has the dust-like EoS in the
external/our space and, on the other hand, does not spoil
the internal space stabilization, is the perfect fluid with
the parameter of EoS in the internal space w̃int = �1/2.
That is, it corresponds to the black strings/branes. This
is the cosmological aspect of the black strings/branes.

III. STABILITY IN THE PRESENCE STATIC
INTERNAL SPACE

We check the stability of this solution considering lin-
ear perturbations �ext(t), �int(t) and �(t) about the back-
grounds

a(t) = a(t)[1 + �ext(t)], (19)
s(t) = s(t)[1 + �int(t)], (20)
%̃(t) = ⇢̃(t)[1 + �(t)], (21)

respectively. Using definition given in (37) from (9), the
Hubble parameter of the external space background is
defined as

Hext =
ȧ

a
=

r
�̃+ ̃⇢̃

3
, (22)

and Hint ⌘ ṡ/s is written for the internal space, the gen-
eral perturbed modified Friedmann and continuity equa-
tions are:
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By the same way, the dependence of internal EoS to
scale factor of internal space brings a sudden change in
internal EoS. Substituting ⇤̃ from (50)-(51) in (17), we
obtain

w̃int = �
1

2
+

✓
n� 1

̃

kint

s2⇤
�

�̃⇤
̃

◆
a
3

⇢̃m0
, (54)

where the star sign(⇤) can take 0 and p values, and the
special case is

w̃i = �
1

2
provided that s⇤ =

s
kint(n� 1)

�̃⇤
, (55)

where we have known �̃0 > 0 from observations, thereby
requiring kint > 0 closed internal space, which is unstable
for z < z† corresponding to ⇤̃ = (n� 1)(n+ 2)kint

2s20
. This

may means that for ⇤CDM model, there may be a scale
factor dependence correction may come to the exact value
of wi = �

1
2 .

As can be seen above, in (1 + 3 + n)–dimensional
spacetime the spontaneous change in scale factor of n-
dimensional internal space affects internal space depen-
dent physical elements such as internal EoS w̃int, effective
Newton’s constant G4D and effective cosmological con-
stant �̃. To figure out results easier, we can focus on the
cases of transition in one physical element, which is ef-
fective cosmological constant �̃. There are three options:
A.Sign switch �̃p = ��̃0, B. Sudden disappearance of
⇤ in the past: �̃p = 0 and C. General solution ⇤sCDM
solution.

A. Sign switch: �̃p = ��̃0

In this case from (50) and (51), we obtain (1+ 3+n)–
dimensional cosmological constant as

⇤̃ =
n(n� 1)

4
kint(s

�2
p + s

�2
0 ), (56)

which is important because it says that if ⇤̃ < 0 as sug-
gested by string theories than kint should be negative.
And if ⇤̃ > 0 as suggested by QFT that kint should
be positive. More interestingly we have shown that the
model is stable if kint < 0, which is the case consistent
with string theory. In contrast to a positive cosmolog-
ical constant [19, 20], a negative cosmological constant
is not only ubiquitous in the fundamental theoretical
physics without any complication, but also a theoretical
sweet spot; an anti-de Sitter (AdS) background, provided
by a negative cosmological constant, is welcome due to
the celebrated AdS/CFT (conformal field theory) corre-
spondence [21] and is preferred by string theory (which
requires the presence of extra dimensions) and string-
theory-motivated supergravities [22]. In [16], it was also
shown that the shear scalar of the external space resem-
bles a negative cosmological constant. And now, we again

conclude that the cosmological constant ⇤̃ should be neg-
ative and internal space is open, kint < 0 to have a stable
static internal space.

Cosmological constant can be effectively suddenly
switches sign, if the scale of internal dimension changes
as

sp = s0

s
⇤̃� �̃0

�̃0 + ⇤̃
, leading G4Dp = G4D0

 
⇤̃� �̃0

�̃0 + ⇤̃

!�n/2

,

(57)
where the square-root requires due to real values of physi-
cal variables sgn

⇣
⇤̃� �̃0

⌘
= sgn

⇣
�̃0 + ⇤̃

⌘
so this brings

⇤̃ < (>)0 with |⇤̃| > |�̃0|. Taylor expansion of f(x) = x
r
2

up to first order around x = 1 with x = ⇤̃��̃0

�̃0+⇤̃
is

f(x) ⇡ 1 + r

2 (x � 1) = 1 � r

⇣
�̃0

�̃0+⇤̃

⌘
, thus, for a small

change in G4D, we can write

sp ⇡ s0 � s0

✓
�̃0

�̃0 + ⇤̃

◆
,

G4Dp ⇡G4D0 + nG4D0

✓
�̃0

�̃0 + ⇤̃

◆
,

(58)

giving

�s

s0
⇡

�̃0

�̃0 + ⇤̃
and

�G4D

G4D0
⇡ �

n�̃0

�̃0 + ⇤̃
, (59)

where �s = s0 � sp, and �G4D = G4D0 �G4Dp.
We measure �̃0 ⇠ 2.9⇥10�122

l
�2
Planck from cosmological

observations and ⇤QFT ⇠ l
�2
Planck.

• Then, we assume ⇤̃ = ⇤QFT, then it turns out that
sp ⇡ s0, G4Dp ⇡ G4D0, namely, �s

s0
⇠ 2.9⇥ 10�122

and �G4D
G4D0

⇠ �2.9n ⇥ 10�122, and kint

s
2
0

⇠
2⇤QFT

n(n�1) ,
and therefore in this scenario kint should be positive
which gives unstable solutions.

• we can also assume �G4D
G4D0

= u where u � 0, then
it turns out that ⇤̃ = �(1 + n/u)�̃0, which in
turn implies �s

s0
= �

u

n
, and kint

s
2
0

= �2 (2+n/u)�̃0

n(n�1) =

2 (2+n/u)⇤̃
(1+n/u)n(n�1) , and therefore in this scenario kint

should be negative (since we know �̃0 is positive)
and moreover it predicts that ⇤ should be negative
in consistency with string theory.

B. Sudden disappearance of ⇤ in the past: �̃p = 0

With a sudden change of the scale of internal dimen-
sions as follows:

sp = s0

r
1�

�̃0

⇤̃
leading G4Dp = G4D0

✓
1�

�̃0

⇤̃

◆�n/2

(60)

(Stability condition)

(black strings/branes) Akarsu, Chopovsky, Zhuk, PLB 2018, arXiv:1711.08372: Satisfy the 
gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy 
as GR. Preferable from the thermodynamical point of view. Averaging over the Universe, they do 
not destroy the stabilization of the internal space. 
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2
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2
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1 + kint
4 (y21 + ...+ y2

n
)
⇤2 .

(3)

Here a(t) is the scale factor, kext is the curvature index
of the 3-dimensional external space and s(t) is the scale
factor, kint is the curvature index of the n-dimensional
internal space where n = 1, 2, 3, ... is the number of the
internal dimensions.

The curvature indices kext(int) < 0, kext(int) = 0 and
kext(int) > 0 correspond to spatially open, flat, and
closed universes, respectively. We note that the manifold
R ⇥ M

3 is equipped with the usual Robertson-Walker
metric and M

3 can be either open, flat or closed, respec-
tively. On the other hand, it is important that the inter-
nal space is compact since we require internal space to
yield finite volume. It is known that there are non-trivial
global topologies that are compact for any sign of the sec-
tional curvature. In the case kint > 1 the n-dimensional
space is n-sphere (Kn = S

n), in the case kint = 0 the most
simple example for a compact n-dimensional space is the
n-dimensional torus (Kn = T

n). We note that we also
consider negative constant sectional curvature kint < 1
(hyperbolic geometry) for the internal space. Such spaces
are also compact if they have a quotient structure such
that K

n = H
n
/�, where H

n and � are n-dimensional
hyperbolic space and its discrete isometry group, respec-
tively. In the following we shall refer to the cases as the
open, flat and closed internal space in accordance with
the common usage in cosmology.

We describe the (1 + 3 + n)-dimensional fluid with
an energy-momentum tensor (EMT) that yields distinct
pressures in the external and internal spaces:

T̃
⌫

µ
= diag[�⇢̃, p̃ext, p̃ext, p̃ext, p̃int, ..., p̃int], (4)

where ⇢̃ is the energy density, p̃ext and p̃int are the pres-
sures that are associated with the external and internal
dimensions, respectively. In fact, this is the most general
form of the EMT that can be used for describing a fluid
at rest in comoving coordinates, i.e. whose (1 + 3 + n)-
velocity is u

µ = (1, 0, 0, ...), within the framework of the
spacetime defined by the metric (3). Since we do not
know the nature of the physical ingredients of the higher
dimensional universe, we conveniently allow the possibil-
ity of an EMT with distinct and dynamical pressures in
the external and internal spaces.

Einstein’s field equations (1) for the metric (3) in the
presence of the EMT given by (4) lead to the following
system of differential equations
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ȧ
2

a2
+

kext

a2

�
+

1

2
n(n�1)


ṡ
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(6)

and

3
h
ä

a
+ ȧ

2

a2 + kext
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i
+ (n� 1)

⇥
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s
+ 3 ȧ

a

ṡ

s

⇤

+ 1
2 (n� 1)(n� 2)

h
ṡ
2

s2
+ kint

s2

i
= �̃p̃int + ⇤̃. (7)

Correspondingly the continuity equation for the (1+ 3+
n)-dimensional fluid is follows:

˙̃⇢+

✓
3
ȧ

a
+ n

ṡ

s

◆
⇢̃+ 3

ȧ

a
p̃ext + n

ṡ

s
p̃int = 0. (8)

A. Static internal dimensions

We study a higher dimensional geometric extension of
the ⇤CDM model we assume external space is flat and
internal space is static. For a static internal space, s =
s⇤ = const, it is necessary to simultaneously demand
ṡ = s̈ = 0 in the Einstein field equations Eqs. (5)-(7),
accordingly, assuming external space is flat kext = 0, we
have the following set of equations;
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ȧ
2

a2
+ 2

ä
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kint

s2⇤
� ⇤̃ = �̃p̃int, (11)

where the internal space curvature has the same con-
stant contribution to ⇤̃ in (9) and (10) acting exact cos-
mological constant with w = �1 in 1 + 3 dimension for
n 2 N \ {0, 1} as

�̃ = ⇤̃�
n(n� 1)

2

kint

s2⇤
,

w̃�̃ =

⇢
�1,�1,�1,�1 +

2

n
,�1 +

2

n
, ...

�
,

(12)

whereas the contribution of internal space curvature
anisotropies (1 + 3 + n) dimensional cosmological term
with a factor of �1 + 2/n in (11). This is interesting in
that infinite number of higher dimension limit n ! 1,
this factor tends to zero, it approximates cosmological
constant EoS, w̃�̃ ! {�1,�1,�1,�1,�1, ...} and Zel-
dovich (stiff) fluid (p = ⇢) which is the most rigid EoS
compatible with the requirements of relativity [18] re-
quires n > 1.

The similar structure discussed in [17], such that ge-
ometrical terms makes dark energy dynamical and di-
rection dependent, as in the dynamics of the Jordan

3

scalar, dynamics of internal dimensions contribute to
effective energy-momentum source in the four dimen-
sional universe appears if anisotropy is allowed in the
external dimensions, although the isotropic pressures,
p̃x = p̃y = p̃z = p̃ext, are taken in the energy momentum
tensor of the external space. In [16], it was shown that
dynamics of internal dimensions are able depart from
isotropic pressures, anisotropy disappears if it static, but
we see that anisotropy is inevitable if the internal space
is spatially curved.

Eq. (8) reduces to

˙̃⇢+ 3
ȧ

a
(⇢̃+ p̃ext) = 0, (13)

considering

T̃
⌫

µ
= diag[�1, w̃ext, w̃ext, w̃ext, w̃int, ..., w̃int]⇢̃, (14)

where w̃ext = p̃ext/⇢̃ and w̃int = p̃int/⇢̃ are equation of
state (EoS) parameters of the fluid which yields in exter-
nal and internal spaces which has energy density

⇢̃ / e
�3

R
(1+w̃ext)d ln a

. (15)

Using these, it turns out that it is necessary that the
higher dimensional fluid satisfies the following property

⇢̃(1 + 2w̃int � 3w̃ext) =
(n� 1)(n+ 2)

̃

kint

s2⇤
� 2

⇤̃

̃
, (16)

to have static internal dimensions.
For post matter-radiation equality epoch, we assume

w̃ext = 0 giving ⇢̃m = ⇢̃m0a
�3 as in the usual (1 + 3)-

dimensional GR. However, we note that static internal
space requires

w̃int = �
1

2
+

 
(n� 1)(n+ 2)
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s2⇤
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⇤̃

̃

!
a
3

⇢m0
. (17)

For small a values, say, in the early matter dominated,
a ! 0

w̃ext = 0, w̃int ! �
1

2
. (18)

It is remarkable that the only perfect fluid which, on the
one hand, has the dust-like EoS in the external (observ-
able) and, on the other hand, does not spoil the internal
space stabilization, is the perfect fluid with the param-
eter of EoS in the internal space wi = �1/2. That is,
it corresponds to the black strings/branes. This is the
cosmological aspect of the black strings/branes.

The black strings/branes are compact gravitat-
ing objects which have topology (four-dimensional
Schwarzschild spacetime) ⇥ (d-dimensional internal
space) with d � 1, d = 1 and d � 2 in the cases
of the black strings and black branes, correspondingly.
They have the dust-like EoS in the external space, viz.
w̃ext ⌘ p̃ext/⇢̃ = 0 and w̃int ⌘ p̃int/⇢̃ = �1/2 in the in-
ternal space. In [4],it has been obtained the metric coef-
ficients in the weak-field limit in the case of the Einstein

internal space (flat or curved). The advantages of the
black strings/branes are the following: (i) these multidi-
mensional astrophysical objects satisfy the gravitational
tests for the PPN parameter � at the same level of ac-
curacy as GR [5], (ii) they are preferable from the ther-
modynamical point of view [6]. It is well known that
compact nonrelativistic astrophysical objects such as our
Sun have the dust-like EoS since the pressure inside them
is much less than the energy density. In [6] it has been
shown that in the case of multidimensional models the
gravitating masses acquire effective relativistic pressure
in the external space. Certainly, such pressure contra-
dicts the observations. The equality w̃int = �1/2 (i.e.
tension) is the only possibility to preserve the dust-like
equation of state in the external space. These two points
are the astrophysical aspects of the black strings/branes.
The third point is connected with the cosmological as-
pect. We know that the stabilization of the compact
internal space is a necessary condition to be in agree-
ment with observations (e.g., it provides the absence of
the fifth force) [5]. This stabilization should be preserved
in the presence of the gravitating masses, which are the
black strings/branes. These objects, gathering in galax-
ies and groups of galaxies, form the large scale structure
of the Universe. At sufficiently large scales the Universe
looks isotropic and homogeneous and matter in it can be
considered in the form of a perfect fluid. In the realistic
models this perfect fluid corresponds to the CDM with
the dust-like EoS. It is remarkable that the only perfect
fluid which, on the one hand, has the dust-like EoS in the
external/our space and, on the other hand, does not spoil
the internal space stabilization, is the perfect fluid with
the parameter of EoS in the internal space w̃int = �1/2.
That is, it corresponds to the black strings/branes. This
is the cosmological aspect of the black strings/branes.

III. STABILITY IN THE PRESENCE STATIC
INTERNAL SPACE

We check the stability of this solution considering lin-
ear perturbations �ext(t), �int(t) and �(t) about the back-
grounds

a(t) = a(t)[1 + �ext(t)], (19)
s(t) = s(t)[1 + �int(t)], (20)
%̃(t) = ⇢̃(t)[1 + �(t)], (21)

respectively. Using definition given in (37) from (9), the
Hubble parameter of the external space background is
defined as

Hext =
ȧ

a
=

r
�̃+ ̃⇢̃

3
, (22)

and Hint ⌘ ṡ/s is written for the internal space, the gen-
eral perturbed modified Friedmann and continuity equa-
tions are:
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scalar, dynamics of internal dimensions contribute to
effective energy-momentum source in the four dimen-
sional universe appears if anisotropy is allowed in the
external dimensions, although the isotropic pressures,
p̃x = p̃y = p̃z = p̃ext, are taken in the energy momentum
tensor of the external space. In [16], it was shown that
dynamics of internal dimensions are able depart from
isotropic pressures, anisotropy disappears if it static, but
we see that anisotropy is inevitable if the internal space
is spatially curved.

Eq. (8) reduces to

˙̃⇢+ 3
ȧ

a
(⇢̃+ p̃ext) = 0, (13)

considering

T̃
⌫

µ
= diag[�1, w̃ext, w̃ext, w̃ext, w̃int, ..., w̃int]⇢̃, (14)

where w̃ext = p̃ext/⇢̃ and w̃int = p̃int/⇢̃ are equation of
state (EoS) parameters of the fluid which yields in exter-
nal and internal spaces which has energy density

⇢̃ / e
�3

R
(1+w̃ext)d ln a

. (15)

Using these, it turns out that it is necessary that the
higher dimensional fluid satisfies the following property

⇢̃(1 + 2w̃int � 3w̃ext) =
(n� 1)(n+ 2)

̃

kint

s2⇤
� 2

⇤̃

̃
, (16)

to have static internal dimensions.
For post matter-radiation equality epoch, we assume

w̃ext = 0 giving ⇢̃m = ⇢̃m0a
�3 as in the usual (1 + 3)-

dimensional GR. However, we note that static internal
space requires

w̃int = �
1
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+
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For small a values, say, in the early matter dominated,
a ! 0

w̃ext = 0, w̃int ! �
1

2
. (18)

It is remarkable that the only perfect fluid which, on the
one hand, has the dust-like EoS in the external (observ-
able) and, on the other hand, does not spoil the internal
space stabilization, is the perfect fluid with the param-
eter of EoS in the internal space wi = �1/2. That is,
it corresponds to the black strings/branes. This is the
cosmological aspect of the black strings/branes.

The black strings/branes are compact gravitat-
ing objects which have topology (four-dimensional
Schwarzschild spacetime) ⇥ (d-dimensional internal
space) with d � 1, d = 1 and d � 2 in the cases
of the black strings and black branes, correspondingly.
They have the dust-like EoS in the external space, viz.
w̃ext ⌘ p̃ext/⇢̃ = 0 and w̃int ⌘ p̃int/⇢̃ = �1/2 in the in-
ternal space. In [4],it has been obtained the metric coef-
ficients in the weak-field limit in the case of the Einstein

internal space (flat or curved). The advantages of the
black strings/branes are the following: (i) these multidi-
mensional astrophysical objects satisfy the gravitational
tests for the PPN parameter � at the same level of ac-
curacy as GR [5], (ii) they are preferable from the ther-
modynamical point of view [6]. It is well known that
compact nonrelativistic astrophysical objects such as our
Sun have the dust-like EoS since the pressure inside them
is much less than the energy density. In [6] it has been
shown that in the case of multidimensional models the
gravitating masses acquire effective relativistic pressure
in the external space. Certainly, such pressure contra-
dicts the observations. The equality w̃int = �1/2 (i.e.
tension) is the only possibility to preserve the dust-like
equation of state in the external space. These two points
are the astrophysical aspects of the black strings/branes.
The third point is connected with the cosmological as-
pect. We know that the stabilization of the compact
internal space is a necessary condition to be in agree-
ment with observations (e.g., it provides the absence of
the fifth force) [5]. This stabilization should be preserved
in the presence of the gravitating masses, which are the
black strings/branes. These objects, gathering in galax-
ies and groups of galaxies, form the large scale structure
of the Universe. At sufficiently large scales the Universe
looks isotropic and homogeneous and matter in it can be
considered in the form of a perfect fluid. In the realistic
models this perfect fluid corresponds to the CDM with
the dust-like EoS. It is remarkable that the only perfect
fluid which, on the one hand, has the dust-like EoS in the
external/our space and, on the other hand, does not spoil
the internal space stabilization, is the perfect fluid with
the parameter of EoS in the internal space w̃int = �1/2.
That is, it corresponds to the black strings/branes. This
is the cosmological aspect of the black strings/branes.

III. STABILITY IN THE PRESENCE STATIC
INTERNAL SPACE

We check the stability of this solution considering lin-
ear perturbations �ext(t), �int(t) and �(t) about the back-
grounds

a(t) = a(t)[1 + �ext(t)], (19)
s(t) = s(t)[1 + �int(t)], (20)
%̃(t) = ⇢̃(t)[1 + �(t)], (21)

respectively. Using definition given in (37) from (9), the
Hubble parameter of the external space background is
defined as
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3
, (22)

and Hint ⌘ ṡ/s is written for the internal space, the gen-
eral perturbed modified Friedmann and continuity equa-
tions are:

3

scalar, dynamics of internal dimensions contribute to
effective energy-momentum source in the four dimen-
sional universe appears if anisotropy is allowed in the
external dimensions, although the isotropic pressures,
p̃x = p̃y = p̃z = p̃ext, are taken in the energy momentum
tensor of the external space. In [16], it was shown that
dynamics of internal dimensions are able depart from
isotropic pressures, anisotropy disappears if it static, but
we see that anisotropy is inevitable if the internal space
is spatially curved.

Eq. (8) reduces to

˙̃⇢+ 3
ȧ

a
(⇢̃+ p̃ext) = 0, (13)

considering

T̃
⌫

µ
= diag[�1, w̃ext, w̃ext, w̃ext, w̃int, ..., w̃int]⇢̃, (14)

where w̃ext = p̃ext/⇢̃ and w̃int = p̃int/⇢̃ are equation of
state (EoS) parameters of the fluid which yields in exter-
nal and internal spaces which has energy density

⇢̃ / e
�3

R
(1+w̃ext)d ln a

. (15)

Using these, it turns out that it is necessary that the
higher dimensional fluid satisfies the following property

⇢̃(1 + 2w̃int � 3w̃ext) =
(n� 1)(n+ 2)

̃

kint

s2⇤
� 2

⇤̃

̃
, (16)

to have static internal dimensions.
For post matter-radiation equality epoch, we assume

w̃ext = 0 giving ⇢̃m = ⇢̃m0a
�3 as in the usual (1 + 3)-

dimensional GR. However, we note that static internal
space requires

w̃int = �
1

2
+

 
(n� 1)(n+ 2)

2̃

kint

s2⇤
�

⇤̃

̃

!
a
3

⇢m0
. (17)

For small a values, say, in the early matter dominated,
a ! 0

w̃ext = 0, w̃int ! �
1

2
. (18)

It is remarkable that the only perfect fluid which, on the
one hand, has the dust-like EoS in the external (observ-
able) and, on the other hand, does not spoil the internal
space stabilization, is the perfect fluid with the param-
eter of EoS in the internal space wi = �1/2. That is,
it corresponds to the black strings/branes. This is the
cosmological aspect of the black strings/branes.

The black strings/branes are compact gravitat-
ing objects which have topology (four-dimensional
Schwarzschild spacetime) ⇥ (d-dimensional internal
space) with d � 1, d = 1 and d � 2 in the cases
of the black strings and black branes, correspondingly.
They have the dust-like EoS in the external space, viz.
w̃ext ⌘ p̃ext/⇢̃ = 0 and w̃int ⌘ p̃int/⇢̃ = �1/2 in the in-
ternal space. In [4],it has been obtained the metric coef-
ficients in the weak-field limit in the case of the Einstein

internal space (flat or curved). The advantages of the
black strings/branes are the following: (i) these multidi-
mensional astrophysical objects satisfy the gravitational
tests for the PPN parameter � at the same level of ac-
curacy as GR [5], (ii) they are preferable from the ther-
modynamical point of view [6]. It is well known that
compact nonrelativistic astrophysical objects such as our
Sun have the dust-like EoS since the pressure inside them
is much less than the energy density. In [6] it has been
shown that in the case of multidimensional models the
gravitating masses acquire effective relativistic pressure
in the external space. Certainly, such pressure contra-
dicts the observations. The equality w̃int = �1/2 (i.e.
tension) is the only possibility to preserve the dust-like
equation of state in the external space. These two points
are the astrophysical aspects of the black strings/branes.
The third point is connected with the cosmological as-
pect. We know that the stabilization of the compact
internal space is a necessary condition to be in agree-
ment with observations (e.g., it provides the absence of
the fifth force) [5]. This stabilization should be preserved
in the presence of the gravitating masses, which are the
black strings/branes. These objects, gathering in galax-
ies and groups of galaxies, form the large scale structure
of the Universe. At sufficiently large scales the Universe
looks isotropic and homogeneous and matter in it can be
considered in the form of a perfect fluid. In the realistic
models this perfect fluid corresponds to the CDM with
the dust-like EoS. It is remarkable that the only perfect
fluid which, on the one hand, has the dust-like EoS in the
external/our space and, on the other hand, does not spoil
the internal space stabilization, is the perfect fluid with
the parameter of EoS in the internal space w̃int = �1/2.
That is, it corresponds to the black strings/branes. This
is the cosmological aspect of the black strings/branes.

III. STABILITY IN THE PRESENCE STATIC
INTERNAL SPACE

We check the stability of this solution considering lin-
ear perturbations �ext(t), �int(t) and �(t) about the back-
grounds

a(t) = a(t)[1 + �ext(t)], (19)
s(t) = s(t)[1 + �int(t)], (20)
%̃(t) = ⇢̃(t)[1 + �(t)], (21)

respectively. Using definition given in (37) from (9), the
Hubble parameter of the external space background is
defined as

Hext =
ȧ

a
=

r
�̃+ ̃⇢̃

3
, (22)

and Hint ⌘ ṡ/s is written for the internal space, the gen-
eral perturbed modified Friedmann and continuity equa-
tions are:
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B. Late Universe

Having Hext ⇠ constant (viz., a / e
Hextt), constant

damping coefficient will serve as an approximation in the
distant future in (32)-(34) as follows:

�int(t) ⇠ �int0 e
� 3

2Hextt cos (!t+ �), (42)

�ext(t) ⇠ �ext1 e
� 3

2Hextt sin (!t+ �1), (43)

�(t) ⇠ C � e
� 3

2Hextt


n�int0

2
cos (!t+ �)

+ 3�ext1 sin (!t+ �1)

�
,

(44)

whose angular frequency reads

! =

r
!
2
0 �

9

4
H

2
ext, reminding !0 =

p
�2(n� 1)kint

s⇤
,

(45)
is the natural angular frequency, only real if kint < 0.
Under-damping for 3Hext < 2!0, critical damping for
3Hext = 2!0, and over-damping for 3Hext > 2!0 are
the possible cases. The factor e� 3

2Hextt leads to damping
in oscillatory solutions of perturbations in distant future
(t ! 1 limit), except � ! C where C is the integration
constant that can be taken zero.

C. General Stability

Substituting background external Hubble parameter of
⇤CDM with static spatially open internal space

Hext =Hext0

q
⌦�̃0 + ⌦m0a

�3

=
3

2
Hext0

p
⌦�̃0 coth

 
3Hext0

p
⌦�̃0

2
t

!
,

(46)

with the corresponding scale factor as follows:

a(t) =

✓
⌦m0

⌦�̃0

◆ 1
3
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2
3

 
3Hext0

p
⌦�̃0t

2

!
(47)

where ⌦�̃0 = �̃0

3H2
ext0

constant and ⌦m0+⌦�̃0 = 1 to (32),
the general solution of �int reads:

�int =csch
3
2

⇣3
2
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p
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h
P
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1
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(48)

where ⌦�̃0 > 0 at late times [NK: if ⌦�̃0 switches its sign,
we should check the stability for this case]. The P

m

l
(x)

and Q
m

l
(x) are first kind and second kind associated Leg-

endre polynomials where m is the order and l is the type,
respectively. Here, m = ! and the oscillation is driven
by Legendre polynomials of half degree l = 1/2, known
as toroidal harmonics appear in the solution of Dirichlet
problems with toroidal symmetry [13–15]. As we choose
kext = 0, three connected closed strings may be placed
on torus, T n and repeating oscillations continuously at
an interval, here csch function leads to damping on har-
monics of internal perturbations.

IV. TRANSITION OF COSMOLOGICAL AND
GRAVITATIONAL CONSTANT FROM AN

EXTRA DIMENSION SCALE CHANGE

A sudden spontaneous change of the internal dimen-
sion scale from an past (initial) stable value sp to a final
stable value s0 with a function

s(z) = s0 + (sp � s0)✓ (z � z†) , (49)

can be described where ✓ is the Heaviside step function.
We will show, in this section, that proper values of the
parameters s0/sp, n and �̃ such a transition could con-
stitute a physical mechanism for a sign switch of the cos-
mological constant which can lead to a resolution of the
tensions of the standard model. This would induce a
transition in the values of effective cosmological constants
between

�̃0 = ⇤̃�
n(n� 1)

2

kint

s
2
0

for z < z†, (50)

and

�̃p = ⇤̃�
n(n� 1)

2

kint

s2p

for z > z†, (51)

where the subscripts 0 and p stands for present-day
(z < z†) and past value (z > z†) values, respectively,
and despite it is forbidden by limits mentioned above
with n > 1, n = 0 case refers to ⇤CDM model with
�̃p = �̃0 = ⇤̃.

Since the (1 + 3 + n) effective Newton’s constant G̃ is
inversely proportional to the volume of the internal space
as follows:

G4D /
1

Vint
/

G̃

sn
, (52)

a spontaneous change of the internal dimension scale due
eg to quantum tunnelling to a different vacuum (potential
minimum) leads to a spontaneous change of the gravita-
tional constant. This scenario will be discussed in the
next section. The comparable relation of effective New-
ton’s constant of present-day value to past value can be
achieved as

G4D0

G4Dp
=

✓
sp

s0

◆n

=

 
�̃0 � ⇤̃

�̃p � ⇤̃

!n/2

. (53)
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is the natural angular frequency, only real if kint < 0.
Under-damping for 3Hext < 2!0, critical damping for
3Hext = 2!0, and over-damping for 3Hext > 2!0 are
the possible cases. The factor e� 3

2Hextt leads to damping
in oscillatory solutions of perturbations in distant future
(t ! 1 limit), except � ! C where C is the integration
constant that can be taken zero.

C. General Stability

Substituting background external Hubble parameter of
⇤CDM with static spatially open internal space
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with the corresponding scale factor as follows:
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where ⌦�̃0 > 0 at late times [NK: if ⌦�̃0 switches its sign,
we should check the stability for this case]. The P
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(x)

and Q
m

l
(x) are first kind and second kind associated Leg-

endre polynomials where m is the order and l is the type,
respectively. Here, m = ! and the oscillation is driven
by Legendre polynomials of half degree l = 1/2, known
as toroidal harmonics appear in the solution of Dirichlet
problems with toroidal symmetry [13–15]. As we choose
kext = 0, three connected closed strings may be placed
on torus, T n and repeating oscillations continuously at
an interval, here csch function leads to damping on har-
monics of internal perturbations.

IV. TRANSITION OF COSMOLOGICAL AND
GRAVITATIONAL CONSTANT FROM AN

EXTRA DIMENSION SCALE CHANGE

A sudden spontaneous change of the internal dimen-
sion scale from an past (initial) stable value sp to a final
stable value s0 with a function

s(z) = s0 + (sp � s0)✓ (z � z†) , (49)

can be described where ✓ is the Heaviside step function.
We will show, in this section, that proper values of the
parameters s0/sp, n and �̃ such a transition could con-
stitute a physical mechanism for a sign switch of the cos-
mological constant which can lead to a resolution of the
tensions of the standard model. This would induce a
transition in the values of effective cosmological constants
between
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where the subscripts 0 and p stands for present-day
(z < z†) and past value (z > z†) values, respectively,
and despite it is forbidden by limits mentioned above
with n > 1, n = 0 case refers to ⇤CDM model with
�̃p = �̃0 = ⇤̃.

Since the (1 + 3 + n) effective Newton’s constant G̃ is
inversely proportional to the volume of the internal space
as follows:
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a spontaneous change of the internal dimension scale due
eg to quantum tunnelling to a different vacuum (potential
minimum) leads to a spontaneous change of the gravita-
tional constant. This scenario will be discussed in the
next section. The comparable relation of effective New-
ton’s constant of present-day value to past value can be
achieved as
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around which, H(z) can exhibit a non-monotonic behavior. It was shown via the gDE that the joint observational
data, including but not limited to the Planck CMB and Ly-↵ BAO (BOSS DR11) data, suggest that the cosmological
constant changed its sign at z ⇡ 2.32 and triggered the late-time acceleration, the behaviour of which alleviates the
H0 tension by predicting H0 ⇡ 69.7 ± 0.9 km s�1 Mpc�1 and provides excellent fit to the Ly-↵ BAO (BOSS DR11)
data [753] at the e↵ective redshift z ⇠ 2.34, which is at ⇠ 2.5� tension with the Planck 2015 best-fit ⇤CDM. Note
that this tension is reduced to ⇠ 1.5� when the final eBOSS (SDSS DR16) measurement, which combines all the data
from eBOSS and BOSS [220, 753, 754], is considered, see Sec. VIII G 1.

Inspired by these observational findings, and the theoretically compelling fact that the gDE submits to the weak
energy condition and the bounds on the speed of sound only in the limit � ! �1 which corresponds to a cosmological
constant that rapidly changes sign at redshift z†, this limit was dubbed ⇤sCDM and further investigated in Ref. [558].
The ⇤sCDM model can be constructed phenomenologically by simply replacing the usual cosmological constant (⇤)
of the standard ⇤CDM model with a cosmological constant (⇤s) that switches its sign from negative to positive, and
thus attains its present-day value (⇤s0 > 0), when the Universe reaches a certain energy scale (redshift z†) during its
expansion,

⇤ ! ⇤s ⌘ ⇤s0 sgn[z† � z]. (25)

It was shown in Ref. [558] that, when the consistency of the ⇤sCDM model with the CMB data is guaranteed, (i) H0

and MB (SNIa absolute magnitude) values are inversely correlated with z† and reach H0 ⇡ 74.5 km s�1 Mpc�1 and
MB ⇡ �19.2 mag for z† = 1.5, in agreement with the measurements from SH0ES [93, 109], and (ii) H(z) presents
an excellent fit to the Ly-↵ data provided that z† . 2.34. The assessment of the model against Planck 2018 yields
H0 = 70.22± 1.78 km s�1 Mpc�1 and against Planck 2018 + SDSS DR16 yields H0 = 68.82± 0.55 km s�1 Mpc�1 with
z† = 2.44±0.29 [558]. It was found that the lower and upper limits of z† are controlled by the Galaxy and Ly-↵ BAO
data, correspondingly, and the larger z† values imposed by the Galaxy BAO data prevent the model from achieving
the largest estimations of H0 from the direct local distance ladder measurements. It is intriguing that, as long as
z† . 2.34, the model remains in excellent agreement with the Ly-↵ data even for z† ⇠ 1.1, which barely satisfies the
condition that we live in an ever-expanding Universe; a good agreement with the Ly-↵ data is an intrinsic feature of
the ⇤sCDM model as long as z† . 2.34.

Similar to the situation with the Ly-↵ data, alleviating the S8 discrepancy, prevailing within the ⇤CDM model and
its minimal extensions, usually results in exacerbating the H0 tension, see Sec. V and Ref. [3]. In addition to this, the
constraints on S8 based on the Ly-↵ data are in agreement with the weak lensing surveys that probe similar late-time
redshift scales as the Ly-↵ measurements [394]. Accordingly, it is conceivable that the ⇤sCDM model provides a
remedy for the S8 discrepancy while retaining the better fit to the local measurements of H0, like in the case of the
Ly-↵ discrepancy. Indeed, in the CMB-only analysis, it is found that S8 = 0.8071 ± 0.0210 for the ⇤sCDM model,
whereas S8 = 0.8332 ± 0.0163 for the ⇤CDM model. Although �8 is smaller for the ⇤CDM model, its ⌦m value
greater than 0.3 results in an increased S8 value compared to its �8 value. In contrast, the ⇤sCDM model has an ⌦m

value lower than 0.3 which results in a decreased S8 value compared to its �8 value. This results in the lower value of
S8 for ⇤sCDM compared to ⇤CDM. The ⇤sCDM and ⇤CDM models have similar S8 values when the BAO data are
also included in the analysis; this is due to the preference for larger z† values by the Galaxy BAO data, since ⇤sCDM
approaches ⇤CDM for larger z† values and the ⌦m value of ⇤sCDM becomes greater than 0.3. Thus, the ⇤sCDM
model partially reconciles the CMB data with the low redshift cosmological probes regarding S8, and can potentially
resolve the discrepancy in the absence of the Galaxy BAO data; however, for a robust conclusion, the constraints on
S8 from low redshift probes should also be explored within the ⇤sCDM model.

Ultimately, it turns out via the ⇤sCDM model that sign switch in the cosmological constant, viz., transition from
an Anti-de Sitter background (provided by ⇤ < 0) to a de Sitter one (provided by ⇤ > 0), at z ⇠ 2 (i) relaxes
the SH0ES H0 tension while being fully consistent with the TRGB measurement, (ii) relaxes the MB tension, (iii)
removes the discrepancy with the Ly-↵ measurements, (iv) relaxes the S8 tension, and (v) finds a better agreement
with the BBN constraints on the physical baryon density [558]. These results seem to encourage looking for a phase
transition from AdS vacua to dS vacua in the late-Universe.

It is reasonable to look for a potential origin of this phenomenon, viz. a very rapid single transition or its limiting case
a single instantaneous (discontinuous) transition in the value of the cosmological constant, in a theory of fundamental
physics by considering it as a first-order phase transition. The phase transition approach has been used to address
the H0 tension; see e.g. Refs. [755–757], which consider that the DE density resembles the magnetization of the Ising
model and present a realization of this behavior within the Ginzburg-Landau framework. Additionally, Ref. [758]
considers a gravitational phase transition that is justified from the e↵ective field theory point of view (see also
Ref. [759]). The model studied in Ref. [755] partially corresponds to a one-parameter phenomenological extension
of ⇤sCDM; it considers an arbitrary shift in the value of the cosmological constant, but does not allow negative
values of the cosmological constant in contrast to ⇤sCDM. It addresses the H0 tension with a shift in the value of
the cosmological constant, however, at very low redshifts, viz. zt = 0.092+0.009

�0.062, signaling that it could su↵er from

5

constant switches sign at certain time t†. For both of
the models, the redshift of the matter-radiation equality
is given by 1 + zeq = 2.38 ⇥ 104⌦m0h

2. For the ⇤CDM
model, aeq/a0 ⇠ 3⇥ 10�4 (as zeq ⇠ 3450 [6]), which cor-
responds to teq =

R
aeq

0
(aH)�1 da ⇠ 5⇥ 104 yr. Note that

these are negligibly small compared to the present age
(t0 ⇠ 13.8 Gyr [6]) and size (a0) of the Universe, and
it is conceivable that this would not change in a viable
cosmological model based on ⇤sCDM. Therefore, for our
purposes in this section, it will su�ce to proceed below
by ignoring radiation, namely, by constructing the scale
factor of the ⇤sCDM model by gluing (at t = t†) the
scale factor of the Friedmann-Lemâıtre model whose cos-
mological constant is negative (for t < t†), to the one
whose cosmological constant is positive (for t > t†). Ac-
cordingly, the evolution of the scale factor in the ⇤sCDM
model reads
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(4)

and t† < 2⇡/
p
3⇤s0 to ensure a(t) > 0 for t > 0. To

derive this solution, we have normalized the scale factor
such that a(t0) = 1 (with t0 being the cosmic time to-
day), and introduced the initial condition a(0) = 0 (i.e.,
assumed that the Universe started with a big bang, and
used a time parametrization such that the big bang was
at t = 0, which also results in t0 being the age of the
Universe today). Note that, under these boundary con-
ditions, general relativity implies, through the Friedmann
equations, that this solution satisfies A = 8⇡G⇢m0/⇤s0,
which also determines the age of the Universe today for a
given ⇢m0 and ⇤s0 using Eq. (4). The assumption of an
ever-expanding Universe (H > 0) implies the condition
t† < ⇡/

p
3⇤s0, as the cosmological constant must switch

to its present-day positive value before (in time) the max-
imum of the sine function is reached. Fig. 1 illustrates
five qualitatively di↵erent scenarios varying based on t†.
The condition for the ever-expanding Universe, after be-
ing used in (3) to find the maximum value possible for
a(t†) = 1/(1+z†), translates into the following condition
on z†:

z† >

✓
⌦⇤s0

1 � ⌦⇤s0

◆ 1
3

� 1. (5)

Note that (5) can also be easily obtained from (2) by
enforcing H > 0 for all redshift values once the radia-
tion density parameter is neglected. If this condition is

Figure 1. Evolution of the scale factor for various scenarios
under the constraints a(0) = 0 and a(t0) = 1. The dashed
gray curves are the edge cases t† = 0 and t† ! 1, i.e., the
standard Friedmann-Lemâıtre models for a positive cosmo-
logical constant (which expands forever), and for a negative
cosmological constant (which recollapses), respectively. The
red curve corresponds to an ever-expanding Universe, i.e.,
t† < ⇡/

p
3⇤s0, and is the most relevant case for this paper.

The dark yellow curve is for t† > ⇡/
p
3⇤s0, and the dotted

gray curve is the critical case t† = ⇡/
p
3⇤s0. Note that ra-

diation is neglected in the figure, but since teq/t0 ⇡ 0 and
a(teq) ⇡ 0, its inclusion would not result in visible changes.

violated, the Universe enters a contracting phase due to
the negative cosmological constant until it switches sign
to become positive, which then either restarts the expan-
sion and eventually results in the accelerated expansion
of the Universe (dark yellow curve in Fig. 1) or further
assists the contraction and causes the Universe to rec-
ollapse (not present in Fig. 1). An e↵ect worth noting
for the dark yellow curve in Fig. 1 is that the one-to-
one correspondence between redshift and cosmic time is
broken; hence, observations from the same redshift can
correspond to signals coming from two di↵erent times.
We do not elaborate the possibility of these interesting
scenarios in the present work. Therefore, in what follows
we proceed under the condition of an ever-expanding Uni-
verse, which, for instance, gives z† > 0.33 for ⌦⇤s0 = 0.7.

The deceleration parameter (q ⌘ � ä

aH2 , where a dot
denotes d/dt) for the ⇤sCDM model can simply be writ-
ten as

q = �1+
3

2


⌦⇤s0 sgn[z† � z]

1 � ⌦⇤s0 sgn[z† � z]
(1 + z)�3 + 1

��1

, (6)

where we have neglected radiation. For z > z†, it evolves
from q = 1

2
at the matter-dominated epoch toward q = 2

as the negative cosmological constant dominates with the
expansion of the Universe. This equation is solved for
q(zc) = 0 only when z < z†, and the solution reads

zc = 2
1
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constant switches sign at certain time t†. For both of
the models, the redshift of the matter-radiation equality
is given by 1 + zeq = 2.38 ⇥ 104⌦m0h

2. For the ⇤CDM
model, aeq/a0 ⇠ 3⇥ 10�4 (as zeq ⇠ 3450 [6]), which cor-
responds to teq =

R
aeq

0
(aH)�1 da ⇠ 5⇥ 104 yr. Note that

these are negligibly small compared to the present age
(t0 ⇠ 13.8 Gyr [6]) and size (a0) of the Universe, and
it is conceivable that this would not change in a viable
cosmological model based on ⇤sCDM. Therefore, for our
purposes in this section, it will su�ce to proceed below
by ignoring radiation, namely, by constructing the scale
factor of the ⇤sCDM model by gluing (at t = t†) the
scale factor of the Friedmann-Lemâıtre model whose cos-
mological constant is negative (for t < t†), to the one
whose cosmological constant is positive (for t > t†). Ac-
cordingly, the evolution of the scale factor in the ⇤sCDM
model reads

a(t) =

8
>>>><

>>>>:

A
1
3 sin
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◆
for t  t†,
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where

A =sinh�2
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"
sin

 
3
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⇤s0

3
t†

!
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r
⇤s0

3
t†

#
,

(4)

and t† < 2⇡/
p
3⇤s0 to ensure a(t) > 0 for t > 0. To

derive this solution, we have normalized the scale factor
such that a(t0) = 1 (with t0 being the cosmic time to-
day), and introduced the initial condition a(0) = 0 (i.e.,
assumed that the Universe started with a big bang, and
used a time parametrization such that the big bang was
at t = 0, which also results in t0 being the age of the
Universe today). Note that, under these boundary con-
ditions, general relativity implies, through the Friedmann
equations, that this solution satisfies A = 8⇡G⇢m0/⇤s0,
which also determines the age of the Universe today for a
given ⇢m0 and ⇤s0 using Eq. (4). The assumption of an
ever-expanding Universe (H > 0) implies the condition
t† < ⇡/

p
3⇤s0, as the cosmological constant must switch

to its present-day positive value before (in time) the max-
imum of the sine function is reached. Fig. 1 illustrates
five qualitatively di↵erent scenarios varying based on t†.
The condition for the ever-expanding Universe, after be-
ing used in (3) to find the maximum value possible for
a(t†) = 1/(1+z†), translates into the following condition
on z†:

z† >

✓
⌦⇤s0

1 � ⌦⇤s0

◆ 1
3

� 1. (5)

Note that (5) can also be easily obtained from (2) by
enforcing H > 0 for all redshift values once the radia-
tion density parameter is neglected. If this condition is
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0.0

0.5

1.0

1.5

2.0

Figure 1. Evolution of the scale factor for various scenarios
under the constraints a(0) = 0 and a(t0) = 1. The dashed
gray curves are the edge cases t† = 0 and t† ! 1, i.e., the
standard Friedmann-Lemâıtre models for a positive cosmo-
logical constant (which expands forever), and for a negative
cosmological constant (which recollapses), respectively. The
red curve corresponds to an ever-expanding Universe, i.e.,
t† < ⇡/

p
3⇤s0, and is the most relevant case for this paper.

The dark yellow curve is for t† > ⇡/
p
3⇤s0, and the dotted

gray curve is the critical case t† = ⇡/
p
3⇤s0. Note that ra-

diation is neglected in the figure, but since teq/t0 ⇡ 0 and
a(teq) ⇡ 0, its inclusion would not result in visible changes.

violated, the Universe enters a contracting phase due to
the negative cosmological constant until it switches sign
to become positive, which then either restarts the expan-
sion and eventually results in the accelerated expansion
of the Universe (dark yellow curve in Fig. 1) or further
assists the contraction and causes the Universe to rec-
ollapse (not present in Fig. 1). An e↵ect worth noting
for the dark yellow curve in Fig. 1 is that the one-to-
one correspondence between redshift and cosmic time is
broken; hence, observations from the same redshift can
correspond to signals coming from two di↵erent times.
We do not elaborate the possibility of these interesting
scenarios in the present work. Therefore, in what follows
we proceed under the condition of an ever-expanding Uni-
verse, which, for instance, gives z† > 0.33 for ⌦⇤s0 = 0.7.

The deceleration parameter (q ⌘ � ä

aH2 , where a dot
denotes d/dt) for the ⇤sCDM model can simply be writ-
ten as

q = �1+
3

2


⌦⇤s0 sgn[z† � z]

1 � ⌦⇤s0 sgn[z† � z]
(1 + z)�3 + 1

��1

, (6)

where we have neglected radiation. For z > z†, it evolves
from q = 1

2
at the matter-dominated epoch toward q = 2

as the negative cosmological constant dominates with the
expansion of the Universe. This equation is solved for
q(zc) = 0 only when z < z†, and the solution reads

zc = 2
1
3
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ing feature of the ⇤sCDM model was first suggested in
Ref. [44] when their graduated dark energy (gDE) model
appeared to prefer a very rapid transition in the DE den-
sity resembling a step function whose absolute value is al-
most constant away from the transition point. In Sec. II,
we first we motivate the ⇤sCDM model starting from the
gDE, and then study its theoretical features. In Sec. III,
we conduct a robust observational analysis of the model
with the latest data, and, we conclude in Sec. IV.

II. ⇤sCDM MODEL: SIGN-SWITCHING ⇤

The positive cosmological constant assumption of the
⇤CDMmodel was investigated via the gDE characterised
by a minimal dynamical deviation from the null inertial
mass density % = 0 (where % ⌘ ⇢ + p) of the cosmologi-
cal constant—or, the usual vacuum energy of the quan-
tum field theory (QFT). This deviation is in the form of
% / ⇢

�
< 0, for which, provided that the parameter � < 1

is the ratio of two odd integers, the energy density ⇢ dy-
namically takes negative values in the past [44]. During
the transition from negative to positive energy density,
there comes a redshift for which the energy density is null;
this redshift will be denoted by z† in the present work,
but note that it was denoted by z⇤ in Ref. [44]. gDE ex-
hibits a wide variety of behaviors depending on �, but it
is of particular interest to us that for large negative values
of �, it establishes a phenomenological model character-
ized by a smooth function that approximately describes a
⇤ that switches sign in the late Universe to become pos-
itive today. It was shown via the gDE that the joint ob-
servational data, including but not limited to the Planck
CMB and Ly-↵ BAO (BOSS DR11) data, suggest that
the cosmological constant changed its sign at z ⇡ 2.32
and triggered the late-time acceleration, the behavior of
which alleviates the H0 tension and the discrepancy with
the Ly-↵ BAO measurements simultaneously. For large
negative values of �, it turns out that ⇢gDE/3H2

0
⇡ 0.70

for 0  z . 2.32, but its energy density switches sign
rapidly at z† ⇡ 2.32 (this z† value is quite stable for
� . �4) and settles into a value ⇢gDE/3H2

0
⇠ �0.70

and remains there for z† & 2.32; moreover, the larger the
negative values of �, the more ⇢gDE resembles a step func-
tion, and the better fit to the data. For arbitrarily large
negative values of �, ⇢gDE indeed transforms into a step
function centred at z† with two branches yielding oppo-
site values about zero. It is easy to check that � is respon-
sible from the rapidity of the sign change of the energy
density, and for the constraint � = �17.9 ± 5.8 obtained
on it, the function ⇢gDE(z) already closely resembles a
step function. Thus, the gDE suggesting large negative
values of � when confronted with the observations can
be interpreted as a hint at a cosmological constant that
achieved its present-day positive value by switching sign
at z† ⇠ 2.3, but was negative in the earlier Universe.

Some general constraints that are typically applied to
classical sources, irrespective of a detailed description,

give further confidence to the interpretation of the gDE as
a hint at a sign-switching cosmological constant [91, 92].
Let us consider the gDE as an actual barotropic fluid,
p = p(⇢). In this case, although it behaves almost like a
cosmological constant (in spite of the fact that its value
switches sign at z ⇡ 2.32) throughout the history of the
Universe, strictly speaking, it violates the weak energy
condition, namely, the non-negativity conditions on the
energy density, ⇢ � 0, for z > z†, and on the iner-
tial mass density, % � 0, at any given time. Moreover,
there are phases during which c

2

s
� 1 and c

2

s
< 0, i.e.,

gDE violates the condition 0  c
2

s
 1 on the speed of

sound of a barotropic fluid given by the adiabatic for-
mula c

2

s
= dp/d⇢. The upper limit (causality limit) is a

rigorous limit, and its violation means the abandonment
of the theory of relativity. The lower limit applies to a
stable situation, and if violated, the fluid is classically
unstable against small perturbations of its background
energy density—the so-called Laplacian (or gradient) in-
stability. Indeed, phenomenological fluid models of DE
are di�cult to motivate, and adiabatic fluid models are
typically unstable against perturbations, since c

2

s
is usu-

ally negative for w = p/⇢ < 0. It is possible to evade this
constraint in adiabatic fluids—such as canonical scalar
field (quintessence or phantom fields) and string-theory-
inspired tachyon fields, for which the e↵ective speed of
sound cs e↵ (which governs the growth of inhomogeneities
in the fluid) remains consistent with 0  c

2

s e↵
 1—

in adiabatic fluids if w decreases su�ciently fast as the
Universe expands (e.g., Chaplygin gas), and in multi-
fluid models of DE (e.g., quintom field) constructed from
the combination of such fluids [93]. However, unlike such
sources, it seems unlikely to evade this constraint in gDE,
especially given the observationally preferred values of its
free parameters. On the other hand, whether it is positive
or negative, a cosmological constant, which corresponds
to the � ! �1 limit of the gDE, is well behaved: % = 0,
and c

2

s
= 0 (it has no speed of sound, and thereby does

not support classical fluctuations). Regarding the nega-
tivity of the corresponding energy density (when z > z†),
a negative cosmological constant is not only ubiquitous
in the fundamental theoretical physics without any com-
plication, but also a theoretical sweet spot; an anti-de
Sitter (AdS) background (provided by ⇤ < 0) is wel-
come due to the celebrated AdS/CFT (conformal field
theory) correspondence [94] and is preferred by string
theory and string-theory-motivated supergravities [95].
It is the positive cosmological constant that in fact su↵ers
from theoretical challenges: getting a vacuum solution
with a positive cosmological constant within string the-
ory or formulating QFT on the background of a dS space
(provided by ⇤ > 0) has been a notoriously di�cult task
[see Refs. [7, 96–102]; additionally, see Refs. [11, 103] for
a recent review on models of the accelerating Universe
(viz., for di↵erent mechanisms to obtain dS space/vacua
and building models of quintessence) in supergravity and
string theory]. Therefore, an approach that asserts that
a positive-valued cosmological constant exists only in the

4

not continuous, between the ones we listed above, and so
we can treat � in (9) as if it is continuous since one can
always find an allowed � value indistinguishably close to
a forbidden � value.

Consequently, the gDE-CDM model replaces the ⇤ of
the Friedmann equation of the standard ⇤CDM model
by the gDE (9) serving our purposes and reads

H2

H2
0

= ⌦r,0a
�4 + ⌦m,0a

�3 + ⌦DE,0 sgn[1 � ln a]
��1 � ln a

�� 1
1�� ,

(10)

from which we also read o↵

⇢DE

⇢c,0
= ⌦DE,0 sgn[1 � ln a]

��1 � ln a
�� 1
1�� , (11)

where  < 0 and � = 0,�2,�4, ... (For further possibili-
ties, see (9) and the explanations following it.). Here, the
subscripts r and m stand for relativistic source (wr =

1
3 )

and dust matter (wm = 0), respectively.
Regarding inertial mass density (5); when � < 0, if

1�� is odd then � is even, and consequently we have the
exponent �

1�� = [even]
[odd] in (5), which in turn implies that

⇢inert  0, that is, we can write

⇢inert = �⇢0 |1 + 3�(� � 1) ln a|
�

1�� , (12)

under the conditions derived above. It turns out that
⇢inert = 0 is the upper bound, viz., ⇢inert,max = 0.

We claimed above that gDE can also be viewed as a
phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late universe. Indeed, under the con-
ditions we consider, ⇢(a = 1) > 0 and ⇢(a ⌧ a⇤)/⇢(a �
a⇤) ⇡ �1 along with w(a ⌧ a⇤) ⇡ w(a � a⇤) ⇡ �1,
which imply that the energy density of the gDE at high
redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time
value and remains almost there, say, all the way to the
early times before which gDE is irrelevant to the dynam-
ics of the universe anymore. Note that the EoS parameter
is just slightly below (above) the phantom divide line for
a � a⇤ (a ⌧ a⇤) with a⇤ < 1, and w ! �1 only when
either a ! 0 or a ! 1. Therefore, the energy density
of gDE grows very slowly in the future and reaches ar-
bitrarily large values in the very remote future, and also
grows in negative values very slowly —obviously, much
slower than radiation and dust, both which then eventu-
ally dominate gDE in the finite past— with the increasing
redshift for a ⌧ a⇤, and reaches arbitrarily large nega-
tive values in the beginning of the universe. We note,
however, that for arbitrarily large negative values of �,
the energy density equation (11) (or (9)) transforms into
a step function;

⇢DE

⇢c,0
! ⌦DE,0 sgn[1 � ln a] as � ! �1 (13)

FIG. 1: We use ⌦m,0 = 0.30 and, for gDE-CDM, � = �0.03 along

with � = �10 (green). H(z)/(1 + z) vs. z for the gDE-CDM

(green) and ⇤CDM (black). H0 = 70km s
�1

Mpc
�1

(solid) and

H0 = 73km s
�1

Mpc
�1

(dashed). H0 = 69.8± 0.8 km s
�1

Mpc
�1

from the TRGB H0 [22], H(z = 0.57) = 97.9± 3.4 km s
�1

Mpc
�1

[23], and H(z = 2.34) = 222.4± 5.0 km s
�1

Mpc
�1

from the latest

BAO data [36]. H0 = 73.52± 1.62km s
�1

Mpc
�1

is independent

measurement from Gaia parallaxes [20].

with an EoS parameter w ! �1. In this case, the energy
density of gDE is non-dynamical except that it sponta-
neously changes sign at a = a⇤. Thus, for large nega-
tive values of �, gDE model is a very good approxima-
tion for describing a cosmological constant spontaneously
switching sign at z = z⇤, namely, in the limit � ! �1,
⇢DE

⇢c,0
= ⌦DE,0 for z < z⇤ and ⇢DE

⇢c,0
= �⌦DE,0 for z > z⇤.

The following may be useful as a demonstration of how
gDE-CDM model works and gives a guide to the values
of the parameters of the model. Let us choose a⇤ = e�1

(z⇤ ⇠ 1.7) in line with [37] (see Fig.11 in [37]). This
leads to � = 1 + 1

3� , where � must be a large negative

number as we must use � ⇠ 0 (it is observationally well
known that � = w0 + 1 ⇠ 0) along with � < 0 (our con-
dition derived above). For example, � = �0.03 (or w0 =
�1.03) predicted by the recent Planck release [9] leads to

� ⇠ �10. Accordingly, in Fig.1, we depict ⇢(z)
⇢c,0

, w(z) and

H(z)/(1 + z) by considering ⌦m,0 = 0.30 along with two
di↵erent Hubble constant values, H0 = 70 km s�1Mpc�1

Akarsu, Kumar, Özülker & Vazquez, PRD (2021), arXiv:2108.09239
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Figure 2. H0 versus z† for the ⇤sCDM model (solid curve),
and the ⇤CDM model (dashed line). The values are cal-
culated by fixing DM (z⇤) and ⇢m(z⇤) (and hence ⇢m0) to
that of ⇤CDM using the mean values of the Planck 2018
TT,TE,EE+lowE+lensing results [6]. The gray band is
the model-independent TRGB measurement H0 = 69.8 ±
0.8 km s�1Mpc�1 [77] and the blue band is the Cepheid mea-
surement H0 = 74.03± 1.42 km s�1Mpc�1 [75].

values of H0 compared to ⇤CDM, and z† is inversely
correlated with H0. Such greater values are a direct con-
sequence of the sudden drop in H(z) due to the neg-
ative cosmological constant for z > z† as explained in
the Introduction. Additionally, as seen in the top panel
of Fig. 3, the drop in H(z) due to the sign switch al-
lows ⇤sCDM to better agree with the Ly-↵ data; how-
ever, this amelioration of the Ly-↵ discrepancy disap-
pears immediately for z† & 2.4. Moreover, as z† in-
creases, H0 decreases, approaching the value of ⇤CDM
as z† ! 1. This is because of two reasons: first, as
z† increases, the portion of the DM (z⇤) integral that is
over negative values of ⇤s decreases and hence requires
less compensation from the positive ⇤s portion including
H0; second, as z† increases, the sign-switching feature
of ⇤s becomes rapidly less e↵ective since, for large z†,
matter is the dominant energy component of the Uni-
verse at the time of the sign switch and the e↵ect of
negative ⇤s on the evolution of H(z) is negligible. If
we consider z† = 3, just before the cosmological con-
stant becomes negative (z ! z

�
† ), the matter already

is by far the dominant component of the Universe, viz.,
⌦m(z = 3) ⇡ 0.96 corresponding to only |⌦⇤s/⌦m| ⇡
0.04. It is intriguing that, for z† = 2.3, which is almost
as high as z† can get without losing the improved agree-
ment with the Ly-↵ data, the H0 value is in excellent
agreement with H0 = 69.8 ± 0.8 km s�1Mpc�1 [77] (re-

Figure 3. Comoving Hubble parameter and the comoving
angular diameter distance versus redshift for various z† val-
ues for the ⇤sCDM model. All of the plots are drawn
by fixing DM (z⇤) and ⇢m(z⇤) (and hence fixing ⇢m0) to
that of the ⇤CDM model using mean values of the Planck

2018 TT,TE,EE+lowE+lensing results. We consider the
observational H(z) values (blue error bars), H0 = 69.8 ±
0.8 km s�1Mpc�1 from the TRGB [77], consensus Galaxy
BAO (from ze↵ = 0.38, 0.51, 0.61) and DR14 Ly-↵ BAO
(from ze↵ = 2.34, 2.35) [84, 85, 148].

vised as H0 = 69.6± 0.8 km s�1Mpc�1 in Ref. [79]) from
a recent calibration of the tip of the red giant branch
(TRGB) applied to type Ia supernovae. Both of these ef-
fects on H0 and H(z ⇡ 2.34) suggest that ⇤sCDM might
be most e↵ective for z† . 2.34. In line with this, as
Fig. 2 demonstrates, H0 is greater for smaller values of
z†; for z† = 1.5, H0 goes up to ⇡ 74.5 km s�1 Mpc�1, so
z† > 1.5 covers all the recent local measurements of H0,
including the largest H0 estimations by the SH0ES Col-
laboration (see Refs. [73–79]). However, looking at the
bottom panel of Fig. 3, we see that as z† gets smaller,
a greater tension with the comoving angular diameter
distance measurements from Galaxy BAO data is gener-
ated. In fact, Fig. 3 seems to suggest that the smaller
the value of z†, the greater the tension with the Galaxy
BAO data, and the extent of this e↵ect in limiting the
increase in H0 is not clear without a robust observational
analysis.

The discrepancy of the latest SH0ES H0 determina-

8

tion H
R20

0
= 73.2 ± 1.3 km s�1Mpc�1 [76] and ⇤CDM

Planck 2018 constraint H0 = 67.36 ± 0.54 km s�1Mpc�1

[6] is equivalent to the discrepancy of the Pantheon SnIa
absolute magnitudes, which have a value M

Planck

B
=

�19.401 ± 0.027mag [149] when calibrated using the
CMB sound horizon and propagated via BAO measure-
ments to low z (inverse distance ladder, z ' 1100),
in significant tension (3.4�) with the value M

R20

B
=

�19.244±0.037mag [146] (using Pantheon SnIa data set
[150]) when the calibration is done using Cepheid stars
at z < 0.01. This tension is reflected in the inferred SnIa
absolute magnitudes from MB,i = mB,i � µ(zi) [where
µ(zi) = 5 log

10

⇥
1+zi
10 pc

R
zi

0

cdz

H(z)

⇤
is the distance modulus

for the spatially flat RW metric and mB,i is the mea-
sured apparent magnitude of the supernovae at redshift
zi (zi > 0.01)] using the distance modulus correspond-
ing to the ⇤CDM Planck 2018 curve in Fig. 3, which
are in tension with M

R20

B
from Cepheid calibrators (see

black error bars in Fig. 4 and the caption of the figure
for information about the mB,i data that we used). On
the other hand, we see from the figure that, for z† = 2.3
(red bars) (i.e., when ⇤sCDM agrees with the TRGB
H0 measurement) the inferred MB,i values are systemat-
ically shifted upwards, relaxing the tension with M

R20

B
,

and for z† = 1.5 (blue bars) (i.e., when ⇤sCDM agrees
with the SH0ES H0 measurement) the estimated abso-
lute magnitudes from ⇤sCDM are in excellent agreement
with M

R20

B
. It is no surprise that ⇤sCDM results in

greater MB,i values compared to ⇤CDM for z < z†, be-
cause it is guaranteed that, compared to ⇤CDM with
the same DM (z⇤) and ⌦m0h

2 values, ⇤sCDM has greater
H(z < z†) values making its µ(z < z†) smaller. A subtler
point is that, although H(z > z†) is smaller for ⇤sCDM,
it will keep resulting in greater MB,i values up to z ⇠ z⇤
since the smaller value of the µ(z) of ⇤sCDM catches up
to that of ⇤CDM only at the redshift to which their an-
gular diameter distance is equal, i.e., at last scattering for
which DM (z⇤) is the same among these models. In addi-
tion, since smaller z† values amplify the above-mentioned
deviance of ⇤sCDM, MB,i are inversely correlated with
z† just as H0 is. An important point is that ⇤sCDM not
only systematically results in higherMB,i values, but also
respects the internal consistency of the SH0ES measure-
ments by simultaneously matching their H0 and MB con-
straints [73–76, 146, 147]. This is not true in general for
models with deviations from ⇤CDM at low redshifts, e.g.,
models with a dynamical DE equation-of-state parame-
ter, or models of smoothly nonminimally interacting DE
[145, 146, 151–154]; however, see Ref. [155] for an analysis
in this context excluding CMB data, and Refs. [156–159]
for astrophysical (rather than cosmological) approaches
addressing the MB tension.

As a final remark for this section, we notice that the
condition for an ever-expanding Universe given in Eq. (5)
implies

z
(min)

† =

 
h
2

(max)

!m

� 1

! 1
3

� 1, (8)

Figure 4. Inferred SnIa absolute magnitudes MB,i = mB,i �
µ(zi) of the binned Pantheon sample containing SnIa appar-
ent magnitudes mB,i (with 68% C.L. error bars) [150] for the
distance moduli µ(zi) assuming z† = 1.5 (blue) (which is in
excellent agreement with the SH0ES H0 value), z† = 2.3 (red)
(which is in excellent agreement with the TRGB H0 value),
and ⇤CDM Planck 2018 (black), all calculated using the cor-
responding H(z) functions given in Fig. 3 with matching col-
ors. The grey bar is the 68% C.L. constraint from Cepheid
calibrations [146].

where !m ⌘ ⌦m0h
2 / ⇢m0 and h

2

(max)
is the maxi-

mum h value attainable while satisfying the constraint
on DM (z⇤) by the ever-expanding ⇤sCDM Universe for

a given !m. This also determines ⌦(min)

m , and thereby

Figure 5. We solve numerically that z
(min)
† ⇡ 1.1. The point

of intersection of the straigt line (orange) and the curve (blue),
is the solution of Eq. (8).
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Figure 2. H0 versus z† for the ⇤sCDM model (solid curve),
and the ⇤CDM model (dashed line). The values are cal-
culated by fixing DM (z⇤) and ⇢m(z⇤) (and hence ⇢m0) to
that of ⇤CDM using the mean values of the Planck 2018
TT,TE,EE+lowE+lensing results [6]. The gray band is
the model-independent TRGB measurement H0 = 69.8 ±
0.8 km s�1Mpc�1 [77] and the blue band is the Cepheid mea-
surement H0 = 74.03± 1.42 km s�1Mpc�1 [75].

values of H0 compared to ⇤CDM, and z† is inversely
correlated with H0. Such greater values are a direct con-
sequence of the sudden drop in H(z) due to the neg-
ative cosmological constant for z > z† as explained in
the Introduction. Additionally, as seen in the top panel
of Fig. 3, the drop in H(z) due to the sign switch al-
lows ⇤sCDM to better agree with the Ly-↵ data; how-
ever, this amelioration of the Ly-↵ discrepancy disap-
pears immediately for z† & 2.4. Moreover, as z† in-
creases, H0 decreases, approaching the value of ⇤CDM
as z† ! 1. This is because of two reasons: first, as
z† increases, the portion of the DM (z⇤) integral that is
over negative values of ⇤s decreases and hence requires
less compensation from the positive ⇤s portion including
H0; second, as z† increases, the sign-switching feature
of ⇤s becomes rapidly less e↵ective since, for large z†,
matter is the dominant energy component of the Uni-
verse at the time of the sign switch and the e↵ect of
negative ⇤s on the evolution of H(z) is negligible. If
we consider z† = 3, just before the cosmological con-
stant becomes negative (z ! z

�
† ), the matter already

is by far the dominant component of the Universe, viz.,
⌦m(z = 3) ⇡ 0.96 corresponding to only |⌦⇤s/⌦m| ⇡
0.04. It is intriguing that, for z† = 2.3, which is almost
as high as z† can get without losing the improved agree-
ment with the Ly-↵ data, the H0 value is in excellent
agreement with H0 = 69.8 ± 0.8 km s�1Mpc�1 [77] (re-

Figure 3. Comoving Hubble parameter and the comoving
angular diameter distance versus redshift for various z† val-
ues for the ⇤sCDM model. All of the plots are drawn
by fixing DM (z⇤) and ⇢m(z⇤) (and hence fixing ⇢m0) to
that of the ⇤CDM model using mean values of the Planck

2018 TT,TE,EE+lowE+lensing results. We consider the
observational H(z) values (blue error bars), H0 = 69.8 ±
0.8 km s�1Mpc�1 from the TRGB [77], consensus Galaxy
BAO (from ze↵ = 0.38, 0.51, 0.61) and DR14 Ly-↵ BAO
(from ze↵ = 2.34, 2.35) [84, 85, 148].

vised as H0 = 69.6± 0.8 km s�1Mpc�1 in Ref. [79]) from
a recent calibration of the tip of the red giant branch
(TRGB) applied to type Ia supernovae. Both of these ef-
fects on H0 and H(z ⇡ 2.34) suggest that ⇤sCDM might
be most e↵ective for z† . 2.34. In line with this, as
Fig. 2 demonstrates, H0 is greater for smaller values of
z†; for z† = 1.5, H0 goes up to ⇡ 74.5 km s�1 Mpc�1, so
z† > 1.5 covers all the recent local measurements of H0,
including the largest H0 estimations by the SH0ES Col-
laboration (see Refs. [73–79]). However, looking at the
bottom panel of Fig. 3, we see that as z† gets smaller,
a greater tension with the comoving angular diameter
distance measurements from Galaxy BAO data is gener-
ated. In fact, Fig. 3 seems to suggest that the smaller
the value of z†, the greater the tension with the Galaxy
BAO data, and the extent of this e↵ect in limiting the
increase in H0 is not clear without a robust observational
analysis.

The discrepancy of the latest SH0ES H0 determina-
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Figure 2. H0 versus z† for the ⇤sCDM model (solid curve), and the ⇤CDM model (dashed line). The values are calculated by
fixingDM (z⇤) and ⇢m(z⇤) (and hence ⇢m0) to that of ⇤CDM using the mean values of the Planck 2018 TT,TE,EE+lowE+lensing
results [6]. The gray band is the model-independent TRGB measurement H0 = 69.8± 0.8 km s�1Mpc�1 [77] and the blue band
is the Cepheid measurement H0 = 74.03± 1.42 km s�1Mpc�1 [75].

used by the SH0ES Collaboration to obtain MB and H0; thus, if ⇤sCDM is to resolve the SH0ES H0 tension, it is
conceivable that it will also be in good agreement with the SH0ES MB measurement [146, 147].
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The figures are plotted by fixing DM (z⇤) and ⇢m(z⇤) (and hence ⇢m0) to that of ⇤CDM using the mean values of
the Planck 2018 TT,TE,EE+lowE+lensing results.
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compared to ⇤CDM, and z† is inversely correlated with H0. Such greater values are a direct consequence of the sudden
drop in H(z) due to the negative cosmological constant for z > z† as explained in the Introduction. Additionally,
as seen in the top panel of Fig. 3, the drop in H(z) due to the sign switch allows ⇤sCDM to better agree with the
Ly-↵ data; however, this amelioration of the Ly-↵ discrepancy disappears immediately for z† & 2.4. Moreover, as
z† increases, H0 decreases, approaching the value of ⇤CDM as z† ! 1. This is because of two reasons: first, as
z† increases, the portion of the DM (z⇤) integral that is over negative values of ⇤s decreases and hence requires less
compensation from the positive ⇤s portion including H0; second, as z† increases, the sign-switching feature of ⇤s

becomes rapidly less e↵ective since, for large z†, matter is the dominant energy component of the Universe at the
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the place of the oscillations will be constrained (possibly
amplified due to overfitting) by these local data.

In addition to the oscillations that arise from fixing the
pre-recombination universe and hence DM (z⇤) to that
of ⇤CDM, if one also respects the success of ⇤CDM in
the late universe (z ⇠ 0), we show that, the deviations
from the Hubble radius, H�1(z), of ⇤CDM are described
by localized oscillatory functions, namely, wavelets, and,
these wavelets should satisfy the admissibility condition.
Admissible wavelets are oscillatory functions with a van-
ishing integral over their whole range, and either have
compact support or vanish approximately outside of a
compact set of their parameters [61]. They can generi-
cally be obtained from derivatives of probability distribu-
tions but are by no means limited to this method. In cos-
mology, the wavelets have been used in various contexts.
The wavelet transforms have been used in analyzing the
CMB signals [62–64], and analyzing the large-scale struc-
ture of the universe (to capture its non-Gaussian infor-
mation content) [65–69]; also, see Ref. [70] and references
therein for some applications of wavelets in cosmology
and astrophysics. Wavelets have also been considered
for investigating possible oscillatory deviations in the DE
EoS parameter from minus unity describing the cosmo-
logical constant [49]; however, note that, their approach
of characterizing the oscillations of the EoS parameter
with wavelets is fundamentally di↵erent from the central
idea in this paper that deviations from H

�1

⇤CDM
(z) should

be described by admissible wavelets. Such deviations in
the Hubble radius may also be described by wavelet os-
cillations in the EoS parameter, but, they may also cor-
respond to much more violent behaviours with singular-
ities, or even correspond to a cosmological constant if
the wiggles in the Hubble radius are not attributed to
the DE. Here, we show that models whose deviations
from ⇤CDM are described by admissible wavelets on top
of H

�1

⇤CDM
(z) constitute a family of cosmological mod-

els that are in excellent agreement with the CMB mea-
surements; and, discuss how even the simplest wavelets
can lead to non-trivial behaviours in the Hubble parame-
ter describing the BAO measurements without excessive
number of free parameters. We also discuss that the same
deviations from H

�1

⇤CDM
(z) can originate from many dif-

ferent extensions in fundamental physics: modified the-
ories of gravity, dynamical or non-minimally interacting
DE etc.; and, we expose through examples, how the be-
haviour of some functions relevant to the source phenom-
ena can be even more non-trivial. For example, if the
deviations from H

�1

⇤CDM
(z) are attributed to DE, the os-

cillations of the wavelet may cause the DE density to
oscillate with a large enough amplitude so that the den-
sity attains negative values, resulting in divergences in its
EoS parameter. Note that, while the same background
dynamics may originate from di↵erent extensions, it may
be possible to di↵erentiate between these scenarios as we
show by comparing the implications of attributing the de-
viations to the gravitational “constant”, with attributing
them to the DE.

II. WAVELETS ON TOP OF THE STANDARD
COSMOLOGICAL MODEL’S HUBBLE RADIUS

We begin with the fact that the angular scale of the
sound horizon at last scattering,

✓⇤ =
r⇤

DM (z⇤)
, (1)

is measured almost model-independently, e.g., 100✓⇤ =
1.04110±0.00031 (⇤CDM Planck18), with a precision of
0.03%, where r⇤ is the comoving sound horizon at last
scattering, and DM (z⇤) is the comoving angular diame-
ter distance out to last scattering [3]. Then, fixing the
pre-recombination physics to that of the standard cos-
mological model, i.e., ⇤CDM,

r⇤ =

Z 1

z⇤

cs(z)

H⇤CDM(z)
dz (2)

is also determined, viz., r⇤ = 144.43± 0.26Mpc (⇤CDM
Planck18). Here cs(z) is the sound speed in the plasma
and z⇤ ⇡ 1090 is the redshift of last scattering (red-
shift for which the optical depth to Thomson scattering
reaches unity) and H⇤CDM(z) is the Hubble parameter
of the standard cosmological model:

3H2

⇤CDM
(z) = ⇢m0(1 + z)3 + ⇢r0(1 + z)4 + ⇢⇤, (3)

where ⇢m0, ⇢r0, and ⇢⇤ are the present-day energy den-
sities corresponding to those of the pressureless matter
(m), the radiation (r), and the cosmological constant
(⇤)—or, equivalently, the usual vacuum energy of the
quantum field theory. We work, for convenience, in units
for which the Newton’s constant GN = 1/8⇡ and the
speed of light c = 1 unless they are shown explicitly.
Here and in what follows, the subscript 0 denotes the
present-day (z = 0) value of any quantity. While the val-
ues of these energy densities are subject to observational
constraints, for the rest of this paper, we will assume
them to be fixed (but unknown) values for which

DM (z⇤) = c

Z
z⇤

0

dz

H⇤CDM(z)
(4)

is consistent with Eqs. (1) and (2), and ⇢m0 is compatible
with the positions and relative heights of the peaks in the
CMB power spectrum and ⇢r0 is compatible with the ob-
served CMB monopole temperature and standard model
of particle physics. This ensures the basic consistency of
⇤CDM with the CMB data at the background level.
Assuming H⇤CDM(z) accurately describes the pre-

recombination universe (hence r⇤ is known), for a uni-
verse described by the spatially flat RW metric, the co-
moving angular diameter distance to z⇤,

DM (z⇤) = c

Z
z⇤

0

dz

H(z)
, (5)

of any model described by the Hubble parameter H(z), is
strictly constrained almost model-independently through

Angular scale of the sound horizon at last scattering
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the place of the oscillations will be constrained (possibly
amplified due to overfitting) by these local data.

In addition to the oscillations that arise from fixing the
pre-recombination universe and hence DM (z⇤) to that
of ⇤CDM, if one also respects the success of ⇤CDM in
the late universe (z ⇠ 0), we show that, the deviations
from the Hubble radius, H�1(z), of ⇤CDM are described
by localized oscillatory functions, namely, wavelets, and,
these wavelets should satisfy the admissibility condition.
Admissible wavelets are oscillatory functions with a van-
ishing integral over their whole range, and either have
compact support or vanish approximately outside of a
compact set of their parameters [61]. They can generi-
cally be obtained from derivatives of probability distribu-
tions but are by no means limited to this method. In cos-
mology, the wavelets have been used in various contexts.
The wavelet transforms have been used in analyzing the
CMB signals [62–64], and analyzing the large-scale struc-
ture of the universe (to capture its non-Gaussian infor-
mation content) [65–69]; also, see Ref. [70] and references
therein for some applications of wavelets in cosmology
and astrophysics. Wavelets have also been considered
for investigating possible oscillatory deviations in the DE
EoS parameter from minus unity describing the cosmo-
logical constant [49]; however, note that, their approach
of characterizing the oscillations of the EoS parameter
with wavelets is fundamentally di↵erent from the central
idea in this paper that deviations from H
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(z) should

be described by admissible wavelets. Such deviations in
the Hubble radius may also be described by wavelet os-
cillations in the EoS parameter, but, they may also cor-
respond to much more violent behaviours with singular-
ities, or even correspond to a cosmological constant if
the wiggles in the Hubble radius are not attributed to
the DE. Here, we show that models whose deviations
from ⇤CDM are described by admissible wavelets on top
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(z) constitute a family of cosmological mod-

els that are in excellent agreement with the CMB mea-
surements; and, discuss how even the simplest wavelets
can lead to non-trivial behaviours in the Hubble parame-
ter describing the BAO measurements without excessive
number of free parameters. We also discuss that the same
deviations from H
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(z) can originate from many dif-

ferent extensions in fundamental physics: modified the-
ories of gravity, dynamical or non-minimally interacting
DE etc.; and, we expose through examples, how the be-
haviour of some functions relevant to the source phenom-
ena can be even more non-trivial. For example, if the
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cillations of the wavelet may cause the DE density to
oscillate with a large enough amplitude so that the den-
sity attains negative values, resulting in divergences in its
EoS parameter. Note that, while the same background
dynamics may originate from di↵erent extensions, it may
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show by comparing the implications of attributing the de-
viations to the gravitational “constant”, with attributing
them to the DE.
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We begin with the fact that the angular scale of the
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is measured almost model-independently, e.g., 100✓⇤ =
1.04110±0.00031 (⇤CDM Planck18), with a precision of
0.03%, where r⇤ is the comoving sound horizon at last
scattering, and DM (z⇤) is the comoving angular diame-
ter distance out to last scattering [3]. Then, fixing the
pre-recombination physics to that of the standard cos-
mological model, i.e., ⇤CDM,
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is also determined, viz., r⇤ = 144.43± 0.26Mpc (⇤CDM
Planck18). Here cs(z) is the sound speed in the plasma
and z⇤ ⇡ 1090 is the redshift of last scattering (red-
shift for which the optical depth to Thomson scattering
reaches unity) and H⇤CDM(z) is the Hubble parameter
of the standard cosmological model:

3H2

⇤CDM
(z) = ⇢m0(1 + z)3 + ⇢r0(1 + z)4 + ⇢⇤, (3)

where ⇢m0, ⇢r0, and ⇢⇤ are the present-day energy den-
sities corresponding to those of the pressureless matter
(m), the radiation (r), and the cosmological constant
(⇤)—or, equivalently, the usual vacuum energy of the
quantum field theory. We work, for convenience, in units
for which the Newton’s constant GN = 1/8⇡ and the
speed of light c = 1 unless they are shown explicitly.
Here and in what follows, the subscript 0 denotes the
present-day (z = 0) value of any quantity. While the val-
ues of these energy densities are subject to observational
constraints, for the rest of this paper, we will assume
them to be fixed (but unknown) values for which
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is consistent with Eqs. (1) and (2), and ⇢m0 is compatible
with the positions and relative heights of the peaks in the
CMB power spectrum and ⇢r0 is compatible with the ob-
served CMB monopole temperature and standard model
of particle physics. This ensures the basic consistency of
⇤CDM with the CMB data at the background level.
Assuming H⇤CDM(z) accurately describes the pre-

recombination universe (hence r⇤ is known), for a uni-
verse described by the spatially flat RW metric, the co-
moving angular diameter distance to z⇤,
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Z
z⇤

0

dz

H(z)
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of any model described by the Hubble parameter H(z), is
strictly constrained almost model-independently through
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the place of the oscillations will be constrained (possibly
amplified due to overfitting) by these local data.

In addition to the oscillations that arise from fixing the
pre-recombination universe and hence DM (z⇤) to that
of ⇤CDM, if one also respects the success of ⇤CDM in
the late universe (z ⇠ 0), we show that, the deviations
from the Hubble radius, H�1(z), of ⇤CDM are described
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ishing integral over their whole range, and either have
compact support or vanish approximately outside of a
compact set of their parameters [61]. They can generi-
cally be obtained from derivatives of probability distribu-
tions but are by no means limited to this method. In cos-
mology, the wavelets have been used in various contexts.
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(m), the radiation (r), and the cosmological constant
(⇤)—or, equivalently, the usual vacuum energy of the
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with the positions and relative heights of the peaks in the
CMB power spectrum and ⇢r0 is compatible with the ob-
served CMB monopole temperature and standard model
of particle physics. This ensures the basic consistency of
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Comoving sound horizon at last scattering Comoving angular diameter distance out to last scattering

100θ∗ = 1.04110 ± 0.00031 (ΛCDM PL18)  r∗ = 144.43 ± 0.26 Mpc (ΛCDM PL18) DM (z∗) = 13872.83 ± 25.31 Mpc (ΛCDM PL18)
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Table I. Constraints (68% C.L.) on the free and some derived parameters of the ⇤sCDM and standard ⇤CDM models for
CMB and CMB+BAO data. The parameter H0 is measured in units of km s�1 Mpc�1. In the last three rows, the best fit
(�2 lnLmax), the log-Bayesian evidence (lnZ), and the relative log-Bayesian evidence � lnZ = lnZreference � lnZ are listed.

Data set CMB CMB+BAO

⇤CDM ⇤sCDM ⇤sCDM+z† = 2.32 ⇤CDM ⇤sCDM ⇤sCDM+z† = 2.32

102!b 2.235± 0.015 2.238± 0.015 2.238± 0.015 2.244± 0.013 2.231± 0.014 2.230± 0.013

!c 0.1201± 0.0014 0.1197± 0.0013 0.1199± 0.0013 0.1189± 0.0009 0.1208± 0.0011 0.1209± 0.0009

100✓s 1.04090± 0.00031 1.04093± 0.00030 1.04091± 0.00031 1.04102± 0.00029 1.04081± 0.00029 1.04080± 0.00029

ln
�
1010As

�
3.044± 0.016 3.043± 0.016 3.043± 0.016 3.045± 0.016 3.043± 0.016 3.043± 0.016

ns 0.9646± 0.0043 0.9657± 0.0044 0.9655± 0.0044 0.9673± 0.0037 0.9633± 0.0039 0.9632± 0.0036

⌧reio 0.0543± 0.0078 0.0542± 0.0078 0.0541± 0.0078 0.0559± 0.0078 0.0530± 0.0077 0.0526± 0.0075

z† — unconstrained [2.32] — 2.44± 0.29 [2.32]

⌦m 0.3162± 0.0084 0.2900± 0.0160 0.2967± 0.0086 0.3090± 0.0059 0.3035± 0.0062 0.3029± 0.0060

H0 67.29± 0.60 70.22± 1.78 69.42± 0.71 67.81± 0.44 68.82± 0.55 68.91± 0.48

�8 0.8117± 0.0076 0.8223± 0.0098 0.8186± 0.0074 0.8090± 0.0073 0.8207± 0.0080 0.8215± 0.0071

S8 0.8332± 0.0163 0.8071± 0.0210 0.8138± 0.0166 0.8219± 0.0127 0.8255± 0.0128 0.8264± 0.0126

�2 lnLmax 1386.52 1385.73 1386.56 1394.32 1393.77 1393.54

lnZ �1424.19 �1424.22 �1423.50 �1431.46 �1432.77 �1431.89

� lnZ 0.69 0.72 0 0 1.31 0.43

the CMB data and then the combined CMB+BAO data.

Table I displays the constraints at 68% confidence
level (CL) on the free parameters—102!b, !c, 100 ✓s,
ln
�
1010As

�
, ns, ⌧reio, and z†—as well as some derived

parameters—the dust density parameter today ⌦m, the
Hubble constant H0, the amplitude of matter fluctuation
on 8h�1 Mpc comoving scale �8, and the combination
S8 ⌘ �8

p
⌦m/0.3—from CMB and CMB+BAO data

sets separately. We notice tight constraints on all of the
model parameters from the combined CMB+BAO data,
as expected. The additional parameter z† in ⇤sCDM is
not constrained by the CMB data alone, as may also be
seen from Fig. 7 where the one-dimensional marginal-
ized distributions of z† are shown from the CMB and
CMB+BAO data.

In Fig. 7, we see that the one-dimensional marginalized
distribution for z† is quite flat for the CMB-only analysis
(the green curve). The CMB data is insensitive to the
value of z† and cannot constrain it, as mentioned in Ta-
ble I, because for any z† 2 [1.5, 3] with !b + !c ⇠ 0.14,
there exists a ⇤s0 value for which the comoving angular
diameter distance to last scattering fits the CMB mea-
surements. When the BAO data are included in the anal-
ysis (the red curve), however, the shape of the distribu-
tion changes dramatically, and we see a clear peak at
z† ⇡ 2.3. This is in line with the discussions in the previ-
ous section regarding the Ly-↵ and Galaxy BAO (SDSS
DR14) data. We read o↵ from Fig. 7 that z† must be
larger than approximately 1.75. The existence of a ro-
bust lower bound for z† is no surprise, as we anticipated
in the previous section from Fig. 3 that smaller z† values
correspond to higher tension with respect to the Galaxy

BAO measurements. This behavior, in turn, decreases
the probability of z† for values smaller than z† ⇡ 2.3
just before (in redshift) the redshift of the Ly-↵ mea-
surements from z ⇡ 2.34. On the other hand, we also
see that there is a strong preference for z† . 2.4 since
for these z† values the ⇤sCDM model has substantially
better agreement with the Ly-↵ measurements, which is
immediately lost for z† & 2.4; just after (in redshift) the
redshift of the Ly-↵ measurements from z ⇡ 2.34, there
is still a plateau-like tail for z† & 2.4 that is reminiscent
of the green curve with the addition of a noticeable but
insignificant trend towards larger z† values. We refer the
readers to Ref. [44] for a similar but more pronounced
behavior caused by the Ly-↵ data (BOSS DR11) in gDE.
Once z† is restricted to this interval, the fit to the Ly-
↵ data is essentially una↵ected by the value of z† and
the data set is insensitive to z†, similar to the CMB-only
analysis, except for the slight preference of the larger
z† values due to the presence of the Galaxy BAO data.
In summary, the Ly-↵ data prefers z† < 2.34 and the
Galaxy BAO data pushes z† to large values as much as
possible; Fig. 7 reflects the competition between the two
results in the peak at z† ⇡ 2.3. The asymmetric shape
of the posterior for z† that is not suitable to be approx-
imated by a Gaussian or another standard distribution
renders it not easily interpretable. For this reason, we
also study a restriction of the ⇤sCDM model denoted
by “⇤sCDM+z† = 2.32” for which the only di↵erence
compared to ⇤sCDM is that z† is fixed to 2.32, leaving
6 free parameters behind as in ⇤CDM. The justification
for our choice z† = 2.32 is as follows. In Ref. [44], it
was the mean value of the constraints on z† (denoted by
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Figure 11. H(z)/(1 + z) versus z with 68% and 95% error regions in case of CMB (left panel) and CMB+BAO (right panel)
data, showing how the Ly-↵ data tension is relaxed in the ⇤sCDM model compared to the ⇤CDM model, wherein the red curve
stands for the ⇤CDM model corresponding to the mean values of the parameters. We show the observational H(z) values (error
bars): H0 = 69.8± 0.8 km s�1Mpc�1 from the TRGB H0 [77], H0 = 74.03± 1.42 km s�1Mpc�1 from the Cepheid measurement
H0 [75], BAO Galaxy consensus (from ze↵ = 0.38, 0.51, 0.61), and Ly-↵ DR14 (from ze↵ = 2.34, 2.35) [85, 148].

Figure 12. c ln(1 + z)1/DM (z) ⌘ D(z) versus z with 68% and 95% error regions in case of CMB (left panel) and CMB+BAO
(right panel) data. We show the observational H(z) values (error bars): H0 = 69.8±0.8 km s�1Mpc�1 from the TRGB H0 [77],
H0 = 74.03± 1.42 km s�1Mpc�1 from the Cepheid measurement H0 [75], BAO Galaxy consensus (from ze↵ = 0.38, 0.51, 0.61),
and Ly-↵ DR14 (from ze↵ = 2.34, 2.35) [85, 148].

panel) and CMB+BAO (right panel) data sets, showing
how the discrepancy with the Ly-↵ measurements dis-
appears completely in ⇤sCDM compared to the ⇤CDM
model wherein we show the observational H(z) values
H0 = 69.8 ± 0.8 km s�1Mpc�1 from the TRGB H0 [77],

H0 = 74.03± 1.42 km s�1Mpc�1 from the local measure-
ments using Cepheid calibrators [75], BAO Galaxy con-
sensus (from e↵ective redshifts ze↵ = 0.38, 0.51, 0.61)
and Ly-↵ DR14 (from e↵ective redshifts ze↵ = 2.34, 2.35)
[85, 148]. The inclusion of the BAO data in the analysis
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Figure 7. One-dimensional marginalized distributions of the
additional free parameter z† of the ⇤sCDM model.

z⇤ there) both when � was free and was chosen with a
large negative value making the gDE density behave like
a step function imitating a sign-switching cosmological
constant. Also, z† = 2.32 is just slightly smaller than
the redshift of the Ly-↵ measurements z ⇡ 2.34, and
is supposed to provide better agreement with the Ly-↵
measurements; this value is also very close to both the
peak and the mean of the red posterior in Fig. 7. The
constraints on the ⇤sCDM+z† = 2.32 model parameters
are given in Table I.

In Fig. 8 we show the two-dimensional (68% and 95%
C.L.) marginalized distributions of H0 versus z† from
the CMB-only data set (green contours), and the com-
bined CMB+BAO data set (red contours). We no-
tice a negative correlation between these two parame-
ters, as expected (see Sec. IIA). Since z† is not con-
strained by the CMB-only data set, the green contours
scan the whole range of z†; also, as we anticipated
from Fig. 2, they encompass even the largest model-
independent measurements of H0 up to ⇠ 74 km s�1

Mpc�1. Due to their strong correlation, the constraints
on z† are also directly reflected in H0, and the exclu-
sion of low z† values by the Galaxy BAO data corre-
sponds to the exclusion of the highest H0 values. For
the CMB+BAO data set, 2.15 < z† < 2.73 at 68%
C.L., as can be read from Table I, and this prevents the
red contours from containing H0 values as high as the
green one, yet H0 = 68.82 ± 0.55 km s�1Mpc�1 (H0 =
68.91± 0.48 km s�1Mpc�1 for the ⇤sCDM+z† = 2.32) at
68% C.L., is larger than H0 = 67.81 ± 0.4 km s�1Mpc�1

(68% C.L.) of the ⇤CDM prediction, and in good agree-
ment with the model-independent TRGB measurement
H0 = 69.8± 0.8 km s�1Mpc�1 (68% C.L.) [77]. Since the
impact of the sign switch feature becomes less e↵ective for
larger z† values, both contours approach the ⇤CDM in-
terval of H0 for large z†, but the error margin is larger for
⇤sCDM due to the additional errors contributed by the
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Figure 8. Two-dimensional (68% and 95% C.L.) marginalized
distributions of H0 versus z† for the ⇤sCDM model, showing
a negative correlation between the two parameters, which im-
plies that smaller values of z† correspond to larger values of
H0.

uncertainty of the extra free parameter z†. Complimen-
tary to the discussion in this paragraph, in Fig. 9 we show
the two-dimensional (68% and 95% C.L.) marginalized
distributions of H0 versus ⌦m from CMB+BAO data,
which shows how the H0 tension is relaxed in ⇤sCDM
compared to ⇤CDM. There is a negative correlation be-
tween H0 and ⌦m for all three models. ⇤sCDM does not
overlap with ⇤CDM even at 95% C.L.; this separation
is even more pronounced when the z† = 2.32 restriction
is considered. Unsurprisingly, ⇤sCDM+z† = 2.32 is con-
tained within ⇤sCDM and is tightly constrained just like
⇤CDM which has the same number of free parameters.

We have discussed in Sec. II A that, within the ⇤sCDM
model, the amelioration of the SH0ES H0 tension is ac-
companied by an amelioration of theMB tension respect-
ing the internal consistency of the SH0ES measurements
of these parameters. We have shown with a prelimi-
nary analysis that MB,i values calculated by subtract-
ing the distance modulus from the apparent magnitudes
of the binned Pantheon sample [150] should be greater
for ⇤sCDM compared to the standard model. In this
section, we do the same MB,i calculations, but now we
compute the distance modulus values directly from our
data analysis; indeed, we see in Fig. 10 (the observational
counterpart of Fig. 4) that the ⇤sCDM models result in
MB,i values that are systematically higher than those
of ⇤CDM (as they do for H0 values) and have better
agreement with the M

R20

B
value (as they do with local

measurements of H0). For the CMB-only analysis in the
top panel, the unrestricted ⇤sCDM, which has the high-
est H0 value agreeing the best with the SH0ES value, has
also the best agreement with the M

R20

B
value among the

three models. When BAO is included in the data set, the
restricted ⇤sCDM, compared to the other two models,
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substantially tightens the constraints on H(z) for both
models. This also lowers the maximum H0 value con-
tained within the 2� contours for both models and this
e↵ect is more pronounced in the unrestricted ⇤sCDM
due to the truncation of the smaller z† values by the
Galaxy BAO data. Indeed, while the unrestricted model
is in partial agreement with the H0 value from the
Cepheid measurements for the CMB-only analysis, for
the CMB+BAO data set a significant tension appears,
but the model is still in very good agreement with the
H0 value from the TRGBmeasurements. For z . 2.3, the
mean H(z) curve of ⇤CDM is below both of the ⇤sCDM
models and for z . 1.5 it (including H0) is even ex-
cluded in the 95% C.L.. For z & 3, both ⇤sCDM models
strongly exclude the mean H(z) curve of ⇤CDM by pre-
ferring lower values, but the unrestricted ⇤sCDM has an
interval of compatibility with ⇤CDM for 2.3 . z . 3 at
the cost of losing its improved fit to the Ly-↵ data. It
is not clear from this figure how ⇤sCDM, compared to
the ⇤CDM model, responds to the Galaxy BAO data; as
we have discussed in the previous sections, the opposi-
tion of the Galaxy BAO data to the smaller z† values is
based on the comoving angular diameter distance DM (z)
measurements.

In Fig. 12 (the observational counterpart of the bot-
tom panel of Fig. 3) we show D(z) ⌘ c ln(1 + z)/DM (z)
versus z with probability regions up to 95% C.L. for both
⇤sCDM models, and the mean D(z) curve for the ⇤CDM
model. We see from the top left panel that the distribu-
tion for the unrestricted ⇤sCDM for the CMB-only anal-
ysis di↵uses to substantially higher values compared to
⇤CDM, and, is almost always above ⇤CDM; in fact, the
mean curve for ⇤CDM acts almost as a lower bound for
the 2� contours of ⇤sCDM. Note that the lowest parts
of the contours correspond to the highest redshifts for
the sign switch, i.e., to z† ⇠ 3. This behavior of ele-
vated D(z) translates into the preference for higher H0

values at z = 0 in the presence of the sign switch. When
the BAO data is included in the analysis, the posterior
changes very slightly around the Ly-↵ data and the im-
proved agreement is present for both data sets; in con-
trast, the inclusion of the BAO data strictly reduces the
spread of the distribution at lower z values and excludes
H0 & 70 km s�1Mpc�1 in the 2� CL, but the mean curve
for ⇤CDM still acts almost as a lower bound. This shows
that higher D(z) values compared to ⇤CDM are charac-
teristic of the ⇤sCDM model. For the ⇤sCDM+z† = 2.32
model, the story is very similar but less emphasized. The
spread of the posterior is thinner due to the absence
of the uncertainty contributed by z†, and including the
BAO data in the data set does not have substantial ef-
fects since the constraints from the BAO data on ⇤sCDM
are mostly due to the exclusion of the smaller z† by the
Galaxy BAO data as it was in Fig. 11. Although the
Galaxy BAO data does not prefer the lowest z† values
for which the D(z) plot is substantially elevated, this ef-
fect cannot be rephrased as “the larger the z†, the better
agreement with the Galaxy BAO data” as we anticipated
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Figure 13. Two-dimensional (68% and 95% C.L.) marginal-
ized distributions of S8 versus ⌦m from CMB data.

in the preliminary investigation in the previous section,
because it seems from Fig. 12 that D(z) values that are
slightly elevated compared to ⇤CDM would have better
agreement with it. Indeed, including the BAO data in the
analysis slightly elevates the plots of the ⇤CDM model.

Table I also presents the values for the matter fluctu-
ation amplitude parameter, �8. In the CMB-only analy-
sis, the �8 value for the ⇤sCDM model is slightly higher
than that of the ⇤CDM model. Including BAO data
in our analysis increases the �8 value for ⇤sCDM and
decreases it for ⇤CDM, resulting in an increased di↵er-
ence between the two models. It is important to include
⌦m in the discussions of �8 since there is a discordance
among various observational data in the �8 � ⌦m plane
within ⇤CDM that is usually quantified using S8. Pre-
dictions of S8 based on the CMB alone are in 2-3� tension
with the measurements from dynamical low-redshift cos-
mological probes (weak lensing, cluster counts, redshift-
space distortion) within the ⇤CDM model. This is re-
flected in the CMB-only analysis in Table I, in which the
value for ⇤CDM reads S8 = 0.8332±0.0163 compared to
S8 = 0.766+0.020

�0.014
(KiDS-1000 weak lensing) [171]. Note

that the measurement S8 = 0.804+0.032

�0.029
from the first-

year data of HSC SSP [90] and also S8 = 0.800+0.029

�0.027

from KiDS-450+GAMA [89] remove this discrepancy;
nonetheless, recent surveys still predict lower values, e.g.,
S8 = 0.776+0.017

�0.017
(DES weak lensing and galaxy clus-

tering) [172]. Similar to the situation with the Ly-↵
measurements, alleviating the S8 discrepancy within the
⇤CDM model and its minimal extensions tends to ex-
acerbate the H0 tension [68]; moreover, constraints on
S8 based on the Ly-↵ data are in agreement with the
weak lensing surveys which probe similar late-time red-
shift scales as the Ly-↵ measurements [88]. So, it is con-
ceivable that the ⇤sCDM model provides a remedy for
the S8 discrepancy while retaining the better fit to the
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Figure 9. Two-dimensional (68% and 95% C.L.) marginalized
distributions ofH0 versus ⌦m from CMB+BAO data, showing
how the H0 tension is relaxed in the ⇤sCDM model compared
to the ⇤CDM model wherein the horizontal gray band is for
the model-independent TRGB H0 measurement H0 = 69.8±
0.8 km s�1Mpc�1 [77].

has the better agreement with the SH0ES H0 value and
thus (as seen from the bottom panel of Fig. 10) also with
M

R20

B
. ⇤CDM, on the other hand, performs substan-

tially worse for both the CMB-only and the combined
CMB+BAO analyses. As the MB and SH0ES H0 ten-
sions are almost equivalent for ⇤sCDM, just like they are
for ⇤CDM, the Galaxy BAO data (which e↵ectively puts
an upper bound on the H0 values ⇤sCDM can achieve),
in parallel, also puts an upper bound on its MB,i pre-
dictions, limiting the success of the model in alleviating
these tensions.

We see that there are certain distinctions between the
CMB and the CMB+BAO analyses when parameters re-
lated to matter densities are considered. As seen from
Table I, the CMB-only analysis puts very similar con-
straints (within ⇠ 1� of each other) on !b, !c, and
hence !m ⌘ !b + !c for all three models, while the con-
straints on ⌦m vary among the models. In this case, all
three !b values present similar discrepancies compared
to the BBN constraint 102!b = 2.166 ± 0.019 (namely,
102!b = 2.166± 0.015± 0.011, where the first error term
is due to the uncertainty in the measurement of the pri-
mordial deuterium abundance and the second error term
is due to the uncertainty in the BBN calculations) [167].
Note that this BBN constraint is based on the d(p, �)3He
reaction rate computed in Ref. [168]. Interestingly, in-
cluding the BAO data in the analysis puts similar con-
straints on ⌦m (within ⇠ 1� of each other) for all three
models while letting !b and !c vary among the models.
This has some important consequences. First, the BAO
data pull !m = ⌦mh

2 towards smaller values for ⇤CDM
but towards greater values for both of the ⇤sCDM mod-
els; given the similar ⌦m values for all three, this re-

CMB

Figure 10. Observational counterpart of Fig. 4 for the CMB-
only (top panel) and combined CMB+BAO (bottom panel)
analyses. The constraints on the absolute magnitudes (MB,i)
are obtained from MB,i = mB,i�µ(zi) by using the apparent
magnitudes (mB,i) of the binned Pantheon SnIa sample [150]
and the constraints we obtained at 68% C.L. on the distance
modulus values µ(zi) for the corresponding SnIa data points.

sults in higher H0 values for the ⇤sCDM models com-
pared to ⇤CDM. Second, !b follows a reverse trend for
all models compared to !m, i.e., the BAO data pull !b to-
wards greater values for ⇤CDM while it is pulled towards
smaller values for both of the ⇤sCDM models. Thus,
with the inclusion of the BAO data, the discrepancy with
the BBN constraint for !b worsens for ⇤CDM while re-
laxes for the ⇤sCDM models. We wonder if this ame-
lioration for the ⇤sCDM model could be improved if the
Galaxy BAO data were not present in the analysis. Note
that in Ref. [167] they also presented the value 102!b =
2.235 ± 0.037 (namely, 102!b = 2.235 ± 0.016 ± 0.033)
when the empirical d(p, �)3He reaction rate in Ref. [169]
was used; even in this case, the ⇤sCDM models are in
better agreement with the BBN constraint for !b when
the CMB+BAO data set is considered.

In Fig. 11 (the observational counterpart of the top
panel of Fig. 3), obtained by using the fgivenx PYTHON
package [170], we show H(z)/(1+ z) versus z with prob-
ability regions up to 95% C.L. (the darker implies more
probable, as shown in the color bar) for CMB (left
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Figure 2. Two-dimensional marginalized probability posteriors of z† versus H0, MB , S8, DH(2.33)/rd (DH/rd at ze↵ = 2.33
relevant to the Ly-↵ measurements), t0, and !b in ⇤sCDM model from various combinations of the data sets. The vertical
grey bands are the constraints (68% CL) for the ⇤CDM model, where in the upper panels we consider only CMB+Pan+BAO
and in the lower panels CMB+Pan+BAO+MB since the vertical grey bands obtained for other combinations of data sets do
not di↵er visually. The vertical purple bands stand for the theoretical/direct observational estimations (at 68% CL) of the
corresponding parameters commonly used in the literature: HR21

0 = 73.04±1.04 km s�1 Mpc�1 [18]; MB = �19.244±0.037mag
(SH0ES) [113]; S8 = 0.766+0.020

�0.014 (WL+GC KiDS-1000 3⇥2pt) [129]; DH(2.33)/rd = 8.99±0.19 (for combined Ly-↵ data) [130];

tu = 13.50± 0.15Gyr (systematic uncertainties are not included) [131]; 102!LUNA
b = 2.233± 0.036 [117]. In addition, we show

vertical blue and brown bands for HTRGB
0 = 69.8±0.8 km s�1 Mpc�1 [112] and 102!PCUV21

b = 2.195±0.022 [132], respectively.
Note that the disjoint contours (around the horizontal z† = 2.33 dashed line) of ⇤sCDM for DH(2.33)/rd are as expected since
⇤s at z = 2.33 is negative for z† < 2.33 and positive for z† > 2.33.

A. H0 discrepancy

The most statistically significant and pressing tension
is in H0, between its direct local distance ladder mea-
surements and its estimations from the CMB data as-
suming the standard ⇤CDM model. More precisely,
there exists approximately 5� tension between its ⇤CDM
value H0 = 67.27 ± 0.60 km s�1 Mpc�1 (68% CL) [3] in-
ferred from Planck 2018 and the SH0ES measurement
H0 = 73.04± 1.04 km s�1 Mpc�1 (68% CL) [18] based on
the SNIa calibrated by Cepheid variables. This tension
reduces to a mild discrepancy of 2.5� (or 2.7�) when the
TRGB measurement H0 = 69.8±0.8 km s�1 Mpc�1 (68%
CL) [112] (or H0 = 69.8±0.6 km s�1 Mpc�1 [115], at 68%
CL) is considered.

Consistency with CMB requires that the presence of a
sign-switching cosmological constant instead of a regular
one always results in a higher H0 value inversely corre-
lated with z†—this behaviour is visible in the leftmost
panels of Fig. 2 (for a detailed explanation, see Ref. [85]
and particularly Figs. 2 and 8 therein). Hence, the higher
H0 values of ⇤sCDM compared to ⇤CDM in Tables II
and III for all six data sets are no surprise; and, as seen
from Table IV, for all six data sets, ⇤sCDM is in bet-
ter agreement with the SH0ES H0 measurement and is
compatible (less than 2� discrepancy) with the TRGB
H0 measurement having at most a 2� discrepancy in the
case of CMB+Pan+MB and only because it predicts too

high of an H0 value compared to TRGB. Also, note that,
the MB prior we use is that of SH0ES and this must be
kept in mind when the constraints on H0 in its presence
are compared with the TRGB H0 measurement. As seen
from Fig. 1, the MB prior clearly prefers a sign-switch
at lower redshifts z† . 2; thus, when the MB prior is
included in the data sets, the estimations of H0 within
⇤sCDM is higher compared to the same data sets with-
out the MB prior due to the inverse correlation of z† and
H0. This results in removal of the SH0ES H0 tension for
the CMB+Pan+MB and CMB+Pan+Ly-↵+MB cases.
In fact, for these cases, H0 predictions of ⇤sCDM are
high enough that they start introducing mild discrepan-
cies with the TRGB H0 measurement. In contrast, addi-
tion of the MB prior makes little to no di↵erence for the
⇤CDM model in amelioration of the SH0ES H0 tension.

However, for the CMB+Pan+BAO cases with or with-
out the MB prior, the preference of high z† values by
the lower redshift BAO hinders the success of ⇤sCDM
in ameliorating the discrepancies displayed in Table IV
including the SH0ES H0 tension—the opposition of the
low redshift BAO data (viz., consensus Galaxy BAO from
ze↵ = 0.38, 0.51, 0.61) to lower z† values and hence to
higher H0 values was discussed in Ref. [85]. Closely re-
lated to this, the H0 tension within ⇤CDM not only ex-
ists between the local H0 measurements and the infer-
ence of H0 from CMB, but also between the local H0

measurements and the BAO data set (combined with a
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Figure 11. H(z)/(1 + z) versus z with 68% and 95% error regions in case of CMB (left panel) and CMB+BAO (right panel)
data, showing how the Ly-↵ data tension is relaxed in the ⇤sCDM model compared to the ⇤CDM model, wherein the red curve
stands for the ⇤CDM model corresponding to the mean values of the parameters. We show the observational H(z) values (error
bars): H0 = 69.8± 0.8 km s�1Mpc�1 from the TRGB H0 [77], H0 = 74.03± 1.42 km s�1Mpc�1 from the Cepheid measurement
H0 [75], BAO Galaxy consensus (from ze↵ = 0.38, 0.51, 0.61), and Ly-↵ DR14 (from ze↵ = 2.34, 2.35) [85, 148].

Figure 12. c ln(1 + z)1/DM (z) ⌘ D(z) versus z with 68% and 95% error regions in case of CMB (left panel) and CMB+BAO
(right panel) data. We show the observational H(z) values (error bars): H0 = 69.8±0.8 km s�1Mpc�1 from the TRGB H0 [77],
H0 = 74.03± 1.42 km s�1Mpc�1 from the Cepheid measurement H0 [75], BAO Galaxy consensus (from ze↵ = 0.38, 0.51, 0.61),
and Ly-↵ DR14 (from ze↵ = 2.34, 2.35) [85, 148].

panel) and CMB+BAO (right panel) data sets, showing
how the discrepancy with the Ly-↵ measurements dis-
appears completely in ⇤sCDM compared to the ⇤CDM
model wherein we show the observational H(z) values
H0 = 69.8 ± 0.8 km s�1Mpc�1 from the TRGB H0 [77],

H0 = 74.03± 1.42 km s�1Mpc�1 from the local measure-
ments using Cepheid calibrators [75], BAO Galaxy con-
sensus (from e↵ective redshifts ze↵ = 0.38, 0.51, 0.61)
and Ly-↵ DR14 (from e↵ective redshifts ze↵ = 2.34, 2.35)
[85, 148]. The inclusion of the BAO data in the analysis
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Table II. Constraints (68% CL) on the free and some derived parameters of the ⇤sCDM and standard ⇤CDM models for
CMB+Pan, CMB+Pan+Ly-↵ and CMB+Pan+BAO data. In the last three rows, the best fit (�2 lnLmax), the log-Bayesian
evidence (lnZ), and the relative log-Bayesian evidence � lnZ = lnZreference � lnZ are listed.

Data set CMB+Pan CMB+Pan+Ly-↵ CMB+Pan+BAO
⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM

102!b 2.240± 0.015 2.241± 0.014 2.242± 0.013 2.241± 0.015 2.242± 0.013 2.235± 0.014

!c 0.1197± 0.0012 0.1196± 0.0011 0.1193± 0.0009 0.1196± 0.0011 0.1193± 0.0009 0.1206± 0.0010

100✓s 1.04191± 0.00029 1.04190± 0.00028 1.04191± 0.00029 1.04190± 0.00029 1.04194± 0.00028 1.04180± 0.00030

ln
�
1010As

�
3.047± 0.015 3.041± 0.014 3.047± 0.014 3.040± 0.015 3.047± 0.015 3.040± 0.014

ns 0.9662± 0.0042 0.9668± 0.0040 0.9669+0.0039
�0.0036 0.9668± 0.0041 0.9665± 0.0037 0.9644± 0.0037

⌧reio 0.0556± 0.0075 0.0533± 0.0075 0.0560± 0.0069 0.0528± 0.0077 0.0561± 0.0076 0.0515± 0.0073

z† — > 1.80 (95% CL) — 2.21+0.16
�0.38 — > 2.13 (95% CL)

MB [mag] �19.421± 0.014 �19.363+0.021
�0.037 �19.418± 0.011 �19.349± 0.028 �19.418± 0.012 �19.387± 0.015

⌦m 0.3129± 0.0071 0.2940+0.0120
�0.0093 0.3110± 0.0053 0.2899± 0.0097 0.3109± 0.0056 0.3039± 0.0058

!m 0.1427± 0.0011 0.1427± 0.0010 0.1424± 0.0008 0.1426± 0.0010 0.1424± 0.0009 0.1436± 0.0010

H0 [km/s/Mpc] 67.55± 0.53 69.68+0.77
�1.40 67.68± 0.40 70.17+0.96

�1.10 67.69+0.38
�0.43 68.74+0.49

�0.55

t0 [Gyr] 13.79± 0.02 13.65+0.06
�0.04 13.79± 0.02 13.62+0.09

�0.03 13.79± 0.02 13.71+0.03
�0.02

�8 0.8111+0.0056
�0.0063 0.8167+0.0059

�0.0067 0.8104± 0.0060 0.8182± 0.0066 0.8101± 0.0063 0.8167± 0.0062

S8 0.828± 0.013 0.809± 0.015 0.825± 0.010 0.804± 0.014 0.825± 0.011 0.822± 0.010

�2 lnLmax 1903.62 1902.50 1909.68 1903.44 1909.63 1909.53

lnZ �1937.82 �1938.02 �1944.53 �1939.75 �1944.51 �1944.76

� lnZ 0 0.20 4.78 0 0 0.25

Table III. Constraints (68% CL) on the free and some derived parameters of the ⇤sCDM and standard ⇤CDM models for
CMB+Pan, CMB+Pan+Ly-↵ and CMB+Pan+BAO data with the SH0ES MB prior. In the last three rows, the best fit
(�2 lnLmax), the log-Bayesian evidence (lnZ), and the relative log-Bayesian evidence � lnZ = lnZreference � lnZ are listed.

Data set CMB+Pan+MB CMB+Pan+Ly-↵+MB CMB+Pan+BAO+MB

⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM

102!b 2.256± 0.015 2.248± 0.014 2.253± 0.013 2.247+0.014
�0.013 2.255± 0.013 2.242± 0.014

!c 0.1181± 0.0011 0.1191± 0.0011 0.1183± 0.0008 0.1191± 0.0011 0.1181± 0.0009 0.1200+0.0010
�0.0011

100✓s 1.04208± 0.00029 1.04197± 0.00031 1.04204± 0.00028 1.04196± 0.00028 1.04207+0.00029
�0.00026 1.04186± 0.00028

ln
�
1010As

�
3.053+0.014

�0.017 3.039± 0.014 3.052+0.013
�0.016 3.041± 0.015 3.053+0.014

�0.016 3.041± 0.015

ns 0.9701± 0.0040 0.9687+0.0043
�0.0038 0.9697± 0.0035 0.9684± 0.0041 0.9702± 0.0035 0.9661± 0.0037

⌧reio 0.0601+0.0072
�0.0085 0.0526± 0.0074 0.0593+0.0064

�0.0079 0.0535± 0.0077 0.0603+0.0070
�0.0078 0.0524± 0.0076

z† — 1.78+0.14
�0.18 — 1.84+0.13

�0.21 — 2.36± 0.28

MB [mag] �19.399± 0.014 �19.290+0.026
�0.029 �19.402± 0.011 �19.299± 0.028 �19.399± 0.011 �19.366+0.013

�0.015

⌦m 0.3028± 0.0068 0.2716± 0.0084 0.3043± 0.0050 0.2743+0.0086
�0.0097 0.3030± 0.0051 0.2965± 0.0055

!m 0.1413± 0.0011 0.1422± 0.0010 0.1415± 0.0008 0.1422± 0.0011 0.1413± 0.0008 0.1431± 0.0010

H0 [km/s/Mpc] 68.31± 0.52 72.38+0.98
�1.10 68.19± 0.38 72.0± 1.1 68.29± 0.39 69.48+0.48

�0.55

t0 [Gyr] 13.76± 0.02 13.55± 0.05 13.76± 0.02 13.56+0.04
�0.04 13.76± 0.02 13.67± 0.03

�8 0.8090± 0.0064 0.8255+0.0072
�0.0081 0.8091+0.0054

�0.0063 0.8243± 0.0076 0.8092+0.0057
�0.0061 0.8176± 0.0063

S8 0.813± 0.012 0.785± 0.012 0.815± 0.010 0.788+0.012
�0.014 0.813± 0.010 0.813± 0.010

�2 lnLmax 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57

lnZ �1947.83 �1940.06 �1954.17 �1941.85 �1955.02 �1951.79

� lnZ 7.77 0 12.32 0 3.23 0

estimations, viz., HR21
0 = 73.04±1.04 km s�1 Mpc�1 [18]

and H
TRGB
0 = 69.8 ± 0.8 km s�1 Mpc�1 [112]; MB =

�19.244 ± 0.037mag (SH0ES) [113]; S8 = 0.766+0.020
�0.014

(WL+GC KiDS-1000 3 ⇥ 2pt) [129]; DH(2.33)/rd =
8.99 ± 0.19 (for the combined Ly-↵ data) [130]; t0 =

13.50 ± 0.27Gyr [131]; 102!LUNA
b = 2.233 ± 0.036 [117]

and 102!PCUV21
b = 2.195 ± 0.022 [132]. In what follows,

we discuss these tensions and how they are relaxed within
the ⇤sCDM model compared to the ⇤CDM model.
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Figure 1. One-dimensional marginalized posterior distribu-
tions of the parameter z† of the ⇤sCDM model, the redshift
at which the cosmological constant (⇤s) changes sign, for var-
ious data set combinations.

used in Ref. [85]), i.e., a negative cosmological constant
⇤s(z > z†) = �⇤s0 ⇠ �2.9 ⇥ 10�122

l
�2
Planck is consistent

with the CMB data. But when the SNIa data are in-
cluded in the analysis with CMB (see the green curve
in Fig. 1), the shape of the distribution changes, and
we find lower bound of z† > 1.77 and with the inclu-
sion of the Ly-↵ data (which favor z† values less than
⇠ 2.33) as well, we see a clear peak at z† ⇠ 2.2 with a
plateau-like tail for z† & 2.5, the region where the model
approaches ⇤CDM. However, with the inclusion of the
full BAO data, rather than only the Ly-↵ data, again
we find only a lower bound, z† > 2.13. This is because
the low-redshift BAO data tend to push z† to larger val-
ues, despite the opposition of the Ly-↵; this point was
discussed in Ref. [85] thoroughly, also see Section IVD.
We notice that including the MB prior in the analysis
has important consequences in the results. When the
MB prior is present, whether the Ly-↵ data are included
or not on top of CMB+Pan data, z† is very well con-
strained at z ⇡ 1.8 with ⇠ 10% precision at %68 CL
While the CMB+Pan+BAO data combination without
the MB prior is able to provide only a lower bound on z†,
with the MB prior it leads to a clear peak at z ⇡ 2.3 with
⇠ 10% precision at %68 CL, with a flat tail for z & 2.4
seems to have arisen from the preference of higher z† val-
ues of the low redshift BAO data.

In Ref. [85], no strong statistical evidence was found
to discriminate between the ⇤sCDM and ⇤CDM mod-
els in the analyses with neither the CMB data nor
the CMB+BAO data (estimates z† ⇠ 2.4). We see
in the current work that, without the MB prior, this
picture does not change for the cases CMB+Pan (esti-
mates z† & 1.8) and CMB+Pan+BAO (estimates z† &
2.1), while the ⇤sCDM model finds a strong evidence
(� lnZ ⇠ 5) against the standard ⇤CDM model for
the case CMB+Pan+Ly-↵ (estimates z† ⇠ 2.2); see Ta-
ble II. On the other hand, when we analyze the models
with the same data sets by including the MB prior that
corresponds to the SH0ES SNIa measurements [113], it
turns out that the ⇤sCDM model (estimates z† ⇠ 2)
is always preferred over the standard ⇤CDM model;

namely, ⇤sCDM finds very strong evidence (reaching
� lnZ ⇠ 12) against ⇤CDM by predicting z† ⇠ 1.8 for
both the CMB+Pan+MB and CMB+Pan+Ly-↵+MB

cases, and finds strong evidence (� lnZ ⇠ 3) by predict-
ing z† ⇠ 2.4 for the CMB+Pan+BAO+MB case; see Ta-
ble III. Hence, the relative log-Bayesian evidences are
significantly strengthened in favor of ⇤sCDM in all cases
with the inclusion of MB prior. Regarding the best fits
(�2 lnLmax), the inclusion of the MB prior results in a
substantial worsening (�2� lnLmax ⇠ 10) of ⇤CDM’s
fit to the data for all three data compilations; com-
pare Tables II and III. On the other hand, for ⇤sCDM,
there is no significant worsening (�2� lnLmax ⇠ 2) with-
out the full BAO data, and while it becomes noticeable
(�2� lnLmax ⇠ 6) when the full BAO data is included,
it still is milder compared to ⇤CDM. This implies that
⇤sCDM has much better consistency with the MB prior
than ⇤CDM and signals ⇤sCDM relaxes the MB ten-
sion and thus the closely related H0 tension as well.
Also, in both tables (Tables II and III), we see that the
expansion of CMB+Pan and CMB+Pan+MB analyzes
by including the Ly-↵ data makes a significant improve-
ment (⇠ 5) in the relative log-Bayesian evidence in favor
of ⇤sCDM, which indicates that ⇤sCDM is also highly
compatible with the Ly-↵ data. On the other hand,
when we expand the CMB+Pan and CMB+Pan+MB

analyzes by including the full BAO data listed in Table I
(equivalent to expanding the cases CMB+Pan+Ly-↵ and
CMB+Pan+Ly-↵+MB by adding the low-redshift BAO
data) we compromise on this improvement; namely, the
strong evidence (� lnZ ⇠ 5) from the CMB+Pan+Ly-
↵ data set in favor of ⇤sCDM is lost (� lnZ ⇠ 0)
in the CMB+Pan+BAO case, and the very strong ev-
idence (� lnZ ⇠ 12) from the CMB+Pan+Ly-↵+MB

data set in favor of ⇤sCDM is reduced to strong evidence
(� lnZ ⇠ 3) in the CMB+Pan+BAO+MB case. It is
worth mentioning here that the Ly-↵ data support z† val-
ues less than ⇠ 2.3, whereas some low redshift BAO data
prefer z† values greater than ⇠ 2.3, forcing the ⇤sCDM
model to its ⇤CDM limit (z† ! 1).

IV. RELAXING COSMOLOGICAL TENSIONS

As we discussed in the previous section, the ⇤sCDM
model generically finds better fit to the data compared
to the ⇤CDM model. Since the inclusion of the MB prior
and/or the Ly-↵ data in the data sets causes ⇤sCDM to
perform even better compared to ⇤CDM, we expect it to
resolve, or at least relax, the MB and the closely related
H0 tensions along with the Ly-↵ discrepancy. In Fig. 2,
we show the two-dimensional marginalized probability
posteriors of z† versus H0, MB , S8, DH(2.33)/rd (viz.,
the DH/rd at ze↵ = 2.33 relevant to the Ly-↵ measure-
ments), t0, and !b in ⇤sCDM model from various com-
binations of the data sets and in Table IV we quantify
the concordances/discordances between the ⇤CDM and
⇤sCDM models and the theoretical/direct observational
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Table II. Constraints (68% CL) on the free and some derived parameters of the ⇤sCDM and standard ⇤CDM models for
CMB+Pan, CMB+Pan+Ly-↵ and CMB+Pan+BAO data. In the last three rows, the best fit (�2 lnLmax), the log-Bayesian
evidence (lnZ), and the relative log-Bayesian evidence � lnZ = lnZreference � lnZ are listed.

Data set CMB+Pan CMB+Pan+Ly-↵ CMB+Pan+BAO
⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM

102!b 2.240± 0.015 2.241± 0.014 2.242± 0.013 2.241± 0.015 2.242± 0.013 2.235± 0.014

!c 0.1197± 0.0012 0.1196± 0.0011 0.1193± 0.0009 0.1196± 0.0011 0.1193± 0.0009 0.1206± 0.0010

100✓s 1.04191± 0.00029 1.04190± 0.00028 1.04191± 0.00029 1.04190± 0.00029 1.04194± 0.00028 1.04180± 0.00030

ln
�
1010As

�
3.047± 0.015 3.041± 0.014 3.047± 0.014 3.040± 0.015 3.047± 0.015 3.040± 0.014

ns 0.9662± 0.0042 0.9668± 0.0040 0.9669+0.0039
�0.0036 0.9668± 0.0041 0.9665± 0.0037 0.9644± 0.0037

⌧reio 0.0556± 0.0075 0.0533± 0.0075 0.0560± 0.0069 0.0528± 0.0077 0.0561± 0.0076 0.0515± 0.0073

z† — > 1.80 (95% CL) — 2.21+0.16
�0.38 — > 2.13 (95% CL)

MB [mag] �19.421± 0.014 �19.363+0.021
�0.037 �19.418± 0.011 �19.349± 0.028 �19.418± 0.012 �19.387± 0.015

⌦m 0.3129± 0.0071 0.2940+0.0120
�0.0093 0.3110± 0.0053 0.2899± 0.0097 0.3109± 0.0056 0.3039± 0.0058

!m 0.1427± 0.0011 0.1427± 0.0010 0.1424± 0.0008 0.1426± 0.0010 0.1424± 0.0009 0.1436± 0.0010

H0 [km/s/Mpc] 67.55± 0.53 69.68+0.77
�1.40 67.68± 0.40 70.17+0.96

�1.10 67.69+0.38
�0.43 68.74+0.49

�0.55

t0 [Gyr] 13.79± 0.02 13.65+0.06
�0.04 13.79± 0.02 13.62+0.09

�0.03 13.79± 0.02 13.71+0.03
�0.02

�8 0.8111+0.0056
�0.0063 0.8167+0.0059

�0.0067 0.8104± 0.0060 0.8182± 0.0066 0.8101± 0.0063 0.8167± 0.0062

S8 0.828± 0.013 0.809± 0.015 0.825± 0.010 0.804± 0.014 0.825± 0.011 0.822± 0.010

�2 lnLmax 1903.62 1902.50 1909.68 1903.44 1909.63 1909.53

lnZ �1937.82 �1938.02 �1944.53 �1939.75 �1944.51 �1944.76

� lnZ 0 0.20 4.78 0 0 0.25

Table III. Constraints (68% CL) on the free and some derived parameters of the ⇤sCDM and standard ⇤CDM models for
CMB+Pan, CMB+Pan+Ly-↵ and CMB+Pan+BAO data with the SH0ES MB prior. In the last three rows, the best fit
(�2 lnLmax), the log-Bayesian evidence (lnZ), and the relative log-Bayesian evidence � lnZ = lnZreference � lnZ are listed.

Data set CMB+Pan+MB CMB+Pan+Ly-↵+MB CMB+Pan+BAO+MB

⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM

102!b 2.256± 0.015 2.248± 0.014 2.253± 0.013 2.247+0.014
�0.013 2.255± 0.013 2.242± 0.014

!c 0.1181± 0.0011 0.1191± 0.0011 0.1183± 0.0008 0.1191± 0.0011 0.1181± 0.0009 0.1200+0.0010
�0.0011

100✓s 1.04208± 0.00029 1.04197± 0.00031 1.04204± 0.00028 1.04196± 0.00028 1.04207+0.00029
�0.00026 1.04186± 0.00028

ln
�
1010As

�
3.053+0.014

�0.017 3.039± 0.014 3.052+0.013
�0.016 3.041± 0.015 3.053+0.014

�0.016 3.041± 0.015

ns 0.9701± 0.0040 0.9687+0.0043
�0.0038 0.9697± 0.0035 0.9684± 0.0041 0.9702± 0.0035 0.9661± 0.0037

⌧reio 0.0601+0.0072
�0.0085 0.0526± 0.0074 0.0593+0.0064

�0.0079 0.0535± 0.0077 0.0603+0.0070
�0.0078 0.0524± 0.0076

z† — 1.78+0.14
�0.18 — 1.84+0.13

�0.21 — 2.36± 0.28

MB [mag] �19.399± 0.014 �19.290+0.026
�0.029 �19.402± 0.011 �19.299± 0.028 �19.399± 0.011 �19.366+0.013

�0.015

⌦m 0.3028± 0.0068 0.2716± 0.0084 0.3043± 0.0050 0.2743+0.0086
�0.0097 0.3030± 0.0051 0.2965± 0.0055

!m 0.1413± 0.0011 0.1422± 0.0010 0.1415± 0.0008 0.1422± 0.0011 0.1413± 0.0008 0.1431± 0.0010

H0 [km/s/Mpc] 68.31± 0.52 72.38+0.98
�1.10 68.19± 0.38 72.0± 1.1 68.29± 0.39 69.48+0.48

�0.55

t0 [Gyr] 13.76± 0.02 13.55± 0.05 13.76± 0.02 13.56+0.04
�0.04 13.76± 0.02 13.67± 0.03

�8 0.8090± 0.0064 0.8255+0.0072
�0.0081 0.8091+0.0054

�0.0063 0.8243± 0.0076 0.8092+0.0057
�0.0061 0.8176± 0.0063

S8 0.813± 0.012 0.785± 0.012 0.815± 0.010 0.788+0.012
�0.014 0.813± 0.010 0.813± 0.010

�2 lnLmax 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57

lnZ �1947.83 �1940.06 �1954.17 �1941.85 �1955.02 �1951.79

� lnZ 7.77 0 12.32 0 3.23 0

estimations, viz., HR21
0 = 73.04±1.04 km s�1 Mpc�1 [18]

and H
TRGB
0 = 69.8 ± 0.8 km s�1 Mpc�1 [112]; MB =

�19.244 ± 0.037mag (SH0ES) [113]; S8 = 0.766+0.020
�0.014

(WL+GC KiDS-1000 3 ⇥ 2pt) [129]; DH(2.33)/rd =
8.99 ± 0.19 (for the combined Ly-↵ data) [130]; t0 =

13.50 ± 0.27Gyr [131]; 102!LUNA
b = 2.233 ± 0.036 [117]

and 102!PCUV21
b = 2.195 ± 0.022 [132]. In what follows,

we discuss these tensions and how they are relaxed within
the ⇤sCDM model compared to the ⇤CDM model.
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Figure 1. One-dimensional marginalized posterior distribu-
tions of the parameter z† of the ⇤sCDM model, the redshift
at which the cosmological constant (⇤s) changes sign, for var-
ious data set combinations.

used in Ref. [85]), i.e., a negative cosmological constant
⇤s(z > z†) = �⇤s0 ⇠ �2.9 ⇥ 10�122

l
�2
Planck is consistent

with the CMB data. But when the SNIa data are in-
cluded in the analysis with CMB (see the green curve
in Fig. 1), the shape of the distribution changes, and
we find lower bound of z† > 1.77 and with the inclu-
sion of the Ly-↵ data (which favor z† values less than
⇠ 2.33) as well, we see a clear peak at z† ⇠ 2.2 with a
plateau-like tail for z† & 2.5, the region where the model
approaches ⇤CDM. However, with the inclusion of the
full BAO data, rather than only the Ly-↵ data, again
we find only a lower bound, z† > 2.13. This is because
the low-redshift BAO data tend to push z† to larger val-
ues, despite the opposition of the Ly-↵; this point was
discussed in Ref. [85] thoroughly, also see Section IVD.
We notice that including the MB prior in the analysis
has important consequences in the results. When the
MB prior is present, whether the Ly-↵ data are included
or not on top of CMB+Pan data, z† is very well con-
strained at z ⇡ 1.8 with ⇠ 10% precision at %68 CL
While the CMB+Pan+BAO data combination without
the MB prior is able to provide only a lower bound on z†,
with the MB prior it leads to a clear peak at z ⇡ 2.3 with
⇠ 10% precision at %68 CL, with a flat tail for z & 2.4
seems to have arisen from the preference of higher z† val-
ues of the low redshift BAO data.

In Ref. [85], no strong statistical evidence was found
to discriminate between the ⇤sCDM and ⇤CDM mod-
els in the analyses with neither the CMB data nor
the CMB+BAO data (estimates z† ⇠ 2.4). We see
in the current work that, without the MB prior, this
picture does not change for the cases CMB+Pan (esti-
mates z† & 1.8) and CMB+Pan+BAO (estimates z† &
2.1), while the ⇤sCDM model finds a strong evidence
(� lnZ ⇠ 5) against the standard ⇤CDM model for
the case CMB+Pan+Ly-↵ (estimates z† ⇠ 2.2); see Ta-
ble II. On the other hand, when we analyze the models
with the same data sets by including the MB prior that
corresponds to the SH0ES SNIa measurements [113], it
turns out that the ⇤sCDM model (estimates z† ⇠ 2)
is always preferred over the standard ⇤CDM model;

namely, ⇤sCDM finds very strong evidence (reaching
� lnZ ⇠ 12) against ⇤CDM by predicting z† ⇠ 1.8 for
both the CMB+Pan+MB and CMB+Pan+Ly-↵+MB

cases, and finds strong evidence (� lnZ ⇠ 3) by predict-
ing z† ⇠ 2.4 for the CMB+Pan+BAO+MB case; see Ta-
ble III. Hence, the relative log-Bayesian evidences are
significantly strengthened in favor of ⇤sCDM in all cases
with the inclusion of MB prior. Regarding the best fits
(�2 lnLmax), the inclusion of the MB prior results in a
substantial worsening (�2� lnLmax ⇠ 10) of ⇤CDM’s
fit to the data for all three data compilations; com-
pare Tables II and III. On the other hand, for ⇤sCDM,
there is no significant worsening (�2� lnLmax ⇠ 2) with-
out the full BAO data, and while it becomes noticeable
(�2� lnLmax ⇠ 6) when the full BAO data is included,
it still is milder compared to ⇤CDM. This implies that
⇤sCDM has much better consistency with the MB prior
than ⇤CDM and signals ⇤sCDM relaxes the MB ten-
sion and thus the closely related H0 tension as well.
Also, in both tables (Tables II and III), we see that the
expansion of CMB+Pan and CMB+Pan+MB analyzes
by including the Ly-↵ data makes a significant improve-
ment (⇠ 5) in the relative log-Bayesian evidence in favor
of ⇤sCDM, which indicates that ⇤sCDM is also highly
compatible with the Ly-↵ data. On the other hand,
when we expand the CMB+Pan and CMB+Pan+MB

analyzes by including the full BAO data listed in Table I
(equivalent to expanding the cases CMB+Pan+Ly-↵ and
CMB+Pan+Ly-↵+MB by adding the low-redshift BAO
data) we compromise on this improvement; namely, the
strong evidence (� lnZ ⇠ 5) from the CMB+Pan+Ly-
↵ data set in favor of ⇤sCDM is lost (� lnZ ⇠ 0)
in the CMB+Pan+BAO case, and the very strong ev-
idence (� lnZ ⇠ 12) from the CMB+Pan+Ly-↵+MB

data set in favor of ⇤sCDM is reduced to strong evidence
(� lnZ ⇠ 3) in the CMB+Pan+BAO+MB case. It is
worth mentioning here that the Ly-↵ data support z† val-
ues less than ⇠ 2.3, whereas some low redshift BAO data
prefer z† values greater than ⇠ 2.3, forcing the ⇤sCDM
model to its ⇤CDM limit (z† ! 1).

IV. RELAXING COSMOLOGICAL TENSIONS

As we discussed in the previous section, the ⇤sCDM
model generically finds better fit to the data compared
to the ⇤CDM model. Since the inclusion of the MB prior
and/or the Ly-↵ data in the data sets causes ⇤sCDM to
perform even better compared to ⇤CDM, we expect it to
resolve, or at least relax, the MB and the closely related
H0 tensions along with the Ly-↵ discrepancy. In Fig. 2,
we show the two-dimensional marginalized probability
posteriors of z† versus H0, MB , S8, DH(2.33)/rd (viz.,
the DH/rd at ze↵ = 2.33 relevant to the Ly-↵ measure-
ments), t0, and !b in ⇤sCDM model from various com-
binations of the data sets and in Table IV we quantify
the concordances/discordances between the ⇤CDM and
⇤sCDM models and the theoretical/direct observational
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Figure 2. Two-dimensional marginalized probability posteriors of z† versus H0, MB , S8, DH(2.33)/rd (DH/rd at ze↵ = 2.33
relevant to the Ly-↵ measurements), t0, and !b in ⇤sCDM model from various combinations of the data sets. The vertical
grey bands are the constraints (68% CL) for the ⇤CDM model, where in the upper panels we consider only CMB+Pan+BAO
and in the lower panels CMB+Pan+BAO+MB since the vertical grey bands obtained for other combinations of data sets do
not di↵er visually. The vertical purple bands stand for the theoretical/direct observational estimations (at 68% CL) of the
corresponding parameters commonly used in the literature: HR21

0 = 73.04±1.04 km s�1 Mpc�1 [18]; MB = �19.244±0.037mag
(SH0ES) [125]; S8 = 0.766+0.020

�0.014 (WL+GC KiDS-1000 3⇥2pt) [141]; DH(2.33)/rd = 8.99±0.19 (for combined Ly-↵ data) [142];

tu = 13.50± 0.15Gyr (systematic uncertainties are not included) [143]; 102!LUNA
b = 2.233± 0.036 [129]. In addition, we show

vertical blue and brown bands for HTRGB
0 = 69.8±0.8 km s�1 Mpc�1 [119] and 102!PCUV21

b = 2.195±0.022 [144], respectively.
Note that the disjoint contours (around the horizontal z† = 2.33 dashed line) of ⇤sCDM for DH(2.33)/rd are as expected since
⇤s at z = 2.33 is negative for z† < 2.33 and positive for z† > 2.33.

value H0 = 67.27 ± 0.60 km s�1 Mpc�1 (68% CL) [3] in-
ferred from Planck 2018 and the SH0ES measurement
H0 = 73.04± 1.04 km s�1 Mpc�1 (68% CL) [18] based on
the SNIa calibrated by Cepheid variables. This tension
reduces to a mild discrepancy of 2.5� (or 2.7�) when the
TRGB measurement H0 = 69.8±0.8 km s�1 Mpc�1 (68%
CL) [119] (or H0 = 69.8±0.6 km s�1 Mpc�1 [127], at 68%
CL), which is 2.5� (or 2.7�) tension with the SH0ES
measurement, is considered. There are in fact plenty of
other independent (at least partially) and direct H0 mea-
surements relying on di↵erent methods and astrophysical
observations [145–153] (see Ref. [15] for a further list of
direct H0 measurements). Almost all of these are sta-
tistically consistent with the latest SH0ES measurement,
but their error percentages are large compared to those
of SH0ES and TRGB measurements. Among these al-
ternatives, the time-delay related measurements (based
on Ref. [154]) stand out as they are independent of the
distance ladders on which SH0ES and TRGB H0 mea-
surements rely, and as they can provide error percentages
comparable to those of SH0ES and TRGB H0 measure-
ments; namely, H0 = 73.3+1.7

�1.8 of H0LiCOW [155] and
H0 = 74.2± 1.6 of TDCOSMO [156]—though, their low
error percentages require assumptions on the mass den-
sity profiles of the deflector galaxies to break the so-called
mass-sheet degeneracy, leaving the method prone to sys-
tematics; relaxed assumptions on the mass density profile
result in looser constraints, e.g., the TDCOSMO results

H0 = 73.3±5.8 [157], and the recent H0 = 77.1+7.3
�7.1 [158]

from the analysis of a single system.6

Consistency with CMB requires that the presence of a
sign-switching cosmological constant instead of a regular

6 Note that, since some of these H0 measurements based on the
alternative methods are independent of the calibration of super-
nova absolute magnitudes, deciding to use an H0 prior instead
of an MB prior allows the usage of a wider variety of measure-
ments related to the present-day expansion of the universe. We
use the SH0ES measurement due to its robustness and reliabil-
ity, and we chose their MB estimation as our prior instead of H0

since MB is the more direct estimation whereas their inference
of H0 require some minimal assumptions related to low-redshift
cosmography (See Section IVB). It is possible that a cosmolog-
ical model agrees with one of these quantities (H0, MB) with-
out agreeing with both [159–168]. Thus, if one decides to use
an H0 prior from a certain measurement, they should also com-
pare their results against independent MB measurements—if the
used H0 prior is inferred from an MB value, a comparison with
that value is also required. Similarly, if one decides to use an
MB prior from a certain measurement, they should also com-
pare their results against independent H0 measurements—but
not necessarily against the H0 value inferred from that MB prior.
Since almost all direct measurements of H0 independent of the
SH0ES measurement are statistically consistent with the SH0ES
value, instead of discussing other independent measurements, we
compare our results again with the SH0ES H0 estimation. Also,
due to the discrepancy between the SH0ES and TRGB measure-
ments (note, however, the recent work Ref. [169]), we include
comparisons of our results with the TRGB H0 measurement.

9

Table IV. Concordance/discordance between the ⇤CDM/⇤sCDM models and the theoretical/direct observational estimations,
viz., H

R21
0 = 73.04 ± 1.04 km s�1 Mpc�1 [18] and H

TRGB
0 = 69.8 ± 0.8 km s�1 Mpc�1 [119]; MB = �19.244 ± 0.037mag

(SH0ES) [125]; S8 = 0.766+0.020
�0.014 (WL+GC KiDS-1000 3 ⇥ 2pt) [141]; DH(2.33)/rd = 8.99 ± 0.19 (for the combined Ly-↵

data) [142]; t0 = 13.50 ± 0.15Gyr (systematic uncertainties are not included) [143]; 102!LUNA
b = 2.233 ± 0.036 [129] and

102!PCUV21
b = 2.195± 0.022 [144]. The results marked with ⇤ should be interpreted with caution since the SH0ES MB prior is

not fully consistent with the TRGB measurements.

Data set CMB+Pan CMB+Pan+Ly-↵ CMB+Pan+BAO CMB+Pan+MB CMB+Pan+Ly-↵+MB CMB+Pan+BAO+MB

⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM
H

R21
0 4.7� 2.2� 4.8� 2.0� 4.8� 3.7� 4.1� 0.4� 4.4� 0.7� 4.3� 3.1�

H
TRGB
0 2.3� 0.1� 2.8� 0.3� 2.4� 1.1� 1.6�* 2.0�* 1.8�* 1.6�* 1.7�* 0.3�*

MB 4.5� 2.5� 4.5� 2.3� 4.5� 3.6� 3.9� 1.0� 4.1� 1.2� 4.0� 3.1�
S8 2.9� 1.9� 3.0� 1.7� 2.9� 2.8� 2.3� 0.9� 2.5� 1.0� 2.4� 2.4�
DH(2.33)/rd 2.0� 0.2� 1.9� 0.1� 1.9� 1.1� 1.9� 1.2� 1.8� 1.2� 1.9� 0.1�
tu 1.9� 1.0� 1.9� 0.8� 1.9� 1.4� 1.7� 0.3� 1.7� 0.4� 1.7� 1.1�
!

PCUV21
b 1.7� 1.8� 1.8� 1.7� 1.8� 1.5� 2.3� 2.0� 2.3� 2.0� 2.3� 1.8�

!
LUNA
b 0.2� 0.2� 0.2� 0.2� 0.2� 0.1� 0.6� 0.4� 0.5� 0.4� 0.6� 0.2�

one always results in a higher H0 value inversely corre-
lated with z†—this behaviour is visible in the leftmost
panels of Fig. 2 (for a detailed explanation, see Ref. [89]
and particularly Figs. 2 and 8 therein). Hence, the higher
H0 values of ⇤sCDM compared to ⇤CDM in Tables II
and III for all six data sets are no surprise; and, as seen
from Table IV, for all six data sets, ⇤sCDM is in better
agreement with the SH0ESH0 measurement (so also with
the H0LiCOW and TDCOSMO H0 measurements) and
is compatible (i.e., discrepancy is less than 2�) with the
TRGB H0 measurement having at most a 2� discrepancy
in the case of CMB+Pan+MB and only because it pre-
dicts too high of an H0 value compared to TRGB. Also,
note that, the MB prior we use is that of SH0ES and
this must be kept in mind when the constraints on H0 in
its presence are compared with the TRGB H0 measure-
ment. As seen from Fig. 1, the MB prior clearly prefers
a sign-switch at lower redshifts 1.6 . z† . 2; thus, when
the MB prior is included in the data sets, the estimations
of H0 within ⇤sCDM are higher compared to the same
data sets without the MB prior due to the inverse corre-
lation of z† and H0. This results in removal of the SH0ES
H0 tension for the CMB+Pan+MB and CMB+Pan+Ly-
↵+MB cases. In fact, for these cases, H0 predictions of
⇤sCDM are high enough that they start introducing mild
discrepancies with the TRGB H0 measurement. In con-
trast, addition of the MB prior makes little to no di↵er-
ence for the ⇤CDM model in amelioration of the SH0ES
H0 tension.

However, for the CMB+Pan+BAO cases with or with-
out the MB prior, the preference of high z† values by
the lower redshift BAO hinders the success of ⇤sCDM
in ameliorating the discrepancies displayed in Table IV
including the SH0ES H0 tension—the opposition of the
low redshift BAO data (viz., consensus Galaxy BAO from
ze↵ = 0.38, 0.51, 0.61) to lower z† values and hence to
higher H0 values was discussed in Ref. [89]. Closely re-
lated to this, the H0 tension within ⇤CDM not only ex-
ists between the local H0 measurements and the infer-
ence of H0 from CMB, but also between the local H0

measurements and the BAO data set (combined with a
BBN prior) when CMB data set is not used [52, 133, 170–

172]. It is worth mentioning that this tension with the
BAO does not originate from any particular BAO mea-
surement, rather, it is due to the di↵erent degeneracy
directions of the BAO at high redshifts (z > 1) and
galaxy BAO at low redshifts (z < 1) in the ⌦m �H0; see
Refs. [52, 133, 170–172], for instance, Fig. 5 of Ref. [133].
Here, ⌦m ⌘ 8⇡G⇢m0/(3H2

0 ) is the present-day (z = 0)
matter density parameter with ⇢m0 being the present-day
matter energy density. Note that the CMB agrees very
well with the BBN constraints used in Refs. [52, 133]
and the degeneracy direction of the high redshift BAO
data agrees with that of the CMB within both ⇤CDM
and ⇤sCDM with contours for ⇤sCDM being shifted to
higher H0 values as indicated by the analyses in Ref. [89].
While ⇤sCDM is able to address the H0 tension with the
CMB, the di↵erent degeneracy direction of the galaxy
BAO will still introduce problems. That is because, since
z† > 1 is satisfied for any reasonable expansion history
within ⇤sCDM (see Fig. 5 and the relevant discussion in
Ref. [89]), both models are equivalent for the whole range
of the galaxy BAO and would yield the same contours in
a BBN+galaxy BAO analysis as in Refs. [52, 133] and the
shift to higher H0 values within ⇤sCDM in the ⌦m �H0

plane by itself is not adequate for a full resolution of the
BAO-based H0 tension but only an amelioration. This
inadequacy manifests itself in the impairing of ⇤sCDM
in alleviating the H0 tension when the full BAO data is
included in our analyses as can be seen from, in addition
to Table IV, the blue contours in the H0 panels of Fig. 2,
and particularly clearly by comparing the rightmost pan-
els of Figs. 3 and 4 showing the analyses including the full
BAO data to the rest of their panels showing the cases
without the low redshift BAO data.
Another point of interest is the relation of the H0 ten-

sion with the MB and S8 tensions (the two other promi-
nent discrepancies of ⇤CDM) within ⇤sCDM. The two-
dimensional marginalized posterior distributions of MB

versusH0, and S8 versusH0 are given in Figs. 3 and 4, re-
spectively, both color coded by z†. These two figures have
some striking common features: (i) there is a strong cor-
relation with H0 and the other two parameters, (ii) lower
z† values are preferred by all three discrepancies, (iii) the

(SH0ES)

(KiDS)
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Figure 4. Two-dimensional marginalized posterior distributions (68% and 95% CLs) in the S8-H0 plane for the ⇤sCDM (color
coded by z†) and ⇤CDM for di↵erent data combinations. We overlay 1� bands for the local measurements HR21

0 = 73.04±1.04
km s�1 Mpc�1 [18], HTRGB

0 = 69.8± 0.8 km s�1 Mpc�1 [119], and S8 = 0.766+0.020
�0.014 (WL+GC KiDS-1000 3⇥ 2pt) [141]. The

larger z† is, the closer the ⇤sCDM model is to the standard ⇤CDM model.

⇤CDM and Einstein-de Sitter (viz., ⇤CDM with ⇤ = 0)
models, consequently yielding an enhanced growth of
structure at least for z > z† (i.e., for z & 2 according
to constraints we found on z† in this work).7 If the val-
ues of the cosmological constants for both models were
to be the same after the sign-switch (i.e., |⇤s| = ⇤) for a
given �m(z > z†) value for both models, this would result
in enhancement in the present-day structure for ⇤sCDM
since H(z) would be the same for both models for z < z†
while the structure supporting nature of the negative cos-
mological constant of ⇤sCDM would have resulted in a
greater �m value at z = z†. However, the observational
constraints on DM (z⇤) require that the lower H(z > z†)
values of ⇤sCDM compared to ⇤CDM should be compen-
sated by higher H(z < z†) values, i.e., |⇤s| > ⇤. Hence,
for z < z†, the cosmological constant of ⇤sCDM will have
a stronger impact against growth of structures compared
to ⇤CDM. The answer to whether these two competing
e↵ects before and after z† result in a greater present-
day amplitude of growth of structure for ⇤sCDM or not,
can be reached by observational analysis, and is conceiv-
ably dependent on the value of z†, which controls both
the value of |⇤s| and the amount of time the universe
spends in the phases with negative and positive cosmo-

7 In line with this feature of the ⇤sCDM model, the recent data
from the James Webb Space Telescope (JWST) seem to indi-
cate enhanced growth of structure compared to ⇤CDM at high
redshifts [177–179] (see also Refs. [180–182]).

logical constants. Note that, a smaller z† results in a
greater value for |⇤s| and an extended era with the neg-
ative cosmological constant, and in the z† ! 1 limit,
⇤sCDM approaches ⇤CDM.

The results of the observational analyses in Tables II
and III present S8 values that are lower for ⇤sCDM
compared to ⇤CDM for all six data sets except for the
CMB+Pan+BAO+MB case for which both models yield
the same constraints. This is despite ⇤sCDM yielding
higher constraints on �8 for all cases in line with our
theoretical discussion. Since the low-redshift probes find
lower S8 values compared to the predictions of ⇤CDM,
the tensions presented in Table IV are always lower for
⇤sCDM except for the CMB+Pan+BAO+MB case for
which both models have the same amount of tension. For
⇤sCDM, the inclusion of the MB prior results in a better
amelioration and the inclusion of the full BAO data has
an hindering e↵ect—note that, in contrast, addition of
the MB prior makes little to no di↵erence for the ⇤CDM
model in amelioration of the S8 discrepancy. The sim-
ilarities between this discussion on the constraints and
tensions of S8 and the ones in Sections IVA and IVB on
the constraints and tensions on MB and H0 are unsur-
prising due to the strong correlations among these pa-
rameters (see Fig. 4 for the correlation between H0 and
S8). Interestingly, Fig. 4 indicates that the simultaneous
alleviation of the H0 and S8 tensions within ⇤sCDM is
possible if the local H0 measurement of SH0ES is consid-
ered but not the TRGB. Finally, note that the S8 values
as measured by the low-redshift probes are not model-

KiDS-1000

SH0ESTRGB
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Figure 3. Two-dimensional marginalized posterior distributions (68% and 95% CLs) in the MB-H0 plane for the ⇤sCDM (color
coded by z†) and ⇤CDM for di↵erent data combinations. We overlay 1� bands for the local measurements HR21

0 = 73.04±1.04
km s�1 Mpc�1 [18], HTRGB

0 = 69.8± 0.8 km s�1 Mpc�1 [119], and MB = �19.244± 0.037mag (SH0ES) [125]. The larger z†
is, the closer the ⇤sCDM model is to the standard ⇤CDM model.

higher �8 values for the ⇤sCDM model, and the CMB-
only data set yielded a matter density parameter value of
⌦m = 0.2900±0.0160 for ⇤sCDM lower compared to the
⇤CDM value of ⌦m = 0.3162±0.0084, overcompensating
the ⇤sCDM’s increased �8 parameter and consequently
resulting in a relaxed S8 = 0.8071 ± 0.0210 value com-
pared to the S8 = 0.8332± 0.0163 of ⇤CDM. Pleasantly,
this amelioration of the S8 tension is closely related to
the amelioration of the H0 tension within the ⇤sCDM
model as its reduced ⌦m value is not due to a reduced
physical matter density but its increased H0 value. Note
that, relaxing the S8 tension is not a generic property of
models that relax the H0 tension, on the contrary, they
often exacerbate it due to an excessively large �8 param-
eter [11, 15]. For instance, amongst many, EDE [28–31],
as well as related models such as new-EDE [32, 33], is
one of the most popular promising ones for relaxing the
H0 tension, however both EDE and new-EDE exacerbate
the S8 tension. AdS-EDE [69, 75, 102] is especially worth
mentioning, because, similar to ⇤sCDM, it is based on an
AdS-dS transition. On the other hand, ⇤sCDM consid-
ers the possibility of a rapid AdS-dS transition at red-
shift z ⇠ 2, whereas AdS-EDE has an AdS phase that
begins at z ⇠ 2000 and ends shortly after recombination
(zrec ' 1100), settling down in a ⇤ > 0 (dS) phase that
still continues today. However, AdS-EDE, like other EDE
models, relaxes the H0 tension but worsens the S8 ten-
sion [102].

To understand the structure formation within ⇤sCDM

and how it compares to ⇤CDM, we start with the Newto-
nian equation for the growth of structure of the minimally
interacting pressureless sources (baryons and CDM) after
decoupling;

@
2
t
�m = �2H@t�m + 4⇡G⇢̄m�m, (8)

where ⇢̄m is the spatially uniform background energy den-
sity and �m is the fractional overdensity of the pressure-
less fluid [176]. We take �m = ⇢̄b�b+⇢̄c�c

⇢̄b+⇢̄c
⇡ �b ⇡ �c

as quickly after recombination, the fractional overden-
sity in the baryons, �b, approaches that of the CDM, �c,
and the matter behaves like a single pressureless fluid
with total density contrast �m. The first term in the
right hand side, yielding negative values (assuming ex-
panding universe, H > 0), is antagonist to the growth
of structure, and the second term, yielding positive val-
ues, endorses the growth of structure. We recall that
the Hubble parameters, assuming expanding universe,
are given by H⇤CDM =

p
8⇡G⇢̄m/3 + ⇤/3 for ⇤CDM,

and H⇤sCDM =
p

8⇡G⇢̄m/3 + ⇤s/3 for ⇤sCDM, where
we work in units such that the speed of light, c, equals
unity. Thus, if both models have the same initial con-
ditions for ⇢̄m before the e↵ects of the cosmological con-
stants set in (which is what we assume in the rest of
this discussion relying on it being well-constrained by
the CMB power spectrum), ⇤sCDM will have a weaker
antagonist term up to the redshift z† due to its negative
valued cosmological constant which supports structure
formation by lowering H(z > z†) compared to both the

SH0ESTRGB
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Figure 5. Expansion histories of ⇤sCDM for the mean values
of the analyses with six di↵erent data sets presented in Ta-
ble II and Table III. The top and bottom panels respectively
show the plots for analyses without and with the MB prior.
The solid lines are for the CMB+Pan, the dashed lines are
for the CMB+Pan+Ly-↵ and the dotted lines are for the
CMB+Pan+BAO data sets. Both the data (from Table I
except we combine the Ly-↵ values and use DH(2.33)/rd =
8.99± 0.19 and DM (2.33)/rd = 37.5± 1.1) and the plots are
color coded for di↵erent distance measures with red corre-
sponding to DM (z)/rd

p
z, blue to DV (z)/rd

p
z and green to

zDH(z)/rd
p
z. The plots for ⇤CDM are given only for the

CMB+Pantheon analysis without MB as the plots for di↵er-
ent data sets are not visually distinguishable in the figure;
⇤CDM plots are all solid black and each correspond to the
obvious distance measure of the branch it is closest to.

both ⇤CDM and ⇤sCDM models are in good consistency
with DM (2.33)/rd = 37.5 ± 1.1, yet ⇤sCDM does sys-
tematically better; while the level of tension is approxi-
mately 1.5� in ⇤CDM in all cases, it is 1� in ⇤sCDM.
The better agreement with Ly-↵ was expected by the
theoretical and observational analyses in Ref. [85], and so
was the tension with the Galaxy BAO presented in Ta-
ble V. However, a careful examination of Table V ex-
poses a characteristic of ⇤sCDM that is not present in
⇤CDM; that is, in certain cases, ⇤sCDM is discrepant
with the DM (z)/rd value of a BAO measurement while
it is in agreement with its DH(z)/rd value. This is pos-
sible, since unlike DH(z), which gives information about
a single instance of time, DM (z) relies on a cumulative

e↵ect from present-day up to a redshift, i.e., the inte-
gral

R
z

0 dz0 /H(z0). Thus, if the H(z) of a model deviates
from the actual Hubble parameter describing the uni-
verse at low redshifts, this deviation will carry over to
higher redshifts when DM (z) is considered, and can be
corrected only if another deviation in the opposite di-
rection happens (see Ref. [96] for the implications of this
when DM (z⇤) is considered). Moreover, since 1/H(z) de-
cays rapidly with increasing z, the integral

R
z

0 dz0 /H(z0)
gets most of its contribution from lower redshifts, and
hence is more sensitive to deviations at low redshifts. It
seems that Table V and Fig. 5 show imprints of this e↵ect
for ⇤sCDM. Let us consider the CMB+Pan+MB case
in Table V as an example since it is the one where this
situation is most apparent. The tension of ⇤sCDM with
the DM (0.70)/rd measurement is at 3.1� level whereas it
is only 0.5� for DH(0.70)/rd; this is likely to be caused
by the tensions with the DH(z)/rd values for z < 0.5,
i.e., the 2� tension with DH(0.38)/rd and the 2.4� ten-
sion with the DV (0.15)/rd measurement, that carry over
to higher redshifts for DM (z)/rd. This e↵ect, illustrated
with the above example, seems to permeate Table V, and
indicates that ⇤sCDM’s conflict is mainly with the BAO
measurements for which ze↵ < 0.5, and also that the
model can fit both CMB and full BAO excellently if its
Hubble radius is superposed with a wavelet as discussed
in Ref. [96].

E. Age discrepancy

The (present-day) age of the universe can also be mea-
sured using very old astrophysical objects, such as globu-
lar clusters (GCs), in a cosmological model-agnostic way,
in the sense that it does not depend in any significant
way on the cosmological model adopted. It is estimated
in Ref. [131] (see also Refs. [158, 159]) that the age of the
oldest GCs is tGC = 13.32±0.10 (stat.)±0.23 (sys.) Gyr at
68% CL, which is transformed to an age of the universe
tu = 13.50 ± 0.15 (stat.) ± 0.23 (sys.) Gyr (±0.27 when
adding statistical and systematic uncertainties in quadra-
ture). It is in good agreement with the Planck18 ⇤CDM
inferred age t0 = 13.80 ± 0.02 Gyr [3]. However, this
success may be due to the systematic uncertainties that
are currently too large; there are ongoing e↵orts to re-
duce the impact of systematic uncertainties so that GCs’
constraints on t0 can potentially discriminate among dif-
ferent cosmological models, in particular, the models that
are proposed to solve the H0 tension [159, 160]. When
we consider the age of the universe estimated from GCs
by taking only the statistical uncertainties into account,
viz., tu = 13.50±0.15 Gyr at 68% CL, while the Planck18
⇤CDM finds 2� tension, the ⇤sCDMmodel is expected to
find an even better agreement as ⇤s reduces the age of the
universe [85]. Our results for t0 are summarized in Ta-
ble IV and Fig. 2. We see that in all three analyses with-
out the MB prior, ⇤CDM is in tension with tu estimated
from GCs mentioned above at the level of 1.9�, whereas
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Figure 5. Expansion histories of ⇤sCDM for the mean values
of the analyses with six di↵erent data sets presented in Ta-
ble II and Table III. The top and bottom panels respectively
show the plots for analyses without and with the MB prior.
The solid lines are for the CMB+Pan, the dashed lines are
for the CMB+Pan+Ly-↵ and the dotted lines are for the
CMB+Pan+BAO data sets. Both the data (from Table I
except we combine the Ly-↵ values and use DH(2.33)/rd =
8.99± 0.19 and DM (2.33)/rd = 37.5± 1.1) and the plots are
color coded for di↵erent distance measures with red corre-
sponding to DM (z)/rd

p
z, blue to DV (z)/rd

p
z and green to

zDH(z)/rd
p
z. The plots for ⇤CDM are given only for the

CMB+Pantheon analysis without MB as the plots for di↵er-
ent data sets are not visually distinguishable in the figure;
⇤CDM plots are all solid black and each correspond to the
obvious distance measure of the branch it is closest to.

both ⇤CDM and ⇤sCDM models are in good consistency
with DM (2.33)/rd = 37.5 ± 1.1, yet ⇤sCDM does sys-
tematically better; while the level of tension is approxi-
mately 1.5� in ⇤CDM in all cases, it is 1� in ⇤sCDM.
The better agreement with Ly-↵ was expected by the
theoretical and observational analyses in Ref. [85], and so
was the tension with the Galaxy BAO presented in Ta-
ble V. However, a careful examination of Table V ex-
poses a characteristic of ⇤sCDM that is not present in
⇤CDM; that is, in certain cases, ⇤sCDM is discrepant
with the DM (z)/rd value of a BAO measurement while
it is in agreement with its DH(z)/rd value. This is pos-
sible, since unlike DH(z), which gives information about
a single instance of time, DM (z) relies on a cumulative

e↵ect from present-day up to a redshift, i.e., the inte-
gral

R
z

0 dz0 /H(z0). Thus, if the H(z) of a model deviates
from the actual Hubble parameter describing the uni-
verse at low redshifts, this deviation will carry over to
higher redshifts when DM (z) is considered, and can be
corrected only if another deviation in the opposite di-
rection happens (see Ref. [96] for the implications of this
when DM (z⇤) is considered). Moreover, since 1/H(z) de-
cays rapidly with increasing z, the integral

R
z

0 dz0 /H(z0)
gets most of its contribution from lower redshifts, and
hence is more sensitive to deviations at low redshifts. It
seems that Table V and Fig. 5 show imprints of this e↵ect
for ⇤sCDM. Let us consider the CMB+Pan+MB case
in Table V as an example since it is the one where this
situation is most apparent. The tension of ⇤sCDM with
the DM (0.70)/rd measurement is at 3.1� level whereas it
is only 0.5� for DH(0.70)/rd; this is likely to be caused
by the tensions with the DH(z)/rd values for z < 0.5,
i.e., the 2� tension with DH(0.38)/rd and the 2.4� ten-
sion with the DV (0.15)/rd measurement, that carry over
to higher redshifts for DM (z)/rd. This e↵ect, illustrated
with the above example, seems to permeate Table V, and
indicates that ⇤sCDM’s conflict is mainly with the BAO
measurements for which ze↵ < 0.5, and also that the
model can fit both CMB and full BAO excellently if its
Hubble radius is superposed with a wavelet as discussed
in Ref. [96].

E. Age discrepancy

The (present-day) age of the universe can also be mea-
sured using very old astrophysical objects, such as globu-
lar clusters (GCs), in a cosmological model-agnostic way,
in the sense that it does not depend in any significant
way on the cosmological model adopted. It is estimated
in Ref. [131] (see also Refs. [158, 159]) that the age of the
oldest GCs is tGC = 13.32±0.10 (stat.)±0.23 (sys.) Gyr at
68% CL, which is transformed to an age of the universe
tu = 13.50 ± 0.15 (stat.) ± 0.23 (sys.) Gyr (±0.27 when
adding statistical and systematic uncertainties in quadra-
ture). It is in good agreement with the Planck18 ⇤CDM
inferred age t0 = 13.80 ± 0.02 Gyr [3]. However, this
success may be due to the systematic uncertainties that
are currently too large; there are ongoing e↵orts to re-
duce the impact of systematic uncertainties so that GCs’
constraints on t0 can potentially discriminate among dif-
ferent cosmological models, in particular, the models that
are proposed to solve the H0 tension [159, 160]. When
we consider the age of the universe estimated from GCs
by taking only the statistical uncertainties into account,
viz., tu = 13.50±0.15 Gyr at 68% CL, while the Planck18
⇤CDM finds 2� tension, the ⇤sCDMmodel is expected to
find an even better agreement as ⇤s reduces the age of the
universe [85]. Our results for t0 are summarized in Ta-
ble IV and Fig. 2. We see that in all three analyses with-
out the MB prior, ⇤CDM is in tension with tu estimated
from GCs mentioned above at the level of 1.9�, whereas
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Table V. Concordance/discordance between the ⇤CDM and ⇤sCDM models and the BAO measurements listed in Table I.
For the values relevant to the Ly-↵ measurements at ze↵ = 2.33, we have considered the combined values of DH(2.33)/rd =
8.99± 0.19 and DM (2.33)/rd = 37.5± 1.1 [130].

Data set CMB+Pan CMB+Pan+Ly-↵ CMB+Pan+BAO CMB+Pan+MB CMB+Pan+Ly-↵+MB CMB+Pan+BAO+MB

⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM ⇤CDM ⇤sCDM

DV (0.15)/rd 0.9� 1.7� 1.0� 1.8� 1.0� 0.7� 1.2� 2.4� 1.3� 2.3� 1.2� 1.6�

DV (0.85)/rd 0.7� 0.0� 0.6� 0.1� 0.6� 0.3� 0.5� 0.6� 0.4� 0.5� 0.5� 0.2�

DM (0.38)/rd 0.9� 0.6� 0.9� 0.9� 0.8� 0.2� 0.3� 2.0� 0.3� 1.8� 0.4� 0.3�

DM (0.51)/rd 0.5� 0.9� 0.4� 1.2� 0.4� 0.3� 0.1� 2.3� 0.1� 2.2� 0.0� 0.8�

DM (0.70)/rd 0.9� 1.9� 0.9� 2.1� 1.0� 1.5� 1.3� 3.1� 1.4� 3.0� 1.3� 2.0�

DM (1.48)/rd 0.6� 1.3� 0.6� 1.5� 0.7� 1.0� 0.8� 1.9� 0.9� 1.9� 0.8� 1.2�

DM (2.33)/rd 1.5� 1.0� 1.5� 1.0� 1.5� 1.2� 1.3� 0.9� 1.3� 0.9� 1.4� 1.1�

DH(0.38)/rd 0.6� 1.3� 0.6� 1.4� 0.6� 0.9� 0.8� 2.0� 0.9� 1.9� 0.8� 1.2�

DH(0.51)/rd 0.7� 0.1� 0.6� 0.3� 0.6� 0.3� 0.4� 0.8� 0.4� 0.8� 0.4� 0.0�

DH(0.70)/rd 1.7� 1.0� 1.7� 0.9� 1.7� 1.4� 1.5� 0.5� 1.5� 0.5� 1.5� 1.2�

DH(1.48)/rd 0.6� 0.8� 0.6� 0.8� 0.6� 0.7� 0.6� 0.9� 0.6� 0.9� 0.6� 0.8�

DH(2.33)/rd 2.0� 0.2� 1.9� 0.1� 1.9� 1.1� 1.9� 1.2� 1.8� 1.2� 1.9� 0.1�

mately 1.5� [130]—this would also correspond to a reduc-
tion of the tension in the above mentioned unanchored
analysis and preference of negative DE densities, also,
it is closely related to the internal tension of high and
low redshift BAO as quantified in Ref. [134] where it was
also shown to diminish with updated data releases in line
with the results of the recent study in Ref. [133]. Despite
the reduction in these discrepancies, the BAO anomalies
are still important. As discussed in Section IVA, the dif-
ferent degeneracy directions of the high and low redshift
BAO data in the ⌦m � H0 plane when combined with
BBN constraints result in a H0 value in agreement with
the CMB prediction but in significant tension with lo-
cal measurements [121]. Moreover, parametric and non-
parametric reconstructions of the DE density that utilize
the BAO data keep finding negative (although usually
consistent with vanishing) DE densities around the Ly-↵
data [57, 87, 156] indicating a DE density that transits
from negative to positive today. Also, note the paral-
lelisms of the Ly-↵ and S8 discrepancies that may indi-
cate that the resolution of these two tensions are related:
first, the S8 constraints based on the Ly-↵ data and weak
lensing surveys probing similar redshift scales as the Ly-
↵ measurements agree [157], second, the weakening of
the tension with recent measurements happened also for
the S8 discrepancy [129, 147], and third, minimal exten-
sions of ⇤CDM that relax either of these tensions tend
to exacerbate the H0 tension [10, 11].

In the analyses of both models with six di↵erent data
sets, the ones that include our full BAO data have distinc-
tive properties from the rest. For the data sets without
the full BAO, both models yield similar posterior dis-
tributions (especially for the CMB+Pan data set with-
out the MB prior) for the baseline six free parameters of
⇤CDM, whereas including the full BAO data results in
slight separation of the contours (see Tables II and III
and Figs. 6-11 presented in the Appendix A). Regard-
ing the derived parameters, ⇤sCDM results in signifi-
cantly lower S8 values despite its higher �8 parameter

for all data sets except when full BAO data is included
in which case both models yield very similar constraints;
however, ⇤sCDM yields higher H0 and MB values, and
a lower t0 value compared to ⇤CDM whether or not full
BAO is included in the data set. Expanding the BAO
data set from Ly-↵ to the full BAO means inclusion of
the Galaxy BAO at the ze↵ = 0.15, 0.38, 0.51, 0.70, 0.85
and also the Quasar BAO at ze↵ = 1.48. The e↵ect of
the Galaxy BAO at ze↵ = 0.38, 0.51, 0.61 on ⇤sCDM
was discussed in Ref. [85] where it was found that the
preference of the Galaxy BAO data for higher z† values
holds the model back from working e�ciently in alle-
viating the tensions of ⇤CDM as the phenomenological
di↵erence between the two models diminishes with the
increasing values of z†. The same observation can be
made also from the analyses of the present paper where
the inclusion of the full BAO data set, majority of which
is galaxy BAO, results in higher z† values, and hence
is accompanied with a worsening in amelioration of the
tensions (c.f. Table IV). In Fig. 5, we give expansion his-
tories of ⇤sCDM for the mean values of the analyses with
six di↵erent data sets presented in Table II and Table III;
and in Table V, we quantify the concordance/discordance
between the ⇤CDM and ⇤sCDM models and the BAO
measurements listed in Table I. For the values relevant
to the Ly-↵ measurements at ze↵ = 2.33, we have consid-
ered the combined values of DH(2.33)/rd = 8.99 ± 0.19
and DM (2.33)/rd = 37.5± 1.1 [130].

We see in Table IV that ⇤CDM is typically in approx-
imately 2� tension with DH(2.33)/rd = 8.99 ± 0.19 in
all cases. On the other hand, ⇤sCDM is typically fully
consistent with DH(2.33)/rd = 8.99± 0.19 with the level
of tension being almost zero in some cases and without
exceeding 1.2� even in the worst case. The DH(z) plots
in Fig. 5 show how a z† < 2.33, i.e., a sign switch at
smaller redshifts than the e↵ective redshift of the Ly-↵
data, results in an excellent fit to the DH(2.33) mea-
surements that is immediately lost for z† > 2.33 (also,
c.f. Fig. 3 in Ref. [85]). When we consider DM (2.33)/rd,

? ?
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distance moduli measurements from the Pantheon+ sam-
ple [47], which consists of 1701 light curves of 1550 distinct
SNe Ia ranging in the redshift interval z 2 [0.001, 2.26].
We refer to this dataset as PantheonPlus. We also con-
sider the SH0ES Cepheid host distance anchors, which
facilitate constraints on both MB and H0. When utiliz-
ing SH0ES Cepheid host distances, the SNe Ia distance
residuals are modified following the relationship Eq.(14)
of [47]. We refer to this dataset as PantheonPlus&SH0ES.
Cosmic Shear : We use KiDS-1000 data [53, 54]. This in-
cludes the weak lensing two-point statistics data for both
the auto and cross-correlations across five tomographic
redshift bins [55]. We employ the public likelihood in
[56]. We follow the KiDS team analysis and adopt the
COSEBIs (Complete Orthogonal Sets of E/B-Integrals)
likelihood in our results [29]. For the prediction of the
matter power spectrum, we use the augmented halo model
code, HMcode [57]. We highlight that at level of the linear
perturbations theory and Boltzmann equations, ⇤sCDM
have exactly the same shape as predicted by ⇤CDM. The
only e↵ect on the matter power spectrum comes from
the H(z) behavior at late times. As HMcode is robustly
tested at percent level for variation on H(z) functions
beyond ⇤CDM, we conclude that no further change on the
HMcode is necessary to apply cosmic shear measurements
on ⇤sCDM. We refer to this data set as KiDS-1000.
We explore the full parameter space of the ⇤sCDM

model and, for comparison, that of ⇤CDM. The base-
line seven free parameters of ⇤sCDM are given by P =
{!b, !c, ✓s, As, ns, ⌧reio, z†}, where the first six are the
common ones with ⇤CDM. We use CLASS+MontePython
code [58–60] with Metropolis-Hastings mode to derive con-
straints on cosmological parameters for ⇤sCDM baseline
from several combinations of the data sets defined above,
ensuring a Gelman-Rubin convergence criterion [61] of
R� 1 < 10�2 in all the runs. For the model compar-
ison, we compute the relative log-Bayesian evidence
lnBij to estimate the Evidence of ⇤sCDM with re-
spect to ⇤CDM, through the publicly available package
MCEvidence [62] [63, 64]. We use the convention of a
negative value if ⇤sCDM is preferred against ⇤CDM, or
vice versa, and we refer to the revised Je↵reys’ scale by
Trotta [65, 66], to interpret the results. We will say that
the evidence is inconclusive if 0  | lnBij | < 1, weak if
1  | lnBij | < 2.5, moderate if 2.5  | lnBij | < 5, strong
if 5  | lnBij | < 10, and very strong if | lnBij | � 10.
Results – We present, in Table I, the 68% CL con-

straints on the main cosmological parameters of interest
of the ⇤sCDM and ⇤CDM models obtained in our anal-
yses by using di↵erent combinations of data sets, while
we provide the complete table for the entire parameter
space of the two models in the Supplemental Material.
When we consider only Planck data, we notice that the
characteristic parameter of the ⇤sCDM model, z†, re-
mains unconstrained, and we find strong degeneracy with
other derived parameters, especially with H0 and ⌦m,

FIG. 1. 2D contours at 68% and 95% CLs in the H0-⌦m plane
for the ⇤sCDM and ⇤CDM models from the Planck and/or
BAOtr data. It deserves mention that, in case of ⇤sCDM,
the Planck and BAOtr contours intersect right on the vertical
band of SH0ES measurement.

increasing values in H0 and decreasing the total matter
density parameter today. To break the degeneracy, we
include the BAOtr data in our analysis with Planck data,
which enables the constraint: z† = 1.70+0.09

�0.19
. Interest-

ingly, this inclusion of BAOtr data leads to a higher value
of the Hubble constant, viz., H0 = 73.3+1.2

�1.0
km s�1 Mpc�1

which is perfectly consistent with the SH0ES measure-
ment H0 = 73.04± 1.04 km s�1 Mpc�1 [6]. In particular,
it is noteworthy to observe in Fig. 1 that the two models
yield almost the identical contours for the BAOtr data
(along with BBN prior 102!LUNA

b
= 2.233 ± 0.036 [67]),

while the BAOtr and Planck contours disagree in the
case of ⇤CDM; however, when considering ⇤sCDM, it is
striking that the BAOtr and Planck contours precisely
intersect at the vertical band of SH0ES H0 measurement.
Considering this remarkable success of ⇤sCDM in ad-
dressing the H0 tension, we proceed to incorporate the
new PantheonPlus (PP) sample into our analysis, both
with and without the Cepheids calibration provided by
SH0ES. From the combination of the Planck, BAOtr,
and PantheonPlus data sets, we find the constraints:
z† = 1.87+0.13

�0.21
and H0 = 71.72+0.73

�0.92
km s�1 Mpc�1. This

constraint on H0 is again consistent with the SH0ES mea-
surement. Based on this finding, we confidently include
the calibration provided by SH0ES, leaving our conclu-
sions unchanged. We also note that the discrepancy inMB

between the SH0ES data (MB = �19.244 ± 0.037mag)
and the base ⇤CDM cosmology inferred from Planck
(MB = �19.401± 0.027mag) is here resolved within the
framework of ⇤sCDM model. Thus, the ⇤sCDM model
also provides a robust solution to the MB tension.

From the results of these analyses, we further notice
that S8 and ⌦m get lower values in ⇤sCDM compared to
⇤CDM. In order to see whether S8 tension is resolved in
our model, we separately analyse the models with KiDS-

Akarsu, Di Valentino, Kumar, Nunes, Vazquez & Yadav, arXiv:2307.10899
ΛsCDM model: A promising scenario for alleviation of cosmological tensions

Here BAOtr dataset is the 2D BAO dataset (less model independent) compiled in arXiv:2002.09293 (Nunes, Yadav, Jesus, Bernui, 
MNRAS 2020) and arXiv:2103.14121 (Carvalho, Bernui, Avila, Novaes, Nogueira-Cavalcante, A&A 2021)
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Data sets and Methodology – We describe below the
observational data sets and the statistical methods used
to explore the parameter space. CMB: The full Planck
2018 temperature and polarization likelihood [42] in com-
bination with the Planck 2018 lensing likelihood [43].
We refer to this data set as Planck. Transversal BAO:
Measurements of 2D BAO, ✓BAO(z), obtained in a weakly
model-dependent approach, compiled in Table I in [44, 45].
These measurements were obtained using public data re-
leases (DR) of the Sloan Digital Sky Survey (SDSS),
namely: DR7, DR10, DR11, DR12, DR12Q (quasars),
and following the same methodology. We refer to this
data set as BAOtr. Type Ia supernovae and Cepheids:
We use the SNe Ia distance moduli measurements from
the Pantheon+ sample [24], which consists of 1701 light
curves of 1550 distinct SNe Ia ranging in the redshift
interval z 2 [0.001, 2.26]. We refer to this dataset as
PantheonPlus. We also consider the SH0ES Cepheid host
distance anchors, which facilitate constraints on both MB

and H0. When utilizing SH0ES Cepheid host distances,
the SNe Ia distance residuals are modified following the
relationship Eq.(14) of [24]. We refer to this dataset as
PantheonPlus&SH0ES. Cosmic Shear: We use KiDS-1000
data [46]. This includes the weak lensing power spectrum
data for both the auto and cross-correlations across four
tomographic redshift bins [28]. We employ the public
likelihood in [47]. We follow the KiDS team analysis
and adopting the COSEBIs (Complete Orthogonal Sets
of E/B-Integrals) likelihood in our results. For the pre-
diction of the matter power spectrum, we use the halo
model (HM) [48]. We highlight that at level of the linear
perturbations theory and Boltzmann equations, ⇤sCDM
have exactly the same shape as predicted by ⇤CDM. The
only e↵ect on the matter power spectrum comes from
the H(z) behavior at late times. As the HM model is
robustly tested at percent level for variation on H(z)
functions beyond ⇤CDM, we conclude that no further
change on the HM model is necessary to apply cosmic
shear measurements on ⇤sCDM. We refer to this data set
as KiDS-1000.
We explore the full parameter space of the ⇤sCDM

model and, for comparison, that of ⇤CDM. The base-
line seven free parameters of ⇤sCDM are given by P =
{!b, !c, ✓s, As, ns, ⌧reio, z†}, where the first six are the
common ones with ⇤CDM. We use CLASS+MontePython
code [49–51] with Metropolis-Hastings mode to derive
constraints on cosmological parameters for ⇤sCDM base-
line from several combinations of the data sets defined
above, ensuring a Gelman-Rubin convergence criterion of
R� 1 < 10�2 [52] in all the runs.
For the model comparison, we compute the relative

log-Bayesian evidence lnBij to estimate the Evidence of
⇤sCDM with respect to ⇤CDM, through the publicly
available package MCEvidence [53] [54, 55]. We use the
convention of a negative value if ⇤sCDM is preferred
against ⇤CDM, or vice versa, and we refer to the re-

FIG. 1. 2D contours at 68%, and 95% CLs in the ⌦m-S8

plane for the ⇤sCDM and ⇤CDM models. S8 = 0.801+0.026
�0.016

(⇤sCDM: Planck), S8 = 0.746+0.026
�0.021 (⇤sCDM: KiDS), S8 =

0.832 ± 0.012 (⇤CDM: Planck), S8 = 0.749+0.027
�0.020 (⇤CDM:

KiDS) at 68% CL.

vised Je↵rey’s scale by Trotta [56, 57], to interpret the
results. We will say that the evidence is inconclusive if
0  | lnBij | < 1, weak if 1  | lnBij | < 2.5, moderate if
2.5  | lnBij | < 5, strong if 5  | lnBij | < 10, and very
strong if | lnBij | � 10.

Results – In Table I we present the 68% CL con-
straints on the main cosmological parameters of inter-
est of the ⇤sCDM and ⇤CDM models obtained in our
analyses by using di↵erent combinations of data sets,
while we provide the complete table for the entire pa-
rameter space of the two models in the supplemental
material. When we consider only Planck data, we no-
tice that the main parameter z† of the ⇤sCDM model
remains unconstrained, and we find strong degeneracy
with other parameters. To break the degeneracy, we in-
clude the BAOtr data in our analysis with Planck data,
which enables the constraint: z† = 1.70+0.09

�0.19. Interest-
ingly, this inclusion of BAOtr data leads to a larger value
of the Hubble constant, viz., H0 = 73.3+1.2

�1.0 km s�1 Mpc�1

which is perfectly consistent with the SH0ES measure-
ment: H0 = 73.04 ± 1.04 km s�1 Mpc�1. Considering
this remarkable success of ⇤sCDM in addressing the H0

tension, we proceed to incorporate the new Pantheon-
Plus (PP) sample into our analysis, both with and with-
out the Cepheids calibration provided by SH0ES. From
the combination of the Planck, BAOtr, and Pantheon-
Plus data sets, we find the constraints: z† = 1.87+0.13

�0.21

and H0 = 71.72+0.73
�0.92 km s�1 Mpc�1. This constraint on

H0 is again consistent with the SH0ES measurement.
Based on this finding, we confidently include the cali-
bration provided by SH0ES, leaving our conclusions un-
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FIG. 2. One and Two-dimensional (68%, 95% CLs) marginalized distributions of the ⇤sCDM model parameters from Planck,
Planck+BAOtr, Planck+BAOtr+PP, Planck+BAOtr+PP&SH0ES, and Planck+BAOtr+PP&SH0ES+KiDS-1000.

FIG. 3. One and Two-dimensional (68%, 95% CLs) marginalized distributions of the ⇤CDM model parameters from Planck,
Planck+BAOtr, Planck+BAOtr+PP, Planck+BAOtr+PP&SH0ES, and Planck+BAOtr+PP&SH0ES+KiDS-1000.
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FIG. 3. One and Two-dimensional (68%, 95% CLs) marginalized distributions of the ⇤CDM model parameters from Planck,
Planck+BAOtr, Planck+BAOtr+PP, Planck+BAOtr+PP&SH0ES, and Planck+BAOtr+PP&SH0ES+KiDS-1000.
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FIG. 1. 2D contours at 68%, and 95% CLs in the ⌦m-S8 plane for the ⇤sCDM and ⇤CDM models. S8 = 0.801+0.026
�0.016 (⇤sCDM:

Planck), S8 = 0.746+0.026
�0.021 (⇤sCDM: KiDS), S8 = 0.832± 0.012 (⇤CDM: Planck), S8 = 0.749+0.027

�0.020 (⇤CDM: KiDS) at 68% CL.

H0 tension, we proceed to incorporate the new PantheonPlus (PP) sample into our analysis, both with and without
the Cepheids calibration provided by SH0ES. From the combination of the Planck, BAOtr, and PantheonPlus data
sets, we find the constraints: z† = 1.87+0.13

�0.21 and H0 = 71.72+0.73
�0.92 km s�1 Mpc�1. This constraint on H0 is again

consistent with the SH0ES measurement. Based on this finding, we confidently include the calibration provided
by SH0ES, leaving our conclusions unchanged. We also note that the discrepancy in MB between the SH0ES data
(MB = �19.244± 0.037mag) and the base ⇤CDM cosmology inferred from Planck (MB = �19.401± 0.027mag) is
here solved within the framework of ⇤sCDM model. Thus, the ⇤sCDM model also provides a robust solution to the
MB tension.
From the results of these analyses, we further notice that S8 and ⌦m get lower values in ⇤sCDM compared to

⇤CDM. In order to see whether S8 tension is resolved in our model, we separately analyse the models with KiDS-1000
only data. The upper panels of Fig. 1 show 2D contours at 68%, and 95% CL in the ⌦m-S8 plane for the ⇤sCDM and
⇤CDM models. We note that for the ⇤sCDM, the observational constraints on S8 from Planck: S8 = 0.801+0.026

�0.016,

and and KiDS-1000 data: S8 = 0.746+0.026
�0.021 are compatible with each other, and thus the S8 tension does not exist in

⇤sCDM while it prevails in ⇤CDM. The contour plots in the lower left panel of Fig. 1 further show the robustness of
the constraints on S8 in the presence of other data sets under consideration.
Finally, from the analysis of the models using the combination of all the data sets under consideration, i.e.,

Planck+BAOtr+PP&SH0ES+KiDS-1000, we obtain the most robust constraints on the model parameters as shown
in the last column of Table I. Fig. 2 shows the whisker plot displaying 68% CL constraints on H0 for the ⇤sCDM
and ⇤CDM models from various data combinations. We see that there is no H0 tension in the present analyses of
⇤sCDM with all data combinations including the BAOtr data. We emphasize that all data sets under consideration
are compatible within the framework of ⇤sCDM.
In addition, as can be seen in Supplemental material, ⇤sCDM poses no problems with any of the well-known

parameters of the Universe based on observations and, on theoretical side, standard physics. Instead, the constraints
on its six base-line parameters that are common with ⇤CDM, show unprecedented stability in the face of di↵erent data
sets. Moreover, ⇤sCDM is consistent with BAO Ly-↵ data, predicts age of the universe today, t0 = 13.522± 0.027 Gyr,
is consistent with the estimations utilizing the oldest globular clusters (GCs), tu = 13.50± 0.15 (stat.)± 0.23 (sys.)
Gyr, and leaves the pre-recombination universe as it is in the standard model, e.g., the constraints on rd and zd

remain unaltered compared to those obtained within ⇤CDM and the constraints on YP and !b are consistent with the
standard BBN.

To conclude the robustness of our results, we perform a Bayesian model comparison to assess the relative performance
of the ⇤sCDM scenario compared to the standard ⇤CDM model in statistical fit of the data. The results of the relative
Bayesian evidence are presented in the lower section of Table I. According to the revised Je↵rey’s scale, the evidence
in favor of the ⇤sCDM scenario is found weak when considering the Planck data alone. However, it strengthens to a
strong level in the analysis with Planck+BAOtr+PP data. Remarkably, for all the other combinations of data-sets
considered here, the evidence in favor of the ⇤sCDM scenario turns out be very strong. Thus, ⇤sCDM scenario finds
better statistical fit to the data compared to ⇤CDM.

The findings in this study indicate that the ⇤sCDM scenario consistently outperforms the standard ⇤CDM model not
only in resolving the prominent cosmological tensions but also in terms of the statistical fit to the data across various
data-set combinations, providing strong support for its validity and e↵ectiveness in explaining the observed cosmological
phenomena. In addition, the ⇤sCDM scenario mitigates several other tensions of lesser statistical significance, as
illustrated in the supplemental material, where we also provide additional information about the main results discussed
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FIG. 2. One and Two-dimensional (68%, 95% CLs) marginalized distributions of the ⇤sCDM model parameters from Planck,
Planck+BAOtr, Planck+BAOtr+PP, Planck+BAOtr+PP&SH0ES, and Planck+BAOtr+PP&SH0ES+KiDS-1000.

FIG. 3. One and Two-dimensional (68%, 95% CLs) marginalized distributions of the ⇤CDM model parameters from Planck,
Planck+BAOtr, Planck+BAOtr+PP, Planck+BAOtr+PP&SH0ES, and Planck+BAOtr+PP&SH0ES+KiDS-1000.
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FIG. 3. The mean values with 68% CL on H0 for the ⇤sCDM and ⇤CDM models from various data combinations. The left
vertical band stands for Planck-⇤CDM constraint: H0 = 67.36± 0.54 km s�1 Mpc�1, and the right one is for the latest SH0ES
measurement [6]: H0 = 73.04± 1.04 km s�1 Mpc�1. We see that there is no H0 tension in most data combinations for ⇤sCDM,
in particular, when we use the less model-dependent BAOtr data. The only exception is in the cases explored in previous
works [38, 39] that employ the 3D BAO data (BAO in the plot), among which the two galaxy BAO data from ze↵ = 0.15 and
0.38 preventing the model from successfully resolving the tension.

of di↵erent data sets. Moreover, ⇤sCDM is consistent
with BAO Ly-↵ data. It predicts the age of the uni-
verse, t0 = 13.522± 0.027 Gyr, which is consistent with
estimations utilizing the oldest globular clusters, e.g.,
tu = 13.50± 0.15(stat.) Gyr [68]. Furthermore, it main-
tains the physics and dynamics of the pre-recombination
universe as they are in the standard model. For exam-
ple, the constraints on the drag redshift and the sound
horizon at this epoch (rd and zd) remain unaltered com-
pared to those obtained within ⇤CDM. Additionally, the
constraints on YP (the primordial mass fraction of 4He)
and !b (the present-day physical density parameter of
baryons) are consistent with the standard BBN.

To provide a conclusive assessment of the robustness
of our results, we conduct a Bayesian model compari-
son to evaluate the relative performance of ⇤sCDM and
⇤CDM in terms of their statistical fit to the data. The
results of the relative Bayesian evidence are presented
in the lower section of Table I. According to the revised
Je↵reys’ scale, the evidence in favor of the ⇤sCDM sce-
nario is found weak when considering the Planck data
alone. However, it strengthens to a strong level in the
analysis with Planck+BAOtr+PP data. Remarkably, for
all the other combinations of data-sets considered here,
the evidence in favor of the ⇤sCDM scenario turns out be
very strong. Thus, ⇤sCDM finds by far better statistical
fit to the data compared to ⇤CDM.

The findings in this study indicate that the ⇤sCDM
model consistently outperforms the standard ⇤CDM
model not only in resolving the prominent cosmologi-
cal tensions, but also in terms of the statistical fit to the
data across various data-set combinations, providing very
strong support for its validity and e↵ectiveness in explain-
ing the observed cosmological phenomena. In addition,
⇤sCDM mitigates several other tensions of lower statisti-
cal significance, as illustrated in Supplemental Material,
where we also provide additional information about the
main results discussed here.

Final remarks – Using the state-of-the-art methodology
for the observational constraints and recent data avail-
able in the literature, we show that a simple model, viz.,
⇤sCDM [37–39], which experiences a rapid transition of
the Universe from anti-de Sitter vacua to de Sitter vacua
(namely, the cosmological constant switches sign from
negative to positive) at late times (z† ⇡ 1.7), can address
the major cosmological tensions (H0, MB, and S8 ten-
sions) simultaneously; in particular, when we use BAOtr
data, which are less model-dependent, unlike the previous
works on ⇤sCDM that used 3D BAO data. Our proposal
consists of the most economical cosmological model avail-
able in the literature with that ability, because it does
not involve any extra physical parameters beyond ⇤CDM,
but only a cosmic time transition which needs to be fixed
by data. The abrupt/rapid nature of the ⇤s, or a dark
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TABLE II. Concordance/discordance between the ⇤CDM/⇤sCDM models and the theoretical/direct observational estimations,
viz., H0 = 73.04± 1.04 km s�1 Mpc�1 (SH0ES) [1]; MB = �19.244± 0.037mag (SH0ES) [2]; DH(2.33)/rd = 8.99± 0.19 (for the
combined Ly-↵ data) [3]; t0 = 13.50±0.15Gyr (systematic uncertainties are not included) [4]; 102!LUNA

b = 2.233±0.036 (empirical
approach, based primarily on experimentally measured cross sections for d(p, �)3He reaction) [5] and 102!PCUV21

b = 2.195±0.022
(theoretical approach, incorporating nuclear theory for d(p, �)3He reaction) [6]. S8 = 0.746+0.026

�0.021 (⇤sCDM: KiDS-1000) and
S8 = 0.749+0.027

�0.020 (⇤CDM: KiDS-1000) obtained in this work.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

H0 1.4� 0.2� 1.0� 0.2� 0.1�

4.8� 3.7� 4.3� 3.1� 2.9�

MB – – 1.7� 1.1� 0.9�

– – 4.5� 3.5� 3.3�

S8 1.7� 1.2� 1.7� 1.4� 1.1�

3.1� 2.0� 2.3� 1.5� 1.3�

t0 1.0� 0.1� 0.5� 0.2� 0.1�

1.9� 1.6� 1.7� 1.4� 1.4�

DH(2.33)/rd 0.2� 1.3� 1.1� 1.3� 1.4�

2.0� 1.8� 1.8� 1.7� 1.7�

!
PCUV21
b 1.2� 2.1� 1.9� 1.9� 2.2�

1.6� 2.6� 2.4� 3.1� 3.4�

!
LUNA
b 0.3� 0.4� 0.3� 0.3� 0.4�

0.1� 0.8� 0.6� 1.1� 1.3�

FIG. 1. Two-dimensional marginalized probability posteriors of z† versus H0, MB, S8, DH(2.33)/rd (DH/rd at ze↵ = 2.33
relevant to the Ly-↵ measurements), t0, and !b in ⇤sCDM model for CMB+BAOtr+PP&SH0ES+KiDS-1000. The vertical
grey bands are the constraints (68% CL) for the ⇤CDM model. The vertical purple bands stand for the theoretical/direct
observational estimations (at 68% CL) of the corresponding parameters commonly used in the literature: H0 = 73.04 ±
1.04 km s�1 Mpc�1(SH0ES) [1]; MB = �19.244 ± 0.037mag (SH0ES) [2]; DH(2.33)/rd = 8.99 ± 0.19 (for combined Ly-↵
data) [3]; t0 = 13.50± 0.15Gyr (systematic uncertainties are not included) [4]; 102!LUNA

b = 2.233± 0.036 [5]. In addition, we
show vertical brown band for 102!PCUV21

b = 2.195± 0.022 [6] and S8 = 0.746+0.026
�0.021 (⇤sCDM: KiDS-1000) [this work].
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TABLE I. Marginalized constraints, mean values with 68% CL (bestfit value), on the free and some derived parameters of the
⇤sCDM and standard ⇤CDMmodels for di↵erent data set combinations. Bayes factors Bij given by lnBij = lnZ⇤CDM�lnZ⇤sCDM

are also displayed for the di↵erent analyses so that a negative value indicates a preference for the ⇤sCDM model against the
⇤CDM scenario.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

z† unconstrained 1.70+0.09
�0.19(1.65) 1.87+0.13

�0.21(1.75) 1.70+0.10
�0.13(1.67) 1.72+0.09

�0.12(1.70)

�� �� �� �� ��
MB[mag] �� �� �19.317+0.021

�0.025(�19.311) �19.290± 0.017(�19.278) �19.282± 0.017(�19.280)

�� �� �19.407± 0.013(�19.411) �19.379± 0.012(�19.373) �19.372± 0.011(�19.369)

H0[km/s/Mpc] 70.77+0.79
�2.70(71.22) 73.30+1.20

�1.00(73.59) 71.72+0.73
�0.92(71.97) 72.82± 0.65(73.20) 73.16± 0.64(73.36)

67.39± 0.55(67.28) 68.84± 0.48(68.61) 68.55± 0.44(68.54) 69.57± 0.42(69.73) 69.83± 0.37(69.96)

⌦m 0.2860+0.0230
�0.0099(0.2796) 0.2643+0.0072

�0.0090(0.2618) 0.2768+0.0072
�0.0063(0.2759) 0.2683± 0.0052(0.2646) 0.2646± 0.0052(0.2622)

0.3151± 0.0075(0.3163) 0.2958± 0.0061(0.2984) 0.2995± 0.0056(0.2992) 0.2869± 0.0051(0.2849) 0.2837± 0.0045(0.2816)

S8 0.801+0.026
�0.016(0.791) 0.777± 0.011(0.772) 0.791± 0.011(0.794) 0.783± 0.010(0.777) 0.774± 0.009(0.773)

0.832± 0.013(0.835) 0.802± 0.011(0.804) 0.808± 0.010(0.804) 0.788± 0.010(0.784) 0.781± 0.008(0.782)

�
2
min 2778.06 2793.38 4219.68 4097.32 4185.34

2780.52 2820.30 4235.18 4138.26 4226.50

lnBij �1.28 �12.65 �7.52 �19.47 �19.77

1000 only data. The upper panels of Fig. 2 show 2D
contours at 68%, and 95% CLs in the ⌦m-S8 plane for the
⇤sCDM and ⇤CDM models. We note that the two models
yield very similar contours for the KiDS data (as both
models being the same at redshifts relevant to KiDS data).
However, while the Planck and KiDS contours disagree in
⇤CDM, they do agree in ⇤sCDM as the Planck contour
extends directly into the KiDS contour. This occurs
because the smaller z† values allowed by Planck data
lead to smaller values of S8 and ⌦m. For ⇤sCDM, the

FIG. 2. 2D contours at 68% and 95% CLs in the ⌦m-S8

plane for the ⇤sCDM and ⇤CDM models. S8 = 0.801+0.026
�0.016

(⇤sCDM: Planck), S8 = 0.746+0.026
�0.021 (⇤sCDM: KiDS-1000),

S8 = 0.832±0.013 (⇤CDM: Planck), S8 = 0.749+0.027
�0.020 (⇤CDM:

KiDS-1000) at 68% CL.

observational constraints on S8, viz., S8 = 0.801+0.026

�0.016

from Planck and S8 = 0.746+0.026

�0.021
from KiDS-1000, are

compatible with each other, and thus the S8 tension does
not exist in ⇤sCDM while it prevails in ⇤CDM. The
contour plots for ⇤sCDM in the lower left panel of Fig. 2
(see the lower right panel for ⇤CDM) further show the
robustness of the constraints on S8 in the presence of
other data sets under consideration.

Finally, from the analysis of the models using the com-
bination of all the data sets under consideration, viz.,
Planck+BAOtr+PP&SH0ES+KiDS-1000, we obtain the
most robust constraints on the model parameters as shown
in the last column of Table I. Fig. 3 shows the whisker
plot displaying 68% CL constraints on H0 for the ⇤sCDM
and ⇤CDM models from various data combinations. We
see that there is no H0 tension in the present analyses of
⇤sCDM with all data combinations including the BAOtr
data. We emphasize that all data sets under consider-
ation are compatible within the framework of ⇤sCDM.
Note that there is no H0 tension in our results using the
BAOtr data, while using 3D BAO data ⇤sCDM reduces
the H0 tension but fails to fully resolve it in previous
works [38, 39]. We attribute this to the possible model de-
pendence of the 3D BAO reconstruction, which is (mostly)
absent for the BAOtr data. In particular, [39] finds that
the two galaxy 3D BAO data—viz., SDSS main galaxy
sample (MGS) from ze↵ = 0.15 and BOSS galaxy from
ze↵ = 0.38—are responsible for this reduced concordance
under ⇤sCDM.

In addition, as can be seen in Supplemental Material,
⇤sCDM poses no problems with any of the well-known
parameters of the Universe based on observations and,
on theoretical side, standard physics. Instead, the con-
straints on its six baseline parameters that are common
with ⇤CDM, show unprecedented stability in the face
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TABLE I. Marginalized constraints, mean values with 68% CL (bestfit value), on the free and some derived parameters of the
⇤sCDM and standard ⇤CDMmodels for di↵erent data set combinations. Bayes factors Bij given by lnBij = lnZ⇤CDM�lnZ⇤sCDM

are also displayed for the di↵erent analyses, so that a negative value indicates a preference for the ⇤sCDM model against the
⇤CDM scenario.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

102
!b 2.241± 0.015(2.252) 2.249± 0.014(2.251) 2.245± 0.014(2.247) 2.246± 0.014(2.249) 2.250± 0.013(2.252)

2.238± 0.014(2.235) 2.262± 0.014(2.255) 2.256± 0.013(2.248) 2.277± 0.013(2.280) 2.282± 0.013(2.283)

!cdm 0.1195± 0.0012(0.1187) 0.1187± 0.0012(0.1186) 0.1192± 0.0011(0.1198) 0.1192+0.0010
�0.0012(0.1186) 0.1184± 0.0010(0.1180)

0.1200± 0.0012(0.1202) 0.1169± 0.0010(0.1173) 0.1175± 0.0010(0.1174) 0.1154± 0.0009(0.1151) 0.1149± 0.0008(0.1143)

100✓s 1.04189± 0.00029(1.04207) 1.04199± 0.00030(1.04194) 1.04196± 0.00029(1.04181) 1.04197± 0.00029(1.04167) 1.04199± 0.00031(1.04168)

1.04190+0.00027
�0.00031(1.04178) 1.04218± 0.00028(1.04211) 1.04213± 0.00027(1.04225) 1.04236± 0.00028(1.04242) 1.04242± 0.00029(1.04218)

ln(1010
As) 3.040± 0.014(3.046) 3.039± 0.015(3.034) 3.042± 0.014(3.044) 3.039± 0.014(3.038) 3.037± 0.014(3.045)

3.046± 0.014(3.049) 3.058+0.014
�0.017(3.053) 3.056± 0.016(3.047) 3.064+0.015

�0.017(3.063) 3.062+0.013
�0.016(3.079)

ns 0.9669± 0.0043(0.9664) 0.9695± 0.0041(0.9692) 0.9679± 0.0039(0.9644) 0.9682± 0.0040(0.9711) 0.9695± 0.0043(0.9701)

0.9657± 0.0041(0.9658) 0.9733± 0.0039(0.9706) 0.9715± 0.0035(0.9728) 0.9768± 0.0038(0.9801) 0.9786± 0.0035(0.9797)

⌧ reio 0.0528± 0.0073(0.0569) 0.0532± 0.0077(0.0515) 0.0534± 0.0073(0.0544) 0.0522± 0.0073(0.0555) 0.0525± 0.0074(0.0584)

0.0550± 0.0072(0.5488) 0.0639+0.0073
�0.0087(0.0608) 0.0624+0.0074

�0.0086(0.0586) 0.0684+0.0076
�0.0089(0.0685) 0.0678+0.0067

�0.0085(0.0771)

z† unconstrained 1.70+0.09
�0.19(1.65) 1.87+0.13

�0.21(1.75) 1.70+0.10
�0.13(1.67) 1.72+0.09

�0.12(1.70)

�� �� �� �� ��
zreio 7.43+0.78

�0.67(7.83) 7.42± 0.78(7.25) 7.47± 0.74(7.59) 7.34± 0.76(7.67) 7.34± 0.74(7.94)

7.75± 0.72(7.76) 8.52± 0.76(8.25) 8.39± 0.76(8.05) 8.87± 0.75(8.88) 8.79+0.64
�0.75(9.64)

YP 0.247856± 0.000063(0.247905) 0.247889± 0.000060(0.247901) 0.247876± 0.000058(0.247881) 0.247877± 0.000061(0.247887) 0.247895± 0.000057(0.247903)

0.247842± 0.000062(0.247832) 0.247944± 0.000059(0.247914) 0.247921+0.000059
�0.000053(0.247888) 0.248010± 0.000056(0.248020) 0.248031± 0.000055(0.248034)

zd 1060.03± 0.29(1060.22) 1060.15± 0.29(1060.22) 1060.12± 0.29(1060.19) 1060.12± 0.30(1060.15) 1060.15± 0.27(1060.16)

1059.99± 0.28(1059.95) 1060.28± 0.28(1060.16) 1060.21± 0.27(1060.03) 1060.52± 0.28(1060.55) 1060.59± 0.29(1060.56)

rd[Mpc] 147.17± 0.27(147.28) 147.31± 0.26(147.30) 147.20± 0.25(147.03) 147.21± 0.24(147.33) 147.36± 0.23(147.46)

147.07+0.24
�0.27(147.06) 147.65± 0.25(147.63) 147.55+0.24

�0.21(147.65) 147.87± 0.23(147.93) 147.96+0.25
�0.23(148.10)

t0[Gyr] 13.620+0.120
�0.042(13.596) 13.517+0.038

�0.049(13.502) 13.576+0.039
�0.034(13.560) 13.531± 0.028(13.524) 13.522± 0.027(13.521)

13.793± 0.023(13.800) 13.745± 0.021(13.756) 13.755± 0.020(13.760) 13.716± 0.020(13.710) 13.706± 0.018(13.709)

MB[mag] �� �� �19.317+0.021
�0.025(�19.311) �19.290± 0.017(�19.278) �19.282± 0.017(�19.280)

�� �� �19.407± 0.013(�19.411) �19.379± 0.012(�19.373) �19.372± 0.011(�19.369)

H0[km/s/Mpc] 70.77+0.79
�2.70(71.22) 73.30+1.20

�1.00(73.59) 71.72+0.73
�0.92(71.97) 72.82± 0.65(73.20) 73.16± 0.64(73.36)

67.39± 0.55(67.28) 68.84± 0.48(68.61) 68.55± 0.44(68.54) 69.57± 0.42(69.73) 69.83± 0.37(69.96)

!m 0.1426± 0.0011(0.1418) 0.1418± 0.0011(0.1418) 0.1423± 0.0010(0.1429) 0.1422± 0.0010(0.1418) 0.1416± 0.0010(0.1411)

0.1431± 0.0011(0.1432) 0.1401± 0.0010(0.1405) 0.1407± 0.0010(0.1406) 0.1388± 0.0009(0.1385) 0.1384± 0.0008(0.1378)

⌦m 0.2860+0.0230
�0.0099(0.2796) 0.2643+0.0072

�0.0090(0.2618) 0.2768+0.0072
�0.0063(0.2759) 0.2683± 0.0052(0.2646) 0.2646± 0.0052(0.2622)

0.3151± 0.0075(0.3163) 0.2958± 0.0061(0.2984) 0.2995± 0.0056(0.2992) 0.2869± 0.0051(0.2849) 0.2837± 0.0045(0.2816)

�8 0.8210+0.0064
�0.0110(0.8191) 0.8278± 0.0086(0.8260) 0.8240± 0.0074(0.8281) 0.8277± 0.0075(0.8274) 0.8244± 0.0067(0.8264)

0.8121+0.0055
�0.0061(0.8136) 0.8076+0.0058

�0.0067(0.8064) 0.8087± 0.0062(0.8054) 0.8054± 0.0064(0.8047) 0.8030± 0.0055(0.8076)

S8 0.801+0.026
�0.016(0.791) 0.777± 0.011(0.772) 0.791± 0.011(0.794) 0.783± 0.010(0.777) 0.774± 0.009(0.773)(0.773)

0.832± 0.013(0.835) 0.802± 0.011(0.804) 0.808± 0.010(0.804) 0.788± 0.010(0.784) 0.781± 0.008(0.782)

DH(2.33)/rd 8.960+0.280
�0.380(9.218) 9.240+0.035

�0.025(9.252) 9.201+0.041
�0.017(9.222) 9.232± 0.025(9.242) 9.249± 0.025(9.261)

8.615± 0.013(8.614) 8.648± 0.011(8.643) 8.641± 0.010(8.639) 8.664± 0.008(8.667) 8.670± 0.008(8.675)

�
2
min 2778.06 2793.38 4219.68 4097.32 4185.34

2780.52 2820.30 4235.18 4138.26 4226.50

lnZ �1423.17 �1432.71 �2144.75 �2084.37 �2133.85

�1424.45 �1445.36 �2152.27 �2103.84 �2153.62

lnBij �1.28 �12.65 �7.52 �19.47 �19.77
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TABLE I. Marginalized constraints, mean values with 68% CL (bestfit value), on the free and some derived parameters of the
⇤sCDM and standard ⇤CDMmodels for di↵erent data set combinations. Bayes factors Bij given by lnBij = lnZ⇤CDM�lnZ⇤sCDM

are also displayed for the di↵erent analyses, so that a negative value indicates a preference for the ⇤sCDM model against the
⇤CDM scenario.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

102
!b 2.241± 0.015(2.252) 2.249± 0.014(2.251) 2.245± 0.014(2.247) 2.246± 0.014(2.249) 2.250± 0.013(2.252)

2.238± 0.014(2.235) 2.262± 0.014(2.255) 2.256± 0.013(2.248) 2.277± 0.013(2.280) 2.282± 0.013(2.283)

!cdm 0.1195± 0.0012(0.1187) 0.1187± 0.0012(0.1186) 0.1192± 0.0011(0.1198) 0.1192+0.0010
�0.0012(0.1186) 0.1184± 0.0010(0.1180)

0.1200± 0.0012(0.1202) 0.1169± 0.0010(0.1173) 0.1175± 0.0010(0.1174) 0.1154± 0.0009(0.1151) 0.1149± 0.0008(0.1143)

100✓s 1.04189± 0.00029(1.04207) 1.04199± 0.00030(1.04194) 1.04196± 0.00029(1.04181) 1.04197± 0.00029(1.04167) 1.04199± 0.00031(1.04168)

1.04190+0.00027
�0.00031(1.04178) 1.04218± 0.00028(1.04211) 1.04213± 0.00027(1.04225) 1.04236± 0.00028(1.04242) 1.04242± 0.00029(1.04218)

ln(1010
As) 3.040± 0.014(3.046) 3.039± 0.015(3.034) 3.042± 0.014(3.044) 3.039± 0.014(3.038) 3.037± 0.014(3.045)

3.046± 0.014(3.049) 3.058+0.014
�0.017(3.053) 3.056± 0.016(3.047) 3.064+0.015

�0.017(3.063) 3.062+0.013
�0.016(3.079)

ns 0.9669± 0.0043(0.9664) 0.9695± 0.0041(0.9692) 0.9679± 0.0039(0.9644) 0.9682± 0.0040(0.9711) 0.9695± 0.0043(0.9701)

0.9657± 0.0041(0.9658) 0.9733± 0.0039(0.9706) 0.9715± 0.0035(0.9728) 0.9768± 0.0038(0.9801) 0.9786± 0.0035(0.9797)

⌧ reio 0.0528± 0.0073(0.0569) 0.0532± 0.0077(0.0515) 0.0534± 0.0073(0.0544) 0.0522± 0.0073(0.0555) 0.0525± 0.0074(0.0584)

0.0550± 0.0072(0.5488) 0.0639+0.0073
�0.0087(0.0608) 0.0624+0.0074

�0.0086(0.0586) 0.0684+0.0076
�0.0089(0.0685) 0.0678+0.0067

�0.0085(0.0771)

z† unconstrained 1.70+0.09
�0.19(1.65) 1.87+0.13

�0.21(1.75) 1.70+0.10
�0.13(1.67) 1.72+0.09

�0.12(1.70)

�� �� �� �� ��
zreio 7.43+0.78

�0.67(7.83) 7.42± 0.78(7.25) 7.47± 0.74(7.59) 7.34± 0.76(7.67) 7.34± 0.74(7.94)

7.75± 0.72(7.76) 8.52± 0.76(8.25) 8.39± 0.76(8.05) 8.87± 0.75(8.88) 8.79+0.64
�0.75(9.64)

YP 0.247856± 0.000063(0.247905) 0.247889± 0.000060(0.247901) 0.247876± 0.000058(0.247881) 0.247877± 0.000061(0.247887) 0.247895± 0.000057(0.247903)

0.247842± 0.000062(0.247832) 0.247944± 0.000059(0.247914) 0.247921+0.000059
�0.000053(0.247888) 0.248010± 0.000056(0.248020) 0.248031± 0.000055(0.248034)

zd 1060.03± 0.29(1060.22) 1060.15± 0.29(1060.22) 1060.12± 0.29(1060.19) 1060.12± 0.30(1060.15) 1060.15± 0.27(1060.16)

1059.99± 0.28(1059.95) 1060.28± 0.28(1060.16) 1060.21± 0.27(1060.03) 1060.52± 0.28(1060.55) 1060.59± 0.29(1060.56)

rd[Mpc] 147.17± 0.27(147.28) 147.31± 0.26(147.30) 147.20± 0.25(147.03) 147.21± 0.24(147.33) 147.36± 0.23(147.46)

147.07+0.24
�0.27(147.06) 147.65± 0.25(147.63) 147.55+0.24

�0.21(147.65) 147.87± 0.23(147.93) 147.96+0.25
�0.23(148.10)

t0[Gyr] 13.620+0.120
�0.042(13.596) 13.517+0.038

�0.049(13.502) 13.576+0.039
�0.034(13.560) 13.531± 0.028(13.524) 13.522± 0.027(13.521)

13.793± 0.023(13.800) 13.745± 0.021(13.756) 13.755± 0.020(13.760) 13.716± 0.020(13.710) 13.706± 0.018(13.709)

MB[mag] �� �� �19.317+0.021
�0.025(�19.311) �19.290± 0.017(�19.278) �19.282± 0.017(�19.280)

�� �� �19.407± 0.013(�19.411) �19.379± 0.012(�19.373) �19.372± 0.011(�19.369)

H0[km/s/Mpc] 70.77+0.79
�2.70(71.22) 73.30+1.20

�1.00(73.59) 71.72+0.73
�0.92(71.97) 72.82± 0.65(73.20) 73.16± 0.64(73.36)

67.39± 0.55(67.28) 68.84± 0.48(68.61) 68.55± 0.44(68.54) 69.57± 0.42(69.73) 69.83± 0.37(69.96)

!m 0.1426± 0.0011(0.1418) 0.1418± 0.0011(0.1418) 0.1423± 0.0010(0.1429) 0.1422± 0.0010(0.1418) 0.1416± 0.0010(0.1411)

0.1431± 0.0011(0.1432) 0.1401± 0.0010(0.1405) 0.1407± 0.0010(0.1406) 0.1388± 0.0009(0.1385) 0.1384± 0.0008(0.1378)

⌦m 0.2860+0.0230
�0.0099(0.2796) 0.2643+0.0072

�0.0090(0.2618) 0.2768+0.0072
�0.0063(0.2759) 0.2683± 0.0052(0.2646) 0.2646± 0.0052(0.2622)

0.3151± 0.0075(0.3163) 0.2958± 0.0061(0.2984) 0.2995± 0.0056(0.2992) 0.2869± 0.0051(0.2849) 0.2837± 0.0045(0.2816)

�8 0.8210+0.0064
�0.0110(0.8191) 0.8278± 0.0086(0.8260) 0.8240± 0.0074(0.8281) 0.8277± 0.0075(0.8274) 0.8244± 0.0067(0.8264)

0.8121+0.0055
�0.0061(0.8136) 0.8076+0.0058

�0.0067(0.8064) 0.8087± 0.0062(0.8054) 0.8054± 0.0064(0.8047) 0.8030± 0.0055(0.8076)

S8 0.801+0.026
�0.016(0.791) 0.777± 0.011(0.772) 0.791± 0.011(0.794) 0.783± 0.010(0.777) 0.774± 0.009(0.773)(0.773)

0.832± 0.013(0.835) 0.802± 0.011(0.804) 0.808± 0.010(0.804) 0.788± 0.010(0.784) 0.781± 0.008(0.782)

DH(2.33)/rd 8.960+0.280
�0.380(9.218) 9.240+0.035

�0.025(9.252) 9.201+0.041
�0.017(9.222) 9.232± 0.025(9.242) 9.249± 0.025(9.261)

8.615± 0.013(8.614) 8.648± 0.011(8.643) 8.641± 0.010(8.639) 8.664± 0.008(8.667) 8.670± 0.008(8.675)

�
2
min 2778.06 2793.38 4219.68 4097.32 4185.34

2780.52 2820.30 4235.18 4138.26 4226.50

lnZ �1423.17 �1432.71 �2144.75 �2084.37 �2133.85

�1424.45 �1445.36 �2152.27 �2103.84 �2153.62

lnBij �1.28 �12.65 �7.52 �19.47 �19.77
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TABLE I. Marginalized constraints, mean values with 68% CL (bestfit value), on the free and some derived parameters of the
⇤sCDM and standard ⇤CDMmodels for di↵erent data set combinations. Bayes factors Bij given by lnBij = lnZ⇤CDM�lnZ⇤sCDM

are also displayed for the di↵erent analyses, so that a negative value indicates a preference for the ⇤sCDM model against the
⇤CDM scenario.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

102
!b 2.241± 0.015(2.252) 2.249± 0.014(2.251) 2.245± 0.014(2.247) 2.246± 0.014(2.249) 2.250± 0.013(2.252)

2.238± 0.014(2.235) 2.262± 0.014(2.255) 2.256± 0.013(2.248) 2.277± 0.013(2.280) 2.282± 0.013(2.283)

!cdm 0.1195± 0.0012(0.1187) 0.1187± 0.0012(0.1186) 0.1192± 0.0011(0.1198) 0.1192+0.0010
�0.0012(0.1186) 0.1184± 0.0010(0.1180)

0.1200± 0.0012(0.1202) 0.1169± 0.0010(0.1173) 0.1175± 0.0010(0.1174) 0.1154± 0.0009(0.1151) 0.1149± 0.0008(0.1143)

100✓s 1.04189± 0.00029(1.04207) 1.04199± 0.00030(1.04194) 1.04196± 0.00029(1.04181) 1.04197± 0.00029(1.04167) 1.04199± 0.00031(1.04168)

1.04190+0.00027
�0.00031(1.04178) 1.04218± 0.00028(1.04211) 1.04213± 0.00027(1.04225) 1.04236± 0.00028(1.04242) 1.04242± 0.00029(1.04218)

ln(1010
As) 3.040± 0.014(3.046) 3.039± 0.015(3.034) 3.042± 0.014(3.044) 3.039± 0.014(3.038) 3.037± 0.014(3.045)

3.046± 0.014(3.049) 3.058+0.014
�0.017(3.053) 3.056± 0.016(3.047) 3.064+0.015

�0.017(3.063) 3.062+0.013
�0.016(3.079)

ns 0.9669± 0.0043(0.9664) 0.9695± 0.0041(0.9692) 0.9679± 0.0039(0.9644) 0.9682± 0.0040(0.9711) 0.9695± 0.0043(0.9701)

0.9657± 0.0041(0.9658) 0.9733± 0.0039(0.9706) 0.9715± 0.0035(0.9728) 0.9768± 0.0038(0.9801) 0.9786± 0.0035(0.9797)

⌧ reio 0.0528± 0.0073(0.0569) 0.0532± 0.0077(0.0515) 0.0534± 0.0073(0.0544) 0.0522± 0.0073(0.0555) 0.0525± 0.0074(0.0584)

0.0550± 0.0072(0.5488) 0.0639+0.0073
�0.0087(0.0608) 0.0624+0.0074

�0.0086(0.0586) 0.0684+0.0076
�0.0089(0.0685) 0.0678+0.0067

�0.0085(0.0771)

z† unconstrained 1.70+0.09
�0.19(1.65) 1.87+0.13

�0.21(1.75) 1.70+0.10
�0.13(1.67) 1.72+0.09

�0.12(1.70)

�� �� �� �� ��
zreio 7.43+0.78

�0.67(7.83) 7.42± 0.78(7.25) 7.47± 0.74(7.59) 7.34± 0.76(7.67) 7.34± 0.74(7.94)

7.75± 0.72(7.76) 8.52± 0.76(8.25) 8.39± 0.76(8.05) 8.87± 0.75(8.88) 8.79+0.64
�0.75(9.64)

YP 0.247856± 0.000063(0.247905) 0.247889± 0.000060(0.247901) 0.247876± 0.000058(0.247881) 0.247877± 0.000061(0.247887) 0.247895± 0.000057(0.247903)

0.247842± 0.000062(0.247832) 0.247944± 0.000059(0.247914) 0.247921+0.000059
�0.000053(0.247888) 0.248010± 0.000056(0.248020) 0.248031± 0.000055(0.248034)

zd 1060.03± 0.29(1060.22) 1060.15± 0.29(1060.22) 1060.12± 0.29(1060.19) 1060.12± 0.30(1060.15) 1060.15± 0.27(1060.16)

1059.99± 0.28(1059.95) 1060.28± 0.28(1060.16) 1060.21± 0.27(1060.03) 1060.52± 0.28(1060.55) 1060.59± 0.29(1060.56)

rd[Mpc] 147.17± 0.27(147.28) 147.31± 0.26(147.30) 147.20± 0.25(147.03) 147.21± 0.24(147.33) 147.36± 0.23(147.46)

147.07+0.24
�0.27(147.06) 147.65± 0.25(147.63) 147.55+0.24

�0.21(147.65) 147.87± 0.23(147.93) 147.96+0.25
�0.23(148.10)

t0[Gyr] 13.620+0.120
�0.042(13.596) 13.517+0.038

�0.049(13.502) 13.576+0.039
�0.034(13.560) 13.531± 0.028(13.524) 13.522± 0.027(13.521)

13.793± 0.023(13.800) 13.745± 0.021(13.756) 13.755± 0.020(13.760) 13.716± 0.020(13.710) 13.706± 0.018(13.709)

MB[mag] �� �� �19.317+0.021
�0.025(�19.311) �19.290± 0.017(�19.278) �19.282± 0.017(�19.280)

�� �� �19.407± 0.013(�19.411) �19.379± 0.012(�19.373) �19.372± 0.011(�19.369)

H0[km/s/Mpc] 70.77+0.79
�2.70(71.22) 73.30+1.20

�1.00(73.59) 71.72+0.73
�0.92(71.97) 72.82± 0.65(73.20) 73.16± 0.64(73.36)

67.39± 0.55(67.28) 68.84± 0.48(68.61) 68.55± 0.44(68.54) 69.57± 0.42(69.73) 69.83± 0.37(69.96)

!m 0.1426± 0.0011(0.1418) 0.1418± 0.0011(0.1418) 0.1423± 0.0010(0.1429) 0.1422± 0.0010(0.1418) 0.1416± 0.0010(0.1411)

0.1431± 0.0011(0.1432) 0.1401± 0.0010(0.1405) 0.1407± 0.0010(0.1406) 0.1388± 0.0009(0.1385) 0.1384± 0.0008(0.1378)

⌦m 0.2860+0.0230
�0.0099(0.2796) 0.2643+0.0072

�0.0090(0.2618) 0.2768+0.0072
�0.0063(0.2759) 0.2683± 0.0052(0.2646) 0.2646± 0.0052(0.2622)

0.3151± 0.0075(0.3163) 0.2958± 0.0061(0.2984) 0.2995± 0.0056(0.2992) 0.2869± 0.0051(0.2849) 0.2837± 0.0045(0.2816)

�8 0.8210+0.0064
�0.0110(0.8191) 0.8278± 0.0086(0.8260) 0.8240± 0.0074(0.8281) 0.8277± 0.0075(0.8274) 0.8244± 0.0067(0.8264)

0.8121+0.0055
�0.0061(0.8136) 0.8076+0.0058

�0.0067(0.8064) 0.8087± 0.0062(0.8054) 0.8054± 0.0064(0.8047) 0.8030± 0.0055(0.8076)

S8 0.801+0.026
�0.016(0.791) 0.777± 0.011(0.772) 0.791± 0.011(0.794) 0.783± 0.010(0.777) 0.774± 0.009(0.773)(0.773)

0.832± 0.013(0.835) 0.802± 0.011(0.804) 0.808± 0.010(0.804) 0.788± 0.010(0.784) 0.781± 0.008(0.782)

DH(2.33)/rd 8.960+0.280
�0.380(9.218) 9.240+0.035

�0.025(9.252) 9.201+0.041
�0.017(9.222) 9.232± 0.025(9.242) 9.249± 0.025(9.261)

8.615± 0.013(8.614) 8.648± 0.011(8.643) 8.641± 0.010(8.639) 8.664± 0.008(8.667) 8.670± 0.008(8.675)

�
2
min 2778.06 2793.38 4219.68 4097.32 4185.34

2780.52 2820.30 4235.18 4138.26 4226.50

lnZ �1423.17 �1432.71 �2144.75 �2084.37 �2133.85

�1424.45 �1445.36 �2152.27 �2103.84 �2153.62

lnBij �1.28 �12.65 �7.52 �19.47 �19.77
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TABLE I. Marginalized constraints, mean values with 68% CL (bestfit value), on the free and some derived parameters of the
⇤sCDM and standard ⇤CDMmodels for di↵erent data set combinations. Bayes factors Bij given by lnBij = lnZ⇤CDM�lnZ⇤sCDM

are also displayed for the di↵erent analyses, so that a negative value indicates a preference for the ⇤sCDM model against the
⇤CDM scenario.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM

⇤CDM ⇤CDM ⇤CDM ⇤CDM ⇤CDM

102
!b 2.241± 0.015(2.252) 2.249± 0.014(2.251) 2.245± 0.014(2.247) 2.246± 0.014(2.249) 2.250± 0.013(2.252)

2.238± 0.014(2.235) 2.262± 0.014(2.255) 2.256± 0.013(2.248) 2.277± 0.013(2.280) 2.282± 0.013(2.283)

!cdm 0.1195± 0.0012(0.1187) 0.1187± 0.0012(0.1186) 0.1192± 0.0011(0.1198) 0.1192+0.0010
�0.0012(0.1186) 0.1184± 0.0010(0.1180)

0.1200± 0.0012(0.1202) 0.1169± 0.0010(0.1173) 0.1175± 0.0010(0.1174) 0.1154± 0.0009(0.1151) 0.1149± 0.0008(0.1143)

100✓s 1.04189± 0.00029(1.04207) 1.04199± 0.00030(1.04194) 1.04196± 0.00029(1.04181) 1.04197± 0.00029(1.04167) 1.04199± 0.00031(1.04168)

1.04190+0.00027
�0.00031(1.04178) 1.04218± 0.00028(1.04211) 1.04213± 0.00027(1.04225) 1.04236± 0.00028(1.04242) 1.04242± 0.00029(1.04218)

ln(1010
As) 3.040± 0.014(3.046) 3.039± 0.015(3.034) 3.042± 0.014(3.044) 3.039± 0.014(3.038) 3.037± 0.014(3.045)

3.046± 0.014(3.049) 3.058+0.014
�0.017(3.053) 3.056± 0.016(3.047) 3.064+0.015

�0.017(3.063) 3.062+0.013
�0.016(3.079)

ns 0.9669± 0.0043(0.9664) 0.9695± 0.0041(0.9692) 0.9679± 0.0039(0.9644) 0.9682± 0.0040(0.9711) 0.9695± 0.0043(0.9701)

0.9657± 0.0041(0.9658) 0.9733± 0.0039(0.9706) 0.9715± 0.0035(0.9728) 0.9768± 0.0038(0.9801) 0.9786± 0.0035(0.9797)

⌧ reio 0.0528± 0.0073(0.0569) 0.0532± 0.0077(0.0515) 0.0534± 0.0073(0.0544) 0.0522± 0.0073(0.0555) 0.0525± 0.0074(0.0584)

0.0550± 0.0072(0.5488) 0.0639+0.0073
�0.0087(0.0608) 0.0624+0.0074

�0.0086(0.0586) 0.0684+0.0076
�0.0089(0.0685) 0.0678+0.0067

�0.0085(0.0771)

z† unconstrained 1.70+0.09
�0.19(1.65) 1.87+0.13

�0.21(1.75) 1.70+0.10
�0.13(1.67) 1.72+0.09

�0.12(1.70)

�� �� �� �� ��
zreio 7.43+0.78

�0.67(7.83) 7.42± 0.78(7.25) 7.47± 0.74(7.59) 7.34± 0.76(7.67) 7.34± 0.74(7.94)

7.75± 0.72(7.76) 8.52± 0.76(8.25) 8.39± 0.76(8.05) 8.87± 0.75(8.88) 8.79+0.64
�0.75(9.64)

YP 0.247856± 0.000063(0.247905) 0.247889± 0.000060(0.247901) 0.247876± 0.000058(0.247881) 0.247877± 0.000061(0.247887) 0.247895± 0.000057(0.247903)

0.247842± 0.000062(0.247832) 0.247944± 0.000059(0.247914) 0.247921+0.000059
�0.000053(0.247888) 0.248010± 0.000056(0.248020) 0.248031± 0.000055(0.248034)

zd 1060.03± 0.29(1060.22) 1060.15± 0.29(1060.22) 1060.12± 0.29(1060.19) 1060.12± 0.30(1060.15) 1060.15± 0.27(1060.16)

1059.99± 0.28(1059.95) 1060.28± 0.28(1060.16) 1060.21± 0.27(1060.03) 1060.52± 0.28(1060.55) 1060.59± 0.29(1060.56)

rd[Mpc] 147.17± 0.27(147.28) 147.31± 0.26(147.30) 147.20± 0.25(147.03) 147.21± 0.24(147.33) 147.36± 0.23(147.46)

147.07+0.24
�0.27(147.06) 147.65± 0.25(147.63) 147.55+0.24

�0.21(147.65) 147.87± 0.23(147.93) 147.96+0.25
�0.23(148.10)

t0[Gyr] 13.620+0.120
�0.042(13.596) 13.517+0.038

�0.049(13.502) 13.576+0.039
�0.034(13.560) 13.531± 0.028(13.524) 13.522± 0.027(13.521)

13.793± 0.023(13.800) 13.745± 0.021(13.756) 13.755± 0.020(13.760) 13.716± 0.020(13.710) 13.706± 0.018(13.709)

MB[mag] �� �� �19.317+0.021
�0.025(�19.311) �19.290± 0.017(�19.278) �19.282± 0.017(�19.280)

�� �� �19.407± 0.013(�19.411) �19.379± 0.012(�19.373) �19.372± 0.011(�19.369)

H0[km/s/Mpc] 70.77+0.79
�2.70(71.22) 73.30+1.20

�1.00(73.59) 71.72+0.73
�0.92(71.97) 72.82± 0.65(73.20) 73.16± 0.64(73.36)

67.39± 0.55(67.28) 68.84± 0.48(68.61) 68.55± 0.44(68.54) 69.57± 0.42(69.73) 69.83± 0.37(69.96)

!m 0.1426± 0.0011(0.1418) 0.1418± 0.0011(0.1418) 0.1423± 0.0010(0.1429) 0.1422± 0.0010(0.1418) 0.1416± 0.0010(0.1411)

0.1431± 0.0011(0.1432) 0.1401± 0.0010(0.1405) 0.1407± 0.0010(0.1406) 0.1388± 0.0009(0.1385) 0.1384± 0.0008(0.1378)

⌦m 0.2860+0.0230
�0.0099(0.2796) 0.2643+0.0072

�0.0090(0.2618) 0.2768+0.0072
�0.0063(0.2759) 0.2683± 0.0052(0.2646) 0.2646± 0.0052(0.2622)

0.3151± 0.0075(0.3163) 0.2958± 0.0061(0.2984) 0.2995± 0.0056(0.2992) 0.2869± 0.0051(0.2849) 0.2837± 0.0045(0.2816)

�8 0.8210+0.0064
�0.0110(0.8191) 0.8278± 0.0086(0.8260) 0.8240± 0.0074(0.8281) 0.8277± 0.0075(0.8274) 0.8244± 0.0067(0.8264)

0.8121+0.0055
�0.0061(0.8136) 0.8076+0.0058

�0.0067(0.8064) 0.8087± 0.0062(0.8054) 0.8054± 0.0064(0.8047) 0.8030± 0.0055(0.8076)

S8 0.801+0.026
�0.016(0.791) 0.777± 0.011(0.772) 0.791± 0.011(0.794) 0.783± 0.010(0.777) 0.774± 0.009(0.773)(0.773)

0.832± 0.013(0.835) 0.802± 0.011(0.804) 0.808± 0.010(0.804) 0.788± 0.010(0.784) 0.781± 0.008(0.782)

DH(2.33)/rd 8.960+0.280
�0.380(9.218) 9.240+0.035

�0.025(9.252) 9.201+0.041
�0.017(9.222) 9.232± 0.025(9.242) 9.249± 0.025(9.261)

8.615± 0.013(8.614) 8.648± 0.011(8.643) 8.641± 0.010(8.639) 8.664± 0.008(8.667) 8.670± 0.008(8.675)

�
2
min 2778.06 2793.38 4219.68 4097.32 4185.34

2780.52 2820.30 4235.18 4138.26 4226.50

lnZ �1423.17 �1432.71 �2144.75 �2084.37 �2133.85

�1424.45 �1445.36 �2152.27 �2103.84 �2153.62

lnBij �1.28 �12.65 �7.52 �19.47 �19.77



3

TABLE II. Concordance/discordance between the ⇤CDM/⇤sCDM models and the theoretical/direct observational estimations,
viz., H0 = 73.04± 1.04 km s�1 Mpc�1 (SH0ES) [1]; MB = �19.244± 0.037mag (SH0ES) [2]; DH(2.33)/rd = 8.99± 0.19 (for the
combined Ly-↵ data) [3]; t0 = 13.50±0.15Gyr (systematic uncertainties are not included) [4]; 102!LUNA

b = 2.233±0.036 (empirical
approach, based primarily on experimentally measured cross sections for d(p, �)3He reaction) [5] and 102!PCUV21

b = 2.195±0.022
(theoretical approach, incorporating nuclear theory for d(p, �)3He reaction) [6]. S8 = 0.746+0.026

�0.021 (⇤sCDM: KiDS-1000) and
S8 = 0.749+0.027

�0.020 (⇤CDM: KiDS-1000) obtained in this work.

Data set Planck Planck+BAOtr Planck+BAOtr Planck+BAOtr Planck+BAOtr

+PP +PP&SH0ES +PP&SH0ES+KiDS-1000

Model ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM ⇤sCDM
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MB – – 1.7� 1.1� 0.9�

– – 4.5� 3.5� 3.3�

S8 1.7� 1.2� 1.7� 1.4� 1.1�

3.1� 2.0� 2.3� 1.5� 1.3�

t0 1.0� 0.1� 0.5� 0.2� 0.1�

1.9� 1.6� 1.7� 1.4� 1.4�

DH(2.33)/rd 0.2� 1.3� 1.1� 1.3� 1.4�

2.0� 1.8� 1.8� 1.7� 1.7�

!
PCUV21
b 1.2� 2.1� 1.9� 1.9� 2.2�

1.6� 2.6� 2.4� 3.1� 3.4�

!
LUNA
b 0.3� 0.4� 0.3� 0.3� 0.4�

0.1� 0.8� 0.6� 1.1� 1.3�

FIG. 1. Two-dimensional marginalized probability posteriors of z† versus H0, MB, S8, DH(2.33)/rd (DH/rd at ze↵ = 2.33
relevant to the Ly-↵ measurements), t0, and !b in ⇤sCDM model for CMB+BAOtr+PP&SH0ES+KiDS-1000. The vertical
grey bands are the constraints (68% CL) for the ⇤CDM model. The vertical purple bands stand for the theoretical/direct
observational estimations (at 68% CL) of the corresponding parameters commonly used in the literature: H0 = 73.04 ±
1.04 km s�1 Mpc�1(SH0ES) [1]; MB = �19.244 ± 0.037mag (SH0ES) [2]; DH(2.33)/rd = 8.99 ± 0.19 (for combined Ly-↵
data) [3]; t0 = 13.50± 0.15Gyr (systematic uncertainties are not included) [4]; 102!LUNA

b = 2.233± 0.036 [5]. In addition, we
show vertical brown band for 102!PCUV21

b = 2.195± 0.022 [6] and S8 = 0.746+0.026
�0.021 (⇤sCDM: KiDS-1000) [this work].
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around which, H(z) can exhibit a non-monotonic behavior. It was shown via the gDE that the joint observational
data, including but not limited to the Planck CMB and Ly-↵ BAO (BOSS DR11) data, suggest that the cosmological
constant changed its sign at z ⇡ 2.32 and triggered the late-time acceleration, the behaviour of which alleviates the
H0 tension by predicting H0 ⇡ 69.7 ± 0.9 km s�1 Mpc�1 and provides excellent fit to the Ly-↵ BAO (BOSS DR11)
data [753] at the e↵ective redshift z ⇠ 2.34, which is at ⇠ 2.5� tension with the Planck 2015 best-fit ⇤CDM. Note
that this tension is reduced to ⇠ 1.5� when the final eBOSS (SDSS DR16) measurement, which combines all the data
from eBOSS and BOSS [220, 753, 754], is considered, see Sec. VIII G 1.

Inspired by these observational findings, and the theoretically compelling fact that the gDE submits to the weak
energy condition and the bounds on the speed of sound only in the limit � ! �1 which corresponds to a cosmological
constant that rapidly changes sign at redshift z†, this limit was dubbed ⇤sCDM and further investigated in Ref. [558].
The ⇤sCDM model can be constructed phenomenologically by simply replacing the usual cosmological constant (⇤)
of the standard ⇤CDM model with a cosmological constant (⇤s) that switches its sign from negative to positive, and
thus attains its present-day value (⇤s0 > 0), when the Universe reaches a certain energy scale (redshift z†) during its
expansion,

⇤ ! ⇤s ⌘ ⇤s0 sgn[z† � z]. (25)

It was shown in Ref. [558] that, when the consistency of the ⇤sCDM model with the CMB data is guaranteed, (i) H0

and MB (SNIa absolute magnitude) values are inversely correlated with z† and reach H0 ⇡ 74.5 km s�1 Mpc�1 and
MB ⇡ �19.2 mag for z† = 1.5, in agreement with the measurements from SH0ES [93, 109], and (ii) H(z) presents
an excellent fit to the Ly-↵ data provided that z† . 2.34. The assessment of the model against Planck 2018 yields
H0 = 70.22± 1.78 km s�1 Mpc�1 and against Planck 2018 + SDSS DR16 yields H0 = 68.82± 0.55 km s�1 Mpc�1 with
z† = 2.44±0.29 [558]. It was found that the lower and upper limits of z† are controlled by the Galaxy and Ly-↵ BAO
data, correspondingly, and the larger z† values imposed by the Galaxy BAO data prevent the model from achieving
the largest estimations of H0 from the direct local distance ladder measurements. It is intriguing that, as long as
z† . 2.34, the model remains in excellent agreement with the Ly-↵ data even for z† ⇠ 1.1, which barely satisfies the
condition that we live in an ever-expanding Universe; a good agreement with the Ly-↵ data is an intrinsic feature of
the ⇤sCDM model as long as z† . 2.34.

Similar to the situation with the Ly-↵ data, alleviating the S8 discrepancy, prevailing within the ⇤CDM model and
its minimal extensions, usually results in exacerbating the H0 tension, see Sec. V and Ref. [3]. In addition to this, the
constraints on S8 based on the Ly-↵ data are in agreement with the weak lensing surveys that probe similar late-time
redshift scales as the Ly-↵ measurements [394]. Accordingly, it is conceivable that the ⇤sCDM model provides a
remedy for the S8 discrepancy while retaining the better fit to the local measurements of H0, like in the case of the
Ly-↵ discrepancy. Indeed, in the CMB-only analysis, it is found that S8 = 0.8071 ± 0.0210 for the ⇤sCDM model,
whereas S8 = 0.8332 ± 0.0163 for the ⇤CDM model. Although �8 is smaller for the ⇤CDM model, its ⌦m value
greater than 0.3 results in an increased S8 value compared to its �8 value. In contrast, the ⇤sCDM model has an ⌦m

value lower than 0.3 which results in a decreased S8 value compared to its �8 value. This results in the lower value of
S8 for ⇤sCDM compared to ⇤CDM. The ⇤sCDM and ⇤CDM models have similar S8 values when the BAO data are
also included in the analysis; this is due to the preference for larger z† values by the Galaxy BAO data, since ⇤sCDM
approaches ⇤CDM for larger z† values and the ⌦m value of ⇤sCDM becomes greater than 0.3. Thus, the ⇤sCDM
model partially reconciles the CMB data with the low redshift cosmological probes regarding S8, and can potentially
resolve the discrepancy in the absence of the Galaxy BAO data; however, for a robust conclusion, the constraints on
S8 from low redshift probes should also be explored within the ⇤sCDM model.

Ultimately, it turns out via the ⇤sCDM model that sign switch in the cosmological constant, viz., transition from
an Anti-de Sitter background (provided by ⇤ < 0) to a de Sitter one (provided by ⇤ > 0), at z ⇠ 2 (i) relaxes
the SH0ES H0 tension while being fully consistent with the TRGB measurement, (ii) relaxes the MB tension, (iii)
removes the discrepancy with the Ly-↵ measurements, (iv) relaxes the S8 tension, and (v) finds a better agreement
with the BBN constraints on the physical baryon density [558]. These results seem to encourage looking for a phase
transition from AdS vacua to dS vacua in the late-Universe.

It is reasonable to look for a potential origin of this phenomenon, viz. a very rapid single transition or its limiting case
a single instantaneous (discontinuous) transition in the value of the cosmological constant, in a theory of fundamental
physics by considering it as a first-order phase transition. The phase transition approach has been used to address
the H0 tension; see e.g. Refs. [755–757], which consider that the DE density resembles the magnetization of the Ising
model and present a realization of this behavior within the Ginzburg-Landau framework. Additionally, Ref. [758]
considers a gravitational phase transition that is justified from the e↵ective field theory point of view (see also
Ref. [759]). The model studied in Ref. [755] partially corresponds to a one-parameter phenomenological extension
of ⇤sCDM; it considers an arbitrary shift in the value of the cosmological constant, but does not allow negative
values of the cosmological constant in contrast to ⇤sCDM. It addresses the H0 tension with a shift in the value of
the cosmological constant, however, at very low redshifts, viz. zt = 0.092+0.009

�0.062, signaling that it could su↵er from
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ABSTRACT

Theory of the physics of the early hot universe leads to a prediction of baryon acoustic oscillations
that has received confirmation from the pair-wise separations of galaxies in samples of hundreds of
thousands of objects. Evidence is presented here for the discovery of a remarkably strong individual
contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given
the name Ho’oleilana. The radius of the 3D structure is 155h�1

75
Mpc. At its core is the Boötes

supercluster. The Sloan Great Wall, CfA Great Wall, and Hercules complex all lie within the BAO
shell. The interpretation of Ho’oleilana as a BAO structure with our preferred analysis implies a value
of the Hubble constant of 76.9+8.2

�4.8
km s�1 Mpc�1

.

1. INTRODUCTION

Pressure waves generated in the hot plasma of the
early universe become imprinted in baryon fluctuations
approximately 390,000 years after the hot Big Bang
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970). The
remnants of these waves create a ruler that, observed
across time in the evolving universe, provides constraints
on the physics governing cosmic evolution (Weinberg
et al. 2013; Aubourg et al. 2015). Eisenstein et al.
(1998) investigated the possibility that early universe
fluctuations caused by the baryon component of matter
might explain structure on scales of ⇠ 13, 000 km s�1

(Tully 1986; Tully et al. 1992; Broadhurst et al. 1990)
and hints of baryon induced features in the power spec-
trum of galaxy correlations were first announced by Per-
cival et al. (2001). Subsequently, compelling evidence for
what have come to be called baryon acoustic oscillations
(BAO) has been seen as a peak in the pair-wise separa-
tions of galaxies throughout cosmic history (Cole et al.
2005; Eisenstein et al. 2005; Beutler et al. 2011; Blake
et al. 2011; Ross et al. 2015; Alam et al. 2017, 2021).
In all published cases, the BAO feature is a statistical

imprint compounded by contributions from many loca-
tions.
Studies such as Scrimgeour et al. (2012) and

Gonçalves et al. (2018) have identified the scale at
which the Universe reaches one percent homogeneity as
⇠ 70 � 120h75 Mpc. By logical arguments, the density
fluctuations anticipated in individual BAO shells (which
exist on scales larger than the homogeneity scale) can
then be only a few percent of the mean matter den-
sity. So it has not been expected that individual BAO

can be discerned. It was demonstrated by Arnalte-Mur
et al. (2012), though, that assuming BAO developed out
of pre-recombination central dark matter concentrations
identifiable today as rich clusters, the scales of associ-
ated BAO could be identified by wavelet analysis and
the stacked density maps from ⇠ 800 centers. These
centers can be further studied to identify the structures
that contribute most substantially to the total BAO sig-
nal.
We were not looking for BAO. However visual exam-

ination of maps from the Cosmicflows-4 compilation of
galaxy distances (Tully et al. 2023) revealed a structure
that invited further inspection. By way of introduction,
the two orthogonal views in supergalactic coordinates in
Figure 1 show the distribution of galaxy groups north
of the Milky Way equator in this data set.1 The SGY
axis roughly tracks redshifts. An evident overdensity
is seen at SGY⇠ 20, 000 km s�1, part of which is the
Sloan Great Wall (Gott et al. 2005). The Center for As-
trophysics Great Wall (de Lapparent et al. 1986) is seen
at SGY⇠ 7000 km s�1.
Restricting the velocity range to the interval 19, 000�

26, 000 km s�1, the domain including the Sloan Great
Wall, a view from the third orthogonal direction em-
phasizes what appears to be a ring structure, shown in
the top panel of Figure 2. A reasonable by-eye fit to the
structure is given by the red ring of radius 11,300 km s�1

centered at SGXc = �400 km s�1, SGZc = 5000 km s�1

1 Distances are given in units of CMB frame velocities, Vcmb. Dis-
tances in Mpc, d, are directly related: d = f(⌦m,⌦⇤)Vcmb/H0

where f(⌦m,⌦⇤) is a small adjustment dependent on cosmolog-
ical model.
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Figure 11. A comparison of the expansion rate of the Uni-
verse as a function of redshift from Ho’oleilana compared
to other statistical BAO measurements (Beutler et al. 2011;
Ross et al. 2015; Alam et al. 2017), assuming a prior on
the BAO size from early Universe physics. Bright and faint
points represent our measurements using the uncertainty
from Ho’oleilana alone, or taking the scatter from BAO sim-
ulations as the error, respectively. The solid band shows the
predicted expansion rate for a ⇤CDM cosmological model
from Planck Collaboration et al. (2020).

ple contains any evidence of statistical BAO. The power
spectrum measurements presented in Fig. 4 were anal-
ysed using the BAO fitting code Barry (Hinton et al.
2020) taking into account the survey window function,
however, unfortunately, we found no significant statisti-
cal BAO detection. Nonetheless, statistical BAO have
been detected in both the 6dF and SDSS Main galaxy
surveys (Beutler et al. 2011; Ross et al. 2015), which
cover an e↵ective volume only a few times larger than
the catalogue we analyse here. The latter of these also
covers the redshift range 0.07 < z < 0.20 and so par-
tially overlaps with our sample. It is worth noting that
the SDSS results of Ross et al. (2015) relied on BAO
reconstruction to enable their detection. As such, fur-
ther investigation of the SDSS PV sample, using both
the correlation function and BAO reconstruction, is war-
ranted.

4. DISCUSSION AND SUMMARY

Although Ho’oleilana was identified as a two-
dimensional feature, a significant component of the
signal comes from the foreground part of the three-
dimensional shell. (The back side far edge falls slightly
beyond the z = 0.1 limit of our sample.) Remark-
ably, the Coma Cluster, the Center for Astrophysics
Great Wall (de Lapparent et al. 1986), and structure
coursing up to the Hercules supercluster (Einasto et al.
2001; Shapley 1934) lie along the foreground surface

Figure 12. Video visualization of the cosmography of
Ho’oleilana. All objects in the north galactic hemisphere
of the Cosmicflows-4 collection of galaxy groups are seen
as points in gray while those lying within the shell of
Ho’oleilana, of radius 11,492 km s�1 and width ±2w where
w = 837 km s�1 are highlighted in red. Major compo-
nents in proximity to the shell are highlighted and identi-
fied by name. The Boötes supercluster lies near the center
of Ho’oleilana and the Boötes void lies interior to the shell
structure. Our home location is at the origin of the red,
green, blue axes. These axes have lengths 10,000 km s�1

and are directed toward positive SGX, SGY, SGZ respec-
tively.

of the posited BAO phenomenon. The famous Boötes
Void (Kirshner et al. 1981) lies within the embrace
of Ho’oleilana. Near the center of Ho’oleilana is the
Boötes supercluster (Einasto et al. 2001), presumed to
be the manifestation of the matter concentration that
gave birth to the BAO (Weinberg et al. 2013). In detail,
the domain of the central supercluster about the dom-
inant A1795 is di↵used over ⇠ 50h�1

75
Mpc around the

geometric center of the BAO shell
The extent of Ho’oleilana is revealed in an accompa-

nying video in the animated Figure 12. The cosmogra-
phy of Ho’oleilana is further explored in the interactive
Figure 13. The Cosmicflows-4 galaxy groups that lie
within the Ho’oleilana shell are colored red in the inter-
active Figure 14. In each of these displays, the galaxy
groups are located in 3D by their systemic velocities; ie.
in redshift space.
The significance of the detection of Ho’oleilana, its

shape, its relation to other previously known structures
in the local Universe, and the prominence of the feature
compared to the expectations of both a random field of
galaxies and simulations with large-scale structure but
suppressed BAO, strongly suggest Ho’oleilana is itself a
part of the BAO feature rather than a chance alignment.
Marginalising over the uncertainty in the central po-

sition, width and amplitude, we are able to extract
a measurement of the ratio of the distance to the
center of Ho’oleilana relative to its size predicted by

2

Figure 1. Zoom of Fig 21 from Tully et al. (2023)
in the galactic north sector showing the distribution of
Cosmicflows-4 galaxy groups in supergalactic coordinates.

in the bottom panel, which we show later in this work
is also statistically justified when considering the full
3-dimensional galaxy distribution.
This structure has been noted by Einasto et al. (2016)

as the most prominent of several shell-like structures re-
vealed in the main SDSS sample. These authors looked
for features around clusters and groups of varying rich-
ness and found the richer groups provided the more con-
vincing evidence as the centers for shell-like structures.
These authors considered but did not favor that any of
the features they detect are related to the BAO. As will
be discussed further, we find contrary evidence that the

Figure 2. Top panel : Supergalactic SGX�SGZ projection
of all northern Cosmicflows-4 galaxies with 19000 < Vcmb <

26000 km s�1. Bottom panel : Same as top panel with the
addition in red of a circle of radius 11300 km/s centered at
SGXc = �400 km s�1, SGZc = 5000 km s�1 and blue crosses
at the locations of Abell clusters A1781, A1795, A1825, and
A1831.

ring seen in Figure 2 does indeed form part of a large
coherent ‘BAO shell’ — the biggest contribution to the
overall BAO signal that we will report. In any event, this
apparent ring structure at a distance of ⇠ 250 Mpc from
us is one of the largest structures observed in the nearby
Universe to date and links together a number of hitherto
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and expected BAO radius given the input cosmology of
the simulation.
In addition, in Figure 9 we also show histogram of

these BAO fits, again restricting to mocks with Br,s > 0,
but also normalising by the number of sBAO bins at
each rBAO.6 The average ↵ value is close to 1, indi-
cating no bias in our method for identifying and fitting
the individual BAO contributors. However, the uncer-
tainty from the mocks both using only detections within
a single mock realisation, or compared across realisa-
tions is slightly larger than that found from our fit to
Ho’oleilana. This may simply be a result of the fact
that Ho’oleilana is an exceptionally strong feature, even
within mocks containing BAO. Or it may indicate an
additional contribution that should be included in our
error budget from sample variance. We hence elect to
provide constraints and draw conclusions using both our
fitted error on ↵ from Ho’oleilana (↵ = 0.88+0.06

�0.09
), and

using the uncertainty derived from the scatter in the
mocks (↵ = 0.88 ± 0.14) but fixed to our most likely
center for Ho’oleilana.
Turning back to the data, we convert our values of ↵ to

a distance ratio Dv/rdrag using our fiducial cosmology.
A substantial fraction of our uncertainty on ↵ comes
from marginalising over the possible centers — simi-
larly we then have a range of possible fiducial distances
to the center of Ho’oleilana, which translates to uncer-
tain values for our redshift and fiducial distance ratio of
z = 0.068+0.003

�0.007
and D

fid
v
/r

fid

drag
= 1.99+0.07

�0.20
respectively.

Propagating this constraint properly alongside the con-
straint on ↵ we recover Dv/rdrag = 1.63+0.07

�0.08
. 7. In the

case where we fix the central location of Ho’oleilana but
use the mock scatter as our error on ↵, we have a fixed
D

fid
v
/r

fid

drag
= 1.88 and find Dv/rdrag = 1.66± 0.26.

Finally, we adopt a prior on the sound horizon rdrag =
147.13 ± 0.26Mpc from Planck Collaboration et al.
(2020), and fit our combined posterior for ⌦m and
H0. Although we have e↵ectively allowed the redshift
to vary in incorporating all our proposed centers, the
general low redshift of Ho’oleilana makes it an almost
pure probe of H0, with little constraining power on
⌦m. This is reflected in our final constraints, shown in

6 This is important, because the requirements of the BAO wavelet
to have rBAO � 2sBAO means our list of the strongest BAO
contributions at each combination of rBAO and sBAO contains
more features with larger rBAO and hence smaller ↵. Normalising
the histogram of ↵ values by the number of sBAO bins corrects
for this selection bias.

7 Note that this propagation is done by converting each point of
our MCMC chains — one cannot simply multiply the reported
constraints on ↵ and D

fid
v /r

fid

drag
because these are extremely cor-

related, see Figure 10.

Figure 10. Cosmological constraints from fitting
Ho’oleilana with a BAO model using the uncertainty from
Ho’oleilana alone allowing for uncertainty in the central lo-
cation (blue) or using the the scatter seen in BAO simula-
tions as the uncertainty fixing to our most likely center for
Ho’oleilana (red). ↵ is our BAO scaling parameter, Dv/rdrag

is the ratio between the distance to the center of Ho’oleilana
and its size, while z is the redshift to its center. From these
pieces of information, and assuming constraints on rdrag from
early Universe physics, we obtain constraints on the matter
content ⌦m and present day expansion rate of the Universe
H0 that favor other local direct measurements (orange band)
rather than that propagated from models of the early uni-
verse (green band).

Figure 10, where ⌦m is unconstrained by our method-
ology. We find H0 = 76.9+8.2

�4.8
km s�1 Mpc�1 and

H0 = 74.7+12.4

�9.7
km s�1 Mpc�1 using the uncertainties

of ↵ from Ho’oleilana only and from the distribution of
our simulations respectively. For the former, the major-
ity of the uncertainty on H0 comes from the expected
variance in Nshell as measured from the mocks (reflected
in the error bars in Fig. 5) and our uncertainty in the
central location/redshift. Our constraints on the expan-
sion rate of the Universe, and comparisons to other mea-
surements, including statistical BAO, are shown in Fig-
ures 10 and 11. Being a single feature rather than a
statistical average, the errors bars from Ho’oleilana are
larger than those from other large-scale structure sur-
veys, however are still constraining enough to provide a
preference for larger expansion rates.
Given the presence of Ho’oleilana, an interesting ques-

tion is whether the clustering of the full SDSS PV sam-
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Figure 3. Two-dimensional marginalized posterior distributions (68% and 95% CLs) in the MB-H0 plane for the ⇤sCDM (color
coded by z†) and ⇤CDM for di↵erent data combinations. We overlay 1� bands for the local measurements HR21

0 = 73.04±1.04
km s�1 Mpc�1 [18], HTRGB

0 = 69.8± 0.8 km s�1 Mpc�1 [118], and MB = �19.244± 0.037mag (SH0ES) [124]. The larger z†
is, the closer the ⇤sCDM model is to the standard ⇤CDM model.

S8 prediction without compromising the agreement with
the CMB. While this implies a reduction in the values
of the parameters �8 and ⌦m, it is possible that a sig-
nificant enough reduction in the value of either of the
parameters can work just as well even if the remaining
one’s value is increased. Indeed, the observational as-
sessments of ⇤CDM and ⇤sCDM in Ref. [89] presented
higher �8 values for the ⇤sCDM model, and the CMB-
only data set yielded a matter density parameter value of
⌦m = 0.2900±0.0160 for ⇤sCDM lower compared to the
⇤CDM value of ⌦m = 0.3162±0.0084, overcompensating
the ⇤sCDM’s increased �8 parameter and consequently
resulting in a relaxed S8 = 0.8071 ± 0.0210 value com-
pared to the S8 = 0.8332± 0.0163 of ⇤CDM. Pleasantly,
this amelioration of the S8 tension is closely related to
the amelioration of the H0 tension within the ⇤sCDM
model as its reduced ⌦m value is not due to a reduced
physical matter density but its increased H0 value. Note
that, relaxing the S8 tension is not a generic property of
models that relax the H0 tension, on the contrary, they
often exacerbate it due to an excessively large �8 param-
eter [11, 15]. For instance, amongst many, EDE [19–22],
as well as related models such as new-EDE [23, 24], is
one of the most popular promising ones for relaxing the
H0 tension, however both EDE and new-EDE exacerbate
the S8 tension. AdS-EDE [69, 75, 102] is especially worth
mentioning, because, similar to ⇤sCDM, it is based on an
AdS-dS transition. On the other hand, ⇤sCDM consid-
ers the possibility of a rapid AdS-dS transition at red-

shift z ⇠ 2, whereas AdS-EDE has an AdS phase that
begins at z ⇠ 2000 and ends shortly after recombination
(zrec ' 1100), settling down in a ⇤ > 0 (dS) phase that
still continues today. However, AdS-EDE, like other EDE
models, relaxes the H0 tension but worsens the S8 ten-
sion [102].
To understand the structure formation within ⇤sCDM

and how it compares to ⇤CDM, we start with the Newto-
nian equation for the growth of structure of the minimally
interacting pressureless sources (baryons and CDM) after
decoupling,

@
2
t
�m = �2H@t�m + 4⇡G⇢̄m�m, (8)

where ⇢̄m is the spatially uniform background energy den-
sity and �m is the fractional overdensity of the pressure-
less fluid [174]. We take �m = ⇢̄b�b+⇢̄c�c

⇢̄b+⇢̄c
⇡ �b ⇡ �c

as quickly after recombination, the fractional overden-
sity in the baryons, �b, approaches that of the CDM, �c,
and the matter behaves like a single pressureless fluid
with total density contrast �m. The first term in the
right-hand side, yielding negative values (assuming ex-
panding universe, H > 0), is antagonist to the growth
of structure, and the second term, yielding positive val-
ues, endorses the growth of structure. We recall that
the Hubble parameters, assuming expanding universe,
are given by H⇤CDM =

p
8⇡G⇢̄m/3 + ⇤/3 for ⇤CDM,

and H⇤sCDM =
p

8⇡G⇢̄m/3 + ⇤s/3 for ⇤sCDM, where
we work in units such that the speed of light, c, equals
unity. Thus, if both models have the same initial con-
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ABSTRACT
We use the spherical collapse model to demonstrate that the observable average density of virialized clusters depends on the
properties of dark energy along with the properties of gravity on cluster scales and can therefore be used as a probe of these
properties. As an application of this approach we derive the predicted virialized densities and radii of cluster mass structures
for a wide range of values of the cosmological constant (including negative values) as a function of the turnaround redshift. For
the value of ⌦⇤,0 = �0.7 (with ⌦<,0 = 0.3) preferred by ⇤ sign-switching models (⇤BCDM) proposed for the resolution of the
Hubble and (8 tensions, we find an amplification of the density of virialized clusters which can be as large as 80% compared to
Planck18/⇤CDM for a turnaround redshift Imax & 2. Such an amplification may lead to more efficient early galaxy formation in
this class of models in accordance with the recent findings of JWST.

Key words: Cosmology: Observations, Cosmology: Dark Energy

1 INTRODUCTION

The standard ⇤CDM model (Carroll et al. 1992; Peebles & Ratra
2003; Bull et al. 2016; Dodelson & Schmidt 2020) is based on the
assumption that the energy density of the universe is currently dom-
inated by two components: 70% dark energy whose role is played by
a positive cosmological constant with equation of state F = �1 and
about 30% of a dark matter + baryons fluid with equation of state
F = 0. Despite of a wide range of successful predictions (Aghanim
et al. 2020; Tröster et al. 2021) in a wide range of cosmological
data, two parameters of the model, the Hubble constant �0 and the
growth of perturbations strength parameter (8, have best fit val-
ues that are inconsistent among different cosmological probes and in
particular between Cosmic Microwave Background (CMB) measure-
ments and local universe measurements. The level of these tensions,
the Hubble tension (Verde et al. 2019; Di Valentino et al. 2021b;
Perivolaropoulos & Skara 2022; Abdalla et al. 2022) and the growth
tension (Di Valentino et al. 2021c; Perivolaropoulos & Skara 2022;
Abdalla et al. 2022), is in the range of 3�5f. The persistence of these
(and other less discussed (Perivolaropoulos & Skara 2022)) tensions
during the past 5-10 years has lead to the possible anticipation that
new physics may be the their origin (Perivolaropoulos & Skara 2022;
Abdalla et al. 2022; Hu & Wang 2023).

A wide range of theoretical models have been constructed in an
effort to extend the standard ⇤CDM model introducing new degrees
of freedom which could eliminate these tensions and lead to a consis-
tency of the local late time probes with the early time cosmological
probes. These models may be classified in three broad classes ac-
cording the cosmic time when they introduce new physics degrees of
freedom

• Early time models: These models introduce new physics de-

¢ Contact e-mail: e.paraskevas@uoi.gr
† Contact e-mail: leandros@uoi.gr

grees of freedom just before recombination (redshift I & 1100) de-
creasing the sound horizon distance calibrator scale at recombination.
Examples of these theoretical frameworks encompass models such
as Early Dark Energy, outlined in Karwal & Kamionkowski (2016);
Poulin et al. (2019, 2018); Agrawal et al. (2019); Kamionkowski &
Riess (2022); Odintsov et al. (2023), in addition to the paradigm of
New Early Dark Energy, explicated in Niedermann & Sloth (2021,
2023).

• Intermediate/late time models: These models introduce new
physics degrees of freedom at intermediate/late times (I ' 0.1 � 3)
deforming the functional shape of the Hubble expansion rate � (I).
Examples of these theoretical frameworks encompass models such as
Interacting Dark Energy (Pan et al. 2019; Di Valentino et al. 2020c,a;
Kumar 2021), Phantom Crossing Dark Energy (Di Valentino et al.
2021a; Alestas et al. 2020, 2021b; Gangopadhyay et al. 2023b,a),
Vacuum Metamorphosis (VM) model (Di Valentino et al. 2020b,
2022), Clustering Dark Energy Batista (2021); Heisenberg et al.
(2023), or the ⇤BCDM model (Akarsu et al. 2020, 2021, 2023b; Adil
et al. 2023a; Akarsu et al. 2023a).

• Ultralate time models: These models introduce new physics
degrees of freedom at ultralate times (I . 0.01) affecting the astro-
physics and/or gravitational properties of distance scale standard can-
dle and standard ruler calibrators (Marra & Perivolaropoulos 2021;
Alestas et al. 2021b,a, 2022; Perivolaropoulos & Skara 2021, 2022).

Since, the shape of the Hubble free expansion rate⇢ (I) ⌘ � (I)/�0 is
very well constrained by SnIa standard candles and Baryon Acoustic
Oscillations (BAO) standard ruler data at redshifts 0.01 < I < 3,
the most successful representative models of each one of the above
classes involve some kind of abrupt event (transition) which leaves
practically unaffected the model consistency with the data before and
after its occurrence. Such transition based models include the ’New
Early Dark Energy’ model (Niedermann & Sloth 2021, 2020) which
involves a first order dark energy phase transition occurring just
before recombination (Niedermann & Sloth 2022a,b), the ⇤BCDM

© 2023 The Authors
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Dark energy in light of the early
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negative cosmological constant?
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Abstract. Early data from the James Webb Space Telescope (JWST) has uncovered the
existence of a surprisingly abundant population of very massive galaxies at extremely high
redshift, which are hard to accommodate within the standard ⇤CDM cosmology. We explore
whether the JWST observations may be pointing towards more complex dynamics in the dark
energy (DE) sector. Motivated by the ubiquity of anti-de Sitter vacua in string theory, we
consider a string-inspired scenario where the DE sector consists of a negative cosmological
constant (nCC) and a evolving component with positive energy density on top, whose equation
of state is allowed to cross the phantom divide. We show that such a scenario can drastically
alter the growth of structure compared to ⇤CDM, and accommodate the otherwise puzzling
JWST observations if the dynamical component evolves from the quintessence-like regime
in the past to the phantom regime today: in particular, we demonstrate that the presence
of a nCC (which requires a higher density for the evolving component) plays a crucial role
in enhancing the predicted cumulative comoving stellar mass density. Our work reinforces
the enormous potential held by observations of the abundance of high-z galaxies in probing
cosmological models and new fundamental physics, including string-inspired ingredients.
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The growth of structure of the minimally interacting pressureless sources (baryons and CDM) after decoupling


