Simultaneous alleviation of major cosmological tensions through $\Lambda_s CDM$ cosmology

Özgür Akarsu Istanbul Technical University

Based on the works in collaboration with John D. Barrow, Eleonora Di Valentino, Luis A. Escamilla, Suresh Kumar, Rafael Nunes, Emre Özülker, J. Alberto Vazquez, Anita Yadav

Workshop on Tensions in Cosmology 6 September-12 September 2023 Corfu, Greece

TÜRKİYE BİLİMLER AKADEMİSİ TURKISH ACADEMY OF SCIENCES

Graduated dark energy: observational hints of a spontaneous sign switch in the cosmological constant

$$\nabla_{\mu}G^{\mu\nu} = 0 \xrightarrow{GR} G^{\mu\nu} = -T_{\mu\nu} \xrightarrow{F} \nabla_{\mu}T^{\mu\nu} =$$

Cosmological Constant or the usual vacuum energy of QFT

$$\varrho_{\Lambda}=0$$

See Nihan's talk

$\rho = \text{constant}$

Acquaviva, Akarsu, Katırcı & Vazquez PRD (2021), arXiv:2104.02623

$$\rho = \rho_0 \left[1 + 3\gamma(\lambda - 1) \ln a \right]^{\frac{1}{1 - \lambda}} \qquad \frac{\frac{1}{1 - \lambda}}{m \text{ and } n \text{ are odd integers}}$$

$$\downarrow \text{EoS parameter}$$

$$w = -1 + \frac{\gamma}{1 + 3\gamma(\lambda - 1) \ln a}$$

Sign changing energy density requires an EoS exhibiting a singularity/pole. (Özülker, PRD 2022, arXiv:2203.04167) See Emré's talk

gDE: Graduated dark energy

 $\varrho = \gamma \rho_0 \left(\frac{\rho}{\rho_0}\right)^{\Lambda}$ The simplest dynamical deviation from zero inertial mass density of the usual wave 1 usual vacuum energy density. Inspired by *Graduated inflationary* universes, Barrow, PLB, 1990.

$$\rho = \rho_0 \operatorname{sgn}[1 - \Psi \ln a] \left| 1 - \Psi \ln a \right|^{\frac{1}{1 - \lambda}}$$

$$\Psi \equiv -3\gamma(\lambda - 1) < 0 \qquad \lambda < 1 \qquad \gamma < 0$$

Under these conditions energy density takes negative values in the past and EoS exhibits singularity/pole during its sign change

Akarsu, Katırcı, Özdemir & Vazquez, EPJC (2020) arXiv:1903.06679

Constraints on gDE-CDM from PLK+BAO+SN (JLA)+*H* (Cosmic Chronometers)

_	λ	$\Omega_{\mathrm{m,0}}$	h_0	$\gamma = w_0 + 1$	Ψ	z_*	$t_0[Gyr]$	$-2\Delta \ln \mathcal{L}_{\max}$
-	ΛCDM	0.302(6)	0.682(5)	0	0		13.806(22)	0.0
	0	0.297(7)	0.689(7)	> -0.08	> -0.25		13.796(24)	0.02
	-2	0.297(7)	0.688(7)	> -0.06	> -0.61		13.795(25)	0.02
	-4	0.289(6), 0.298(7)	0.700(9), 0.686(7)	-0.057(2), > -0.048	-0.86(3), > -0.73	2.31(12),-	13.714(25), 13.791(26)	1.0,0.02
	-6	0.292(6), 0.299(6)	0.699(9), 0.685(7)	-0.039(1), > -0.037	-0.86(3), > -0.77	2.31(12),-	13.715(25), 13.792(27)	2.0, 0.01
	-10	0.294(6), 0.299(6)	0.696(8), 0.684(7)	-0.025(1), > -0.021	-0.86(3), > -0.69	2.32(12),-	13.722(27), 13.797(25)	4.4,0.02
	-14	0.296(6), 0.300(6)	0.695(8), 0.683(7)	-0.019(1), > -0.017	-0.86(3), > -0.76	2.33(12),-	13.719(31), 13.794(27)	5.3,0.01
	-20	0.297(6), 0.300(6)	0.696(9), 0.683(7)	-0.013(1), > -0.012	-0.86(3), > -0.76	2.32(12),-	13.718(31), 13.795(26)	6.0 , 0.02
λ free	-17.9(5.8)	0.296(6), 0.299(7)	0.697(9), 0.684(8)	-0.017(8), > -0.074	-0.85(4), > -0.69	2.32(19),-	13.719(30), 13.795(24)	♦ 6.4, 0.01

 $ho(z)/
ho_{c0}$

 \mathcal{Z}

Omnipotent dark energy: A phenomenological answer to the Hubble tension

(Adil, Akarsu, Di Valentino, Nunes, Ozulker, Sen, Specogna, arXiv:2306.08046)

Density	EoS	Scaling in z	Scaling in a	Naming
	w>-1	$ \mathrm{d}\rho / \mathrm{d}z > 0$	$\mathrm{d}\rho /\mathrm{d}a < 0$	p-quintessence
$\rho > 0$	w = -1	$d\rho / dz = 0$	$d\rho / da = 0$	positive-CC
	w < -1	$d\rho / dz < 0$	$\mathrm{d}\rho /\mathrm{d}a > 0$	p-phantom
	w>-1	$ \mathrm{d}\rho / \mathrm{d}z < 0$	$d\rho / da > 0$	n-quintessence
$\rho < 0$	w = -1	$d\rho / dz = 0$	$\mathrm{d}\rho /\mathrm{d}a = 0$	negative-CC
	w < -1	$\left \mathrm{d}\rho /\mathrm{d}z > 0 \right $	$\left \mathrm{d}\rho /\mathrm{d}a < 0 \right $	n-phantom

An example: DMS20 parametrization, Di Valentino, Mukherjee & Sen, Entropy 2021, arXiv:2005.12587

Model-independent reconstruction of the Interacting Dark Energy Kernel: Binned and Gaussian process (Escamilla, Akarsu, Di Valentino, Vazquez, arXiv:2305.16290) See Luis' talk

Ζ

Some theoretical realizations...?

The meaning of imaginary space (Alexandre, Gielen & Magueijo arXiv:2306.11502)

They show that a classical metric signature change across boundaries with a degenerate metric in different formulations of general relativity allows for classical solutions where the open dS patch can arise from a portion of AdS space time.

Özülker, Perivolaropoulos, in progress)

$$ds^{2} = -dt^{2} + a^{2}(t) \left(dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + s^{2}(t) \frac{dy_{1}^{2} + \dots + dy_{1}^{2} + \dots + dy_{1}^{2}}{\left[1 + \frac{k_{\text{int}}}{4} (y_{1}^{2} + \dots + y_{n}^{2}) + \frac{k_{\text{int}}}{4} (y_{1}^{2} + \dots + y_{n}^{2}) + \frac{k_{\text{int}}}{4} (y_{1}^{2} + \dots + y_{n}^{2}) \right]}$$

$$\tilde{T}^{\nu}_{\mu} = \operatorname{diag}[-\tilde{\rho}, \tilde{p}_{\text{ext}}, \tilde{p}_{\text{ext}}, \tilde{p}_{\text{ext}}, \tilde{p}_{\text{int}}, ..., \tilde{p}_{\text{int}}]$$

$$\tilde{w}_{\text{ext}} = 0 \qquad \tilde{w}_{\text{int}} = -\frac{1}{2} + \left(\frac{(n-1)(n+2)}{2\tilde{\kappa}} \frac{k_{\text{int}}}{s_*^2} - \frac{\tilde{\Lambda}}{\tilde{\kappa}}\right) \frac{a}{\rho_{\text{r}}}$$
$$a \to 0 \qquad \tilde{w}_{\text{ext}} = 0 \qquad \tilde{w}_{\text{int}} \to -\frac{1}{2}$$

(black strings/branes) Akarsu, Chopovsky, Zhuk, PLB 2018, arXiv:1711.08372: Satisfy the gravitational tests for the parameterized post-Newtonian parameter γ at the same level of accuracy as GR. Preferable from the thermodynamical point of view. Averaging over the Universe, they do not destroy the stabilization of the internal space.

 $\tilde{\Lambda} = \operatorname{sgn}(\tilde{a}^2)\Lambda$

Constructing 4D Λ_s CDM models from the presence higher dimensions (Akarsu, Bulduk, Katırcı,

?: Rapid transition of Geff at $zt \approx 0.01$ as a possible solution of the Hubble and growth tensions, Marra & Perivolaropoulos, PRD 2021, arXiv:2102.06012

Relaxing cosmological tensions with a sign switching cosmological constant

$$\frac{\rho_{\rm DE}}{\rho_{\rm c,0}} \to \Omega_{\rm DE,0} \operatorname{sgn}[1 - \Psi \ln a] \quad \text{as} \quad \lambda \to -\infty$$

$$a(t) = \begin{cases} A^{\frac{1}{3}} \sin^{\frac{2}{3}} \left(\frac{3}{2}\sqrt{\frac{\Lambda_{s0}}{3}}t\right) & \text{for } t \leq t_{\dagger} \\ A^{\frac{1}{3}} \sinh^{\frac{2}{3}} \left[\frac{3}{2}\left(\sqrt{\frac{\Lambda_{s0}}{3}}t + B\right)\right] & \text{for } t \geq t_{\dagger} \end{cases}$$

where

$$\begin{split} A &= \sinh^{-2} \left[\frac{3}{2} \left(\sqrt{\frac{\Lambda_{\rm s0}}{3}} t_0 + B \right) \right], \\ B &= \operatorname{arcsinh} \left[\sin \left(\frac{3}{2} \sqrt{\frac{\Lambda_{\rm s0}}{3}} t_\dagger \right) - \frac{3}{2} \sqrt{\frac{\Lambda_{\rm s0}}{3}} t_\dagger \right], \end{split}$$

The figures are plotted by fixing $D_M(z_*)$ and $\rho_m(z_*)$ (and hence ρ_{m0}) to that of ΛCDM using the mean values of the *Planck* 2018 TT, TE, EE+lowE+lensing results.

Angular scale of the sound horizon at last scattering

Comoving sound horizon at last scattering

$$\theta_* = \frac{r_*}{D_M(z_*)}$$

 $100\theta_* = 1.04110 \pm 0.00031$ (ACDM PL18)

$$r_* = \int_{z_*}^{\infty} \frac{c_{\rm s}(z)}{H_{\Lambda \rm CDM}(z)} \, \mathrm{d}z$$

Comoving angular diameter distance out to last scattering

$$D_M(z_*) = c \int_0^{z_*} \frac{\mathrm{d}z}{H(z)}$$

 $r_* = 144.43 \pm 0.26$ Mpc (Λ CDM PL18)

$$D_{M(z*)} = 13872.83 \pm 25.31 \text{ Mpc} (\Lambda \text{CDM PL18})$$

Data set		\mathbf{CMB}			CMB+BAO	
	ΛCDM	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}{+}z_{\dagger}=2.32$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}{+}z_{\dagger}=2.32$
$10^2\omega_{ m b}$	2.235 ± 0.015	2.238 ± 0.015	2.238 ± 0.015	2.244 ± 0.013	2.231 ± 0.014	2.230 ± 0.013
$\omega_{ m c}$	0.1201 ± 0.0014	0.1197 ± 0.0013	0.1199 ± 0.0013	0.1189 ± 0.0009	0.1208 ± 0.0011	0.1209 ± 0.0009
$100\theta_s$	1.04090 ± 0.00031	1.04093 ± 0.00030	1.04091 ± 0.00031	1.04102 ± 0.00029	1.04081 ± 0.00029	1.04080 ± 0.00029
$\ln(10^{10}A_{\rm s})$	3.044 ± 0.016	3.043 ± 0.016	3.043 ± 0.016	3.045 ± 0.016	3.043 ± 0.016	3.043 ± 0.016
n_s	0.9646 ± 0.0043	0.9657 ± 0.0044	0.9655 ± 0.0044	0.9673 ± 0.0037	0.9633 ± 0.0039	0.9632 ± 0.0036
$ au_{ m reio}$	0.0543 ± 0.0078	0.0542 ± 0.0078	0.0541 ± 0.0078	0.0559 ± 0.0078	0.0530 ± 0.0077	0.0526 ± 0.0075
z_{\dagger}		unconstrained	[2.32]		2.44 ± 0.29	[2.32]
$\Omega_{ m m}$	0.3162 ± 0.0084	0.2900 ± 0.0160	0.2967 ± 0.0086	0.3090 ± 0.0059	0.3035 ± 0.0062	0.3029 ± 0.0060
H_0	67.29 ± 0.60	70.22 ± 1.78	69.42 ± 0.71	67.81 ± 0.44	68.82 ± 0.55	68.91 ± 0.48
σ_8	0.8117 ± 0.0076	0.8223 ± 0.0098	0.8186 ± 0.0074	0.8090 ± 0.0073	0.8207 ± 0.0080	0.8215 ± 0.0071
S_8	0.8332 ± 0.0163	0.8071 ± 0.0210	0.8138 ± 0.0166	0.8219 ± 0.0127	0.8255 ± 0.0128	0.8264 ± 0.0126
$-2\ln\mathcal{L}_{\rm max}$	1386.52	1385.73	1386.56	1394.32	1393.77	1393.54
$\ln \mathcal{Z}$	-1424.19	-1424.22	-1423.50	-1431.46	-1432.77	-1431.89
$\Delta \ln \mathcal{Z}$	0.69	0.72	0	0	1.31	0.43

Relaxing cosmological tensions with a sign switching cosmological constant: Improved results with Planck, BAO and Pantheon data Akarsu, Kumar, Özülker, Vazquez & Yadav, PRD (2023), arXiv:2108.09239

	1D - Dom - M	CMB+P	$an+Ly-\alpha$	CMB+Pa	an+BAO
		ΛCDM	$\Lambda_{ m s}{ m CDM}$	$\Lambda \mathrm{CDM}$	$\Lambda_{ m s}{ m CDM}$
	$\alpha + Pan + Ly - \alpha + M_B$	2.242 ± 0.013	2.241 ± 0.015	2.242 ± 0.013	2.235 ± 0.014
	VIB+Pan+BAO+M _B	1 0.1193 ± 0.0009	0.1196 ± 0.0011	0.1193 ± 0.0009	0.1206 ± 0.0010
		$28 \ 1.04191 \pm 0.00029$	1.04190 ± 0.00029	1.04194 ± 0.00028	1.04180 ± 0.00030
		3.047 ± 0.014	3.040 ± 0.015	3.047 ± 0.015	3.040 ± 0.014
		$0 \qquad 0.9669^{+0.0039}_{-0.0036}$	0.9668 ± 0.0041	0.9665 ± 0.0037	0.9644 ± 0.0037
		$5 0.0560 \pm 0.0069$	0.0528 ± 0.0077	0.0561 ± 0.0076	0.0515 ± 0.0073
/		.)	$2.21_{-0.38}^{+0.16}$	<u> </u>	> 2.13 (95% CL)
		-19.418 ± 0.011	-19.349 ± 0.028	-19.418 ± 0.012	-19.387 ± 0.015
		0.3110 ± 0.0053	0.2899 ± 0.0097	0.3109 ± 0.0056	0.3039 ± 0.0058
		$0 0.1424 \pm 0.0008$	0.1426 ± 0.0010	0.1424 ± 0.0009	0.1436 ± 0.0010
		67.68 ± 0.40	$70.17\substack{+0.96 \\ -1.10}$	$67.69^{+0.38}_{-0.43}$	$68.74_{-0.55}^{+0.49}$
		13.79 ± 0.02	$13.62\substack{+0.09\\-0.03}$	13.79 ± 0.02	$13.71\substack{+0.03 \\ -0.02}$
		0.8104 ± 0.0060	0.8182 ± 0.0066	0.8101 ± 0.0063	0.8167 ± 0.0062
		0.825 ± 0.010	0.804 ± 0.014	0.825 ± 0.011	0.822 ± 0.010
		1909.68	1903.44	1909.63	1909.53
-1937.8	⁸² · -1938.02	\circ -1944.53	-1939.75	-1944.51	-1944.76
0	0.20	4.78	0	0	0.25
CI	$MB+Pan+M_B$	CMB+Pan	$+Ly-\alpha+M_B$	CMB+Pan-	$+BAO+M_B$
ΛCDI	M $\Lambda_{s}CDM$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$
2.256 ± 0	0.015 2.248 ± 0.014	2.253 ± 0.013	2.947 + 0.014	2.255 ± 0.013	2.242 ± 0.014

2.256 ± 0.015 2.248 ± 0.014 2.253 ± 0.013 2.247 ^{+0.014} _{-0.013} 2.255 ± 0.013 2.242 ± 0.014 0.1181 ± 0.001 0.1191 ± 0.001 0.1183 ± 0.008 0.1191 ± 0.001 0.1181 ± 0.0002 1.04207 ^{+0.0020} _{-0.0020} 1.04208 ± 0.0023 1.04197 ± 0.0031 1.04204 ± 0.0028 1.04196 ± 0.00028 1.04207 ^{+0.0020} _{-0.0026} 1.04186 ± 0.0028 3.053 ^{+0.014} 3.039 ± 0.014 3.052 ^{+0.013} _{-0.016} 3.041 ± 0.015 3.053 ^{+0.014} _{-0.0026} 3.052 ± 0.007 0.0524 ± 0.0076 0.0524 ± 0.0076 0.0524 ± 0.0076 0.524 ± 0.0076 0.524 ± 0.0076 0.526 ± 0.0074 0.526 ± 0.0074 0.526 ± 0.0074 0.526 ± 0.0074 0.526 ± 0.0074 0.526 ± 0.0074 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 0.526 ± 0.0076 <th>ACDM</th> <th>Λ_{s}CDM</th> <th>ACDM</th> <th>$\Lambda_{s}CDM$</th> <th>ACDM</th> <th>$\Lambda_{s}CDM$</th>	ACDM	Λ_{s} CDM	ACDM	$\Lambda_{s}CDM$	ACDM	$\Lambda_{s}CDM$
0.1181 ± 0.0011 0.1191 ± 0.0011 0.1183 ± 0.0008 0.1191 ± 0.0011 0.1181 ± 0.0009 $0.1200^{+0.0010}_{-0.0011}$ 1.04208 ± 0.0029 1.04197 ± 0.00031 1.04204 ± 0.0028 1.04196 ± 0.00028 $1.04207^{+0.0029}_{-0.0026}$ 1.04186 ± 0.00028 $3.053^{+0.014}_{-0.017}$ 3.039 ± 0.014 $3.052^{+0.013}_{-0.016}$ 3.041 ± 0.015 $3.053^{+0.016}_{-0.016}$ 3.041 ± 0.015 0.9701 ± 0.0040 $0.9687^{+0.0043}_{-0.0038}$ 0.9697 ± 0.0035 0.9684 ± 0.0041 0.9702 ± 0.0035 0.9661 ± 0.0037 $0.0601^{+0.0072}_{-0.0088}$ 0.526 ± 0.0074 $0.0533^{+0.0064}_{-0.0079}$ $0.0534^{+0.017}_{-0.0077}$ 0.0524 ± 0.0076 $-0.0084^{+0.0072}_{-0.0088}$ 0.526 ± 0.0074 $0.0533^{+0.0074}_{-0.0079}$ $0.0603^{+0.0077}_{-0.0078}$ 0.524 ± 0.0076 $0.0601^{+0.0072}_{-0.0089}$ 0.526 ± 0.0074 $0.0533^{+0.0074}_{-0.0078}$ 0.524 ± 0.0076 0.524 ± 0.0076 -19.399 ± 0.014 $-19.290^{+0.026}_{-0.029}$ -19.492 ± 0.011 -19.399 ± 0.013 $-19.366^{+0.013}_{-0.015}$ 0.3028 ± 0.0068 0.2716 ± 0.0084 0.3043 ± 0.005 $0.2743^{+0.0097}_{-0.0097}$ 0.3030 ± 0.0051 0.2965 ± 0.0055 0.1413 ± 0.011 0.1422 ± 0.0010 0.1415 ± 0.008 0.1422 ± 0.011 0.1413 ± 0.0010 0.1431 ± 0.010 68.31 ± 0.52 $72.38^{+0.98}_{-1.10}$ 68.19 ± 0.38 72.0 ± 1.11 68.29 ± 0.39 $69.48^{+0.48}_{-0.55}$ 13.76 ± 0.02 13.55 ± 0.05 13.76 ± 0.02 $13.56^{+0.04}_{-0.014}$ 13.76 ± 0.02 18.76 ± 0.0063	2.256 ± 0.015	2.248 ± 0.014	2.253 ± 0.013	$2.247^{+0.014}_{-0.013}$	2.255 ± 0.013	2.242 ± 0.014
1.04208 ± 0.00029 1.04197 ± 0.00031 1.04204 ± 0.00028 1.04196 ± 0.00028 1.04207 $\substack{+0.00026}{-0.000026}$ 1.04186 ± 0.00028 $3.053^{\pm0.017}_{-0.017}$ 3.039 ± 0.014 $3.052^{\pm0.013}_{-0.016}$ 3.041 ± 0.015 $3.053^{\pm0.014}_{-0.016}$ 3.041 ± 0.015 0.9701 ± 0.0040 $0.9687^{\pm0.0033}_{-0.0038}$ 0.9697 ± 0.0035 0.9684 ± 0.0041 0.9702 ± 0.0035 0.9661 ± 0.0037 $0.0601^{\pm0.0072}_{-0.0073}$ 0.0526 ± 0.0074 $0.0593^{\pm0.0069}_{-0.0079}$ 0.0535 ± 0.0077 $0.0603^{\pm0.0078}_{-0.0078}$ 0.524 ± 0.0076 $ 1.78^{\pm0.14}_{-0.18}$ $ 1.84^{\pm0.13}_{-0.21}$ $ 2.36 \pm 0.28$ -19.399 ± 0.014 $-19.299^{\pm0.029}_{-0.029}$ -19.402 ± 0.011 -19.299 ± 0.028 -19.399 ± 0.011 $-19.366^{\pm0.013}_{-0.015}$ 0.3028 ± 0.0068 0.2716 ± 0.0084 0.3043 ± 0.0050 $0.2743^{\pm0.0086}_{-0.0097}$ 0.3030 ± 0.0051 0.2965 ± 0.0055 0.1413 ± 0.0011 0.1422 ± 0.0010 0.1415 ± 0.0088 0.1422 ± 0.0011 0.1413 ± 0.0010 $0.484^{\pm0.648}_{-0.55}$ 0.3028 ± 0.0064 $0.8255^{\pm0.0075}_{-0.0081}$ $0.8091^{\pm0.0054}_{-0.0063}$ 0.8243 ± 0.076 $0.8092^{\pm0.0057}_{-0.0061}$ 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788^{\pm0.014}_{-0.014}$ 0.813 ± 0.010 0.813 ± 0.010 0.813 ± 0.012 0.815 ± 0.012 0.815 ± 0.012 0.813 ± 0.010 0.813 ± 0.010 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788^{\pm0.014}_{-0.014}$ 0.813 ± 0.010 0.813 ± 0.012	0.1181 ± 0.0011	0.1191 ± 0.0011	0.1183 ± 0.0008	0.1191 ± 0.0011	0.1181 ± 0.0009	$0.1200\substack{+0.0010\\-0.0011}$
$3.053^{+0.014}_{-0.017}$ 3.039 ± 0.014 $3.052^{+0.013}_{-0.016}$ 3.041 ± 0.015 $3.053^{+0.014}_{-0.013}$ 3.041 ± 0.015 0.9701 ± 0.004 $0.9687^{+0.0043}_{-0.0038}$ 0.9697 ± 0.005 0.9684 ± 0.0041 0.9702 ± 0.003 0.9661 ± 0.0037 $0.0601^{+0.0072}_{-0.0082}$ 0.526 ± 0.0074 $0.0593^{+0.0079}_{-0.0079}$ $0.0603^{+0.0070}_{-0.0070}$ 0.0524 ± 0.0076 $ 1.78^{+0.14}_{-0.13}$ $ 1.84^{+0.13}_{-0.21}$ $ 2.36\pm0.28$ -19.399 ± 0.014 $-19.299^{+0.026}_{-0.029}$ -19.402 ± 0.01 -19.299 ± 0.028 -19.399 ± 0.01 $-19.366^{+0.013}_{-0.015}$ 0.3028 ± 0.0068 0.2716 ± 0.0084 0.3043 ± 0.005 $0.2743^{+0.0086}_{-0.0097}$ 0.333 ± 0.0051 0.2965 ± 0.0055 0.1413 ± 0.001 0.1422 ± 0.001 0.1415 ± 0.008 0.1413 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.001 0.1431 ± 0.012 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.817 ± 0.016 0.813 ± 0.016 0.813 ± 0.016	1.04208 ± 0.00029	1.04197 ± 0.00031	1.04204 ± 0.00028	1.04196 ± 0.00028	$1.04207\substack{+0.00029\\-0.00026}$	1.04186 ± 0.00028
0.9701 ± 0.00400.9687 ^{+0.0043} -0.00380.9697 ± 0.0035 0.0593 ^{+0.0064} 0.0593 ^{+0.0079} 0.9684 ± 0.0041 0.9603 ^{+0.0070} 0.0603 ^{+0.0070} 0.0603 ^{+0.0070} 0.0524 ± 0.0076-1.78 ^{+0.14} -1.8-1.84 ^{+0.13} -0.21-2.36 ± 0.28 -19.399 ± 0.01119.299 ^{+0.026} -0.029-19.402 ± 0.011 -19.402 ± 0.011-19.299 ± 0.028 -19.299 ± 0.012-19.366 ^{+0.013} -19.366 ^{+0.013} 0.3028 ± 0.0680.2716 ± 0.084 -19.290 ^{+0.026} 0.304 ± 0.050 -19.402 ± 0.0100.2743 ^{+0.086} -0.00970.3030 ± 0.005 -1413 ± 0.00080.2965 ± 0.0051 -1413 ± 0.00100.1413 ± 0.00110.1422 ± 0.00100.1415 ± 0.008 -1415 ± 0.0080.1422 ± 0.0110.1413 ± 0.008 -1413 ± 0.0080.1431 ± 0.01168.31 ± 0.5272.38 ^{+0.98} -1.1668.19 ± 0.38 -13.76 ± 0.0213.76 ± 0.02 -13.76 ± 0.02413.76 ± 0.02 -13.76 ± 0.02413.67 ± 0.03 -0.0440.8090 ± 0.06640.8255 ^{+0.0072} -0.08110.8091 ^{+0.0054} -0.00540.8243 ± 0.076 -0.0140.813 ± 0.0100.813 ± 0.0120.785 ± 0.0120.815 ± 0.0130.788 ^{+0.012} -0.0140.813 ± 0.0120.813 ± 0.0101913.281904.291918.681905.881919.851915.57-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	$3.053\substack{+0.014\\-0.017}$	3.039 ± 0.014	$3.052\substack{+0.013\\-0.016}$	3.041 ± 0.015	$3.053\substack{+0.014\\-0.016}$	3.041 ± 0.015
0.06010.0072 0.000530.0526 ± 0.00740.05930.05930.0535 ± 0.00770.06030.05030.05740.0077-1.78-1.84-1.84-1.84-2.36 ± 0.28-19.399 ± 0.014-19.299-19.299-19.299-19.2990.013-19.366-19.3090.3028 ± 0.00680.2716 ± 0.00840.3043 ± 0.0050.2743-0.00860.3030 ± 0.0050.2965 ± 0.00530.1413 ± 0.00110.1422 ± 0.00100.1415 ± 0.0080.1422 ± 0.00110.1413 ± 0.0080.1431 ± 0.001868.31 ± 0.5272.3868.19 ± 0.3872.0 ± 1.168.29 ± 0.3969.48-0.4813.76 ± 0.0213.55 ± 0.0513.76 ± 0.0213.560.8092 ± 0.00570.8176 ± 0.0230.8090 ± 0.00640.82550.00720.80910.07880.8243 ± 0.00760.8092 ± 0.00570.8176 ± 0.00630.813 ± 0.0120.785 ± 0.0120.815 ± 0.0130.788 ± 0.0120.813 ± 0.0100.813 ± 0.0101913.281904.291918.681905.881919.851915.77-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	0.9701 ± 0.0040	$0.9687\substack{+0.0043\\-0.0038}$	0.9697 ± 0.0035	0.9684 ± 0.0041	0.9702 ± 0.0035	0.9661 ± 0.0037
-1.78 +0.14 -0.18-1.84 +0.23 -0.23-2.36 ± 0.28 -0.23-19.399 ± 0.014-19.299 +0.026-19.402 ± 0.011-19.299 ± 0.028-19.399 ± 0.011-19.366 +0.0130.3028 ± 0.00680.2716 ± 0.00840.304 ± 0.00500.2743 +0.00860.303 ± 0.00510.2965 ± 0.00550.1413 ± 0.0010.1422 ± 0.0010.1415 ± 0.0080.1422 ± 0.0010.1413 ± 0.0080.1431 ± 0.00868.31 ± 0.5272.38 +0.08168.19 ± 0.3872.0 ± 1.168.29 ± 0.3969.48 +0.65513.76 ± 0.0213.55 ± 0.0513.76 ± 0.0213.56 +0.04313.76 ± 0.0213.67 ± 0.030.8090 ± 0.00640.8255 +0.00510.8091 +0.00630.8243 ± 0.00760.8092 +0.00570.8176 ± 0.00630.813 ± 0.0120.785 ± 0.0120.815 ± 0.0100.788 +0.0120.813 ± 0.0100.813 ± 0.0101913.281904.291918.681905.881919.851915.57-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	$0.0601\substack{+0.0072\\-0.0085}$	0.0526 ± 0.0074	$0.0593\substack{+0.0064\\-0.0079}$	0.0535 ± 0.0077	$0.0603\substack{+0.0070\\-0.0078}$	0.0524 ± 0.0076
-19.399±0.014-19.290 -0.029-19.402±0.011-19.299±0.028-19.399±0.011-19.366 -0.0150.3028±0.00680.2716±0.00840.3043±0.00500.2743 -0.00870.303±0.00510.2965±0.00550.1413±0.00110.1422±0.00100.1415±0.0080.1422±0.00110.1413±0.0080.1431±0.001868.31±0.5272.38 -1.1068.19±0.3872.0±1.1168.29±0.3969.48 -0.5513.76±0.0213.55±0.0513.76±0.0213.56 -0.06413.76±0.0213.67±0.030.8090±0.00640.8255 -0.00810.8091 -0.00630.8243±0.00760.8092 -0.00610.813±0.0100.813±0.0120.785±0.0120.815±0.0100.788 -0.0120.813±0.0120.813±0.0101913.281904.291918.681905.881919.851915.57-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	—	$1.78\substack{+0.14 \\ -0.18}$	—	$1.84^{+0.13}_{-0.21}$		2.36 ± 0.28
0.3028 ± 0.00680.2716 ± 0.00840.3043 ± 0.00500.2743 $^{+0.0086}_{-0.0097}$ 0.3030 ± 0.00510.2965 ± 0.00550.1413 ± 0.00110.1422 ± 0.00100.1413 ± 0.00080.1431 ± 0.00100.1431 ± 0.001068.31 ± 0.5272.38 $^{+0.98}_{-1.10}$ 68.19 ± 0.3872.0 ± 1.168.29 ± 0.3969.48 $^{+0.48}_{-0.55}$ 13.76 ± 0.0213.55 ± 0.0513.76 ± 0.0213.56 $^{+0.04}_{-0.04}$ 13.76 ± 0.0213.67 ± 0.030.8090 ± 0.00640.8255 $^{+0.0072}_{-0.0081}$ 0.8091 $^{+0.054}_{-0.0063}$ 0.8243 ± 0.00760.8092 $^{+0.0057}_{-0.0061}$ 0.8176 ± 0.00630.813 ± 0.0120.785 ± 0.0120.815 ± 0.0100.788 $^{+0.012}_{-0.014}$ 0.813 ± 0.0120.813 ± 0.0121913.281904.291918.681905.881919.851915.57-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	-19.399 ± 0.014	$-19.290\substack{+0.026\\-0.029}$	-19.402 ± 0.011	-19.299 ± 0.028	-19.399 ± 0.011	$-19.366^{+0.013}_{-0.015}$
0.1413 ± 0.0011 0.1422 ± 0.0010 0.1415 ± 0.0008 0.1422 ± 0.0011 0.1413 ± 0.0008 0.1431 ± 0.0010 68.31 ± 0.52 $72.38_{-1.10}^{+0.98}$ 68.19 ± 0.38 72.0 ± 1.1 68.29 ± 0.39 $69.48_{-0.55}^{+0.48}$ 13.76 ± 0.02 13.55 ± 0.05 13.76 ± 0.02 13.76 ± 0.02 13.76 ± 0.02 13.67 ± 0.03 0.8090 ± 0.0064 $0.8255_{-0.0081}^{+0.0072}$ $0.8091_{-0.0063}^{+0.0054}$ 0.8243 ± 0.0076 $0.8092_{-0.0061}^{+0.0057}$ 0.8176 ± 0.006 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788_{-0.014}^{+0.012}$ 0.813 ± 0.010 0.813 ± 0.010 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57 -1947.83 -1940.06 -1954.17 -1941.85 -1955.02 -1951.79 7.77 0 12.32 0 3.23 0	0.3028 ± 0.0068	0.2716 ± 0.0084	0.3043 ± 0.0050	$0.2743\substack{+0.0086\\-0.0097}$	0.3030 ± 0.0051	0.2965 ± 0.0055
68.31 ± 0.52 $72.38_{-1.10}^{+0.98}$ 68.19 ± 0.38 72.0 ± 1.1 68.29 ± 0.39 $69.48_{-0.55}^{+0.48}$ 13.76 ± 0.02 13.55 ± 0.05 13.76 ± 0.02 $13.56_{-0.04}^{+0.04}$ 13.76 ± 0.02 13.67 ± 0.03 0.8090 ± 0.0064 $0.8255_{-0.0081}^{+0.0072}$ $0.8091_{-0.0063}^{+0.0054}$ 0.8243 ± 0.0076 $0.8092_{-0.0061}^{+0.0057}$ 0.8176 ± 0.0063 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788_{-0.014}^{+0.012}$ 0.813 ± 0.010 0.813 ± 0.010 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57 -1947.83 -1940.06 -1954.17 -1941.85 -1955.02 -1951.79 7.77 0 12.32 0 3.23 0	0.1413 ± 0.0011	0.1422 ± 0.0010	0.1415 ± 0.0008	0.1422 ± 0.0011	0.1413 ± 0.0008	0.1431 ± 0.0010
13.76 ± 0.02 13.55 ± 0.05 13.76 ± 0.02 $13.56^{+0.04}_{-0.04}$ 13.76 ± 0.02 13.67 ± 0.03 0.8090 ± 0.0064 $0.8255^{+0.0072}_{-0.0081}$ $0.8091^{+0.0054}_{-0.0063}$ 0.8243 ± 0.0076 $0.8092^{+0.0057}_{-0.0061}$ 0.8176 ± 0.0063 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788^{+0.012}_{-0.014}$ 0.813 ± 0.010 0.813 ± 0.010 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57 -1947.83 -1940.06 -1954.17 -1941.85 -1955.02 -1951.79 7.77 0 12.32 0 3.23 0	68.31 ± 0.52	$72.38^{+0.98}_{-1.10}$	68.19 ± 0.38	72.0 ± 1.1	68.29 ± 0.39	$69.48\substack{+0.48\\-0.55}$
0.8090 ± 0.0064 $0.8255^{+0.0072}_{-0.0081}$ $0.8091^{+0.0054}_{-0.0063}$ 0.8243 ± 0.0076 $0.8092^{+0.0057}_{-0.0061}$ 0.8176 ± 0.0063 0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788^{+0.012}_{-0.014}$ 0.813 ± 0.010 0.813 ± 0.010 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57 -1947.83 -1940.06 -1954.17 -1941.85 -1955.02 -1951.79 7.77 0 12.32 0 3.23 0	13.76 ± 0.02	13.55 ± 0.05	13.76 ± 0.02	$13.56\substack{+0.04 \\ -0.04}$	13.76 ± 0.02	13.67 ± 0.03
0.813 ± 0.012 0.785 ± 0.012 0.815 ± 0.010 $0.788^{+0.012}_{-0.014}$ 0.813 ± 0.010 0.813 ± 0.010 1913.28 1904.29 1918.68 1905.88 1919.85 1915.57 -1947.83 -1940.06 -1954.17 -1941.85 -1955.02 -1951.79 7.77 0 12.32 0 3.23 0	0.8090 ± 0.0064	$0.8255\substack{+0.0072\\-0.0081}$	$0.8091\substack{+0.0054\\-0.0063}$	0.8243 ± 0.0076	$0.8092\substack{+0.0057\\-0.0061}$	0.8176 ± 0.0063
1913.281904.291918.681905.881919.851915.57-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	0.813 ± 0.012	0.785 ± 0.012	0.815 ± 0.010	$0.788\substack{+0.012\\-0.014}$	0.813 ± 0.010	0.813 ± 0.010
-1947.83-1940.06-1954.17-1941.85-1955.02-1951.797.77012.3203.230	1913.28	1904.29	1918.68	1905.88	1919.85	1915.57
7.77 0 12.32 0 3.23 0	-1947.83	-1940.06	-1954.17	-1941.85	-1955.02	-1951.79
	7.77	0	12.32	0	3.23	0

Data set	CMB	8+Pan	CMB+I	$Pan+Ly-\alpha$	CMB+I	Pan+BAO	CMB+1	$\operatorname{Pan}+M_B$	CMB+Par	$+Ly-\alpha+M_B$	CMB+Pan	+BAO+M
	ΛCDM	$\Lambda_{\rm s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$	ΛCDM	$\Lambda_{ m s}{ m CDM}$
$D_V(0.15)/r_{ m d}$	0.9σ	1.7σ	1.0σ	1.8σ	1.0σ	0.7σ	1.2σ	2.4σ	1.3σ	2.3σ	1.2σ	1.6σ
$D_V(0.85)/r_{ m d}$	0.7σ	0.0σ	0.6σ	0.1σ	0.6σ	0.3σ	0.5σ	0.6σ	0.4σ	0.5σ	0.5σ	0.2σ
$D_M(0.38)/r_{ m d}$	0.9σ	0.6σ	0.9σ	0.9σ	0.8σ	0.2σ	0.3σ	2.0σ	0.3σ	1.8σ	0.4σ	0.3σ
$D_M(0.51)/r_{ m d}$	0.5σ	0.9σ	0.4σ	1.2σ	0.4σ	0.3σ	0.1σ	2.3σ	0.1σ	2.2σ	0.0σ	0.8σ
$D_M(0.70)/r_{ m d}$	0.9σ	1.9σ	0.9σ	2.1σ	1.0σ	1.5σ	1.3σ	3.1σ	1.4σ	3.0σ	1.3σ	2.0σ
$D_M(1.48)/r_{ m d}$	0.6σ	1.3σ	0.6σ	1.5σ	0.7σ	1.0σ	0.8σ	1.9σ	0.9σ	1.9σ	0.8σ	1.2σ
$D_M(2.33)/r_{\rm d}$	1.5σ	1.0σ	1.5σ	1.0σ	1.5σ	1.2σ	1.3σ	0.9σ	1.3σ	0.9σ	1.4σ	1.1σ
$D_H(0.38)/r_{ m d}$	0.6σ	1.3σ	0.6σ	1.4σ	0.6σ	0.9σ	0.8σ	2.0σ	0.9σ	1.9σ	0.8σ	1.2σ
$D_H(0.51)/r_{ m d}$	0.7σ	0.1σ	0.6σ	0.3σ	0.6σ	0.3σ	0.4σ	0.8σ	0.4σ	0.8σ	0.4σ	0.0σ
$D_H(0.70)/r_{ m d}$	1.7σ	1.0σ	1.7σ	0.9σ	1.7σ	1.4σ	1.5σ	0.5σ	1.5σ	0.5σ	1.5σ	1.2σ
$D_H(1.48)/r_{ m d}$	0.6σ	0.8σ	0.6σ	0.8σ	0.6σ	0.7σ	0.6σ	0.9σ	0.6σ	0.9σ	0.6σ	0.8σ
$D_H(2.33)/r_{ m d}$	2.0σ	0.2σ	1.9σ	0.1σ	1.9σ	1.1σ	1.9σ	1.2σ	1.8σ	1.2σ	1.9σ	0.1σ

Λ_{s} CDM model: A promising scenario for alleviation of cosmological tensions

Here BAOtr dataset is the 2D BAO dataset (less model independent) compiled in arXiv:2002.09293 (Nunes, Yadav, Jesus, Bernui, MNRAS 2020) and arXiv:2103.14121 (Carvalho, Bernui, Avila, Novaes, Nogueira-Cavalcante, A&A 2021)

Akarsu, Di Valentino, Kumar, Nunes, Vazquez & Yadav, arXiv:2307.10899

(Our work) CMB+BAOtr+PantheonPlus&SH0ES+KiDS-1000 -(Our work) CMB+BAOtr+PantheonPlus&SH0ES (Our work) CMB+BAOtr+PantheonPlus · (Akarsu et al., 2022) CMB+Pantheon+BAO+ M_B -(Akarsu et al., 2022) CMB+Pantheon+Ly- α + M_B -(Akarsu et al., 2022) CMB+Pantheon+ M_B -(Akarsu et al., 2022) CMB+Pantheon+BAO -(Akarsu et al., 2022) CMB+Pantheon+Ly- α -(Akarsu et al., 2022) CMB+Pantheon -(Akarsu et al., 2021) CMB+BAO -

Data set	Planck	Planck+BAOtr	Planck+BAOtr	Planck+BAOtr	Planck+BAOtr
			+PP	+PP&SH0ES	+PP&SH0ES+KiDS-1000
Model	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$
	ΛCDM	ΛCDM	ΛCDM	ΛCDM	ΛCDΜ
${oldsymbol{z}}_\dagger$	unconstrained	$1.70^{+0.09}_{-0.19}(1.65)$	$1.87^{+0.13}_{-0.21}(1.75)$	$1.70^{+0.10}_{-0.13}(1.67)$	$1.72^{+0.09}_{-0.12}(1.70)$
$M_B[{ m mag}]$			$-19.317^{+0.021}_{-0.025}(-19.311)$	$-19.290 \pm 0.017(-19.278)$	$-19.282 \pm 0.017(-19.280)$
			$-19.407 \pm 0.013(-19.411)$	$-19.379 \pm 0.012(-19.373)$	$-19.372 \pm 0.011(-19.369)$
$H_0 [{ m km/s/Mpc}]$	$70.77_{-2.70}^{+0.79}(71.22)$	$73.30^{+1.20}_{-1.00}(73.59)$	$71.72_{-0.92}^{+0.73}(71.97)$	$72.82 \pm 0.65(73.20)$	$73.16 \pm 0.64 (73.36)$
	$67.39 \pm 0.55(67.28)$	$68.84 \pm 0.48 (68.61)$	$68.55 \pm 0.44 (68.54)$	$69.57 \pm 0.42 (69.73)$	$69.83 \pm 0.37 (69.96)$
$\Omega_{ m m}$	$0.2860^{+0.0230}_{-0.0099}(0.2796)$	$0.2643^{+0.0072}_{-0.0090}(0.2618)$	$0.2768^{+0.0072}_{-0.0063}(0.2759)$	$0.2683 \pm 0.0052 (0.2646)$	$0.2646 \pm 0.0052 (0.2622)$
	$0.3151 \pm 0.0075(0.3163)$	$0.2958 \pm 0.0061(0.2984)$	$0.2995 \pm 0.0056 (0.2992)$	$0.2869 \pm 0.0051 (0.2849)$	$0.2837 \pm 0.0045(0.2816)$
S_8	$0.801^{+0.026}_{-0.016}(0.791)$	$0.777 \pm 0.011 (0.772)$	$0.791 \pm 0.011 (0.794)$	$0.783 \pm 0.010 (0.777)$	$0.774 \pm 0.009 (0.773)$
	$0.832 \pm 0.013 (0.835)$	$0.802 \pm 0.011 (0.804)$	$0.808 \pm 0.010 (0.804)$	$0.788 \pm 0.010 (0.784)$	$0.781 \pm 0.008 (0.782)$
$\chi^2_{ m min}$	2778.06	2793.38	4219.68	4097.32	4185.34
	2780.52	2820.30	4235.18	4138.26	4226.50
$\mathrm{ln}\mathcal{B}_{ij}$	-1.28	-12.65	-7.52	-19.47	-19.77

Λ_s CDM: CMB+BAOtr+PP&SH0ES+KiDS-1000

Data set	Planck	Planck+BAOtr	Planck+BAOtr	Planck+BAOtr	Planck+BA0
			+PP	+PP&SH0ES	+PP&SH0ES+Ki
Model	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$
	ΛCDM	ΛCDM	ΛCDM	ΛCDΜ	ΛCDM
$10^2\omega_b$	$2.241 \pm 0.015 (2.252)$	$2.249 \pm 0.014 (2.251)$	$2.245 \pm 0.014 (2.247)$	$2.246 \pm 0.014 (2.249)$	$2.250 \pm 0.013(2.$
	$2.238 \pm 0.014 (2.235)$	$2.262 \pm 0.014 (2.255)$	$2.256 \pm 0.013 (2.248)$	$2.277 \pm 0.013 (2.280)$	$2.282 \pm 0.013(2.$
${oldsymbol \omega}_{cdm}$	$0.1195 \pm 0.0012 (0.1187)$	$0.1187 \pm 0.0012 (0.1186)$	$0.1192 \pm 0.0011 (0.1198)$	$0.1192^{+0.0010}_{-0.0012}(0.1186)$	$0.1184 \pm 0.0010(0$
	$0.1200 \pm 0.0012 (0.1202)$	$0.1169 \pm 0.0010 (0.1173)$	$0.1175 \pm 0.0010 (0.1174)$	$0.1154 \pm 0.0009(0.1151)$	$0.1149 \pm 0.0008(0$
$100 heta_s$	$1.04189 \pm 0.00029 (1.04207)$	$1.04199 \pm 0.00030 (1.04194)$	$1.04196 \pm 0.00029 (1.04181)$	$1.04197 \pm 0.00029 (1.04167)$	$1.04199 \pm 0.00031(1$
	$1.04190^{+0.00027}_{-0.00031}(1.04178)$	$1.04218 \pm 0.00028 (1.04211)$	$1.04213 \pm 0.00027 (1.04225)$	$1.04236 \pm 0.00028 (1.04242)$	$1.04242 \pm 0.00029(1$
$ln(10^{10}A_s)$	$3.040 \pm 0.014 (3.046)$	$3.039 \pm 0.015 (3.034)$	$3.042 \pm 0.014 (3.044)$	$3.039 \pm 0.014 (3.038)$	$3.037 \pm 0.014(3.$
	$3.046 \pm 0.014 (3.049)$	$3.058^{+0.014}_{-0.017}(3.053)$	$3.056 \pm 0.016 (3.047)$	$3.064^{+0.015}_{-0.017}(3.063)$	$3.062^{+0.013}_{-0.016}(3.0$
n_s	$0.9669 \pm 0.0043 (0.9664)$	$0.9695 \pm 0.0041 (0.9692)$	$0.9679 \pm 0.0039 (0.9644)$	$0.9682 \pm 0.0040 (0.9711)$	$0.9695 \pm 0.0043(0$
	$0.9657 \pm 0.0041 (0.9658)$	$0.9733 \pm 0.0039 (0.9706)$	$0.9715 \pm 0.0035 (0.9728)$	$0.9768 \pm 0.0038 (0.9801)$	$0.9786 \pm 0.0035(0$
${ au}_{reio}$	$0.0528 \pm 0.0073 (0.0569)$	$0.0532 \pm 0.0077 (0.0515)$	$0.0534 \pm 0.0073 (0.0544)$	$0.0522 \pm 0.0073 (0.0555)$	$0.0525 \pm 0.0074(0$
	$0.0550 \pm 0.0072 (0.5488)$	$0.0639^{+0.0073}_{-0.0087}(0.0608)$	$0.0624^{+0.0074}_{-0.0086}(0.0586)$	$0.0684^{+0.0076}_{-0.0089}(0.0685)$	$0.0678^{+0.0067}_{-0.0085}(0.0$
$oldsymbol{z}_\dagger$	unconstrained	$1.70^{+0.09}_{-0.19}(1.65)$	$1.87^{+0.13}_{-0.21}(1.75)$	$1.70^{+0.10}_{-0.13}(1.67)$	$1.72^{+0.09}_{-0.12}(1.70)$
$\chi^2_{ m min}$	2778.06	2793.38	4219.68	4097.32	4185.34
	2780.52	2820.30	4235.18	4138.26	4226.50
$\ln\!\mathcal{Z}$	-1423.17	-1432.71	-2144.75	-2084.37	-2133.85
	-1424.45	-1445.36	-2152.27	-2103.84	-2153.62
$\ln {\cal B}_{ij}$	-1.28	-12.65	-7.52	-19.47	-19.77

Data set	Planck	Planck+BAOtr	$\mathrm{Planck}\mathrm{+BAOtr}\\mathrm{+PP}$	Planck+BAOtr + PP&SH0ES	Planck+BAOtr + PP&SH0ES+KiDS-100
Model	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$
	ΛCDM	ΛCDM	ΛCDM	ΛCDM	ΛCDM
$\overline{z_{reio}}$	$7.43^{+0.78}_{-0.67}(7.83)$	$7.42 \pm 0.78 (7.25)$	$7.47 \pm 0.74 (7.59)$	$7.34 \pm 0.76 (7.67)$	$7.34 \pm 0.74 (7.94)$
	$7.75 \pm 0.72 (7.76)$	$8.52 \pm 0.76 (8.25)$	$8.39 \pm 0.76 (8.05)$	$8.87 \pm 0.75 (8.88)$	$8.79^{+0.64}_{-0.75}(9.64)$
$Y_{ m P}$	$0.247856 \pm 0.000063(0.247905)$	$0.247889 \pm 0.000060(0.247901)$	$0.247876 \pm 0.000058(0.247881)$	$0.247877 \pm 0.000061(0.247887)$	$0.247895 \pm 0.000057(0.247903)$
	$0.247842 \pm 0.000062 (0.247832)$	$0.247944 \pm 0.000059 (0.247914)$	$0.247921^{+0.000059}_{-0.000053}(0.247888)$	$0.248010 \pm 0.000056(0.248020)$	$0.248031 \pm 0.000055(0.248034)$
z_d	$1060.03 \pm 0.29 (1060.22)$	$1060.15 \pm 0.29 (1060.22)$	$1060.12 \pm 0.29 (1060.19)$	$1060.12 \pm 0.30 (1060.15)$	$1060.15 \pm 0.27 (1060.16)$
	$1059.99 \pm 0.28 (1059.95)$	$1060.28 \pm 0.28 (1060.16)$	$1060.21 \pm 0.27 (1060.03)$	$1060.52 \pm 0.28 (1060.55)$	$1060.59 \pm 0.29 (1060.56)$
$r_d[{ m Mpc}]$	$147.17 \pm 0.27 (147.28)$	$147.31 \pm 0.26 (147.30)$	$147.20 \pm 0.25 (147.03)$	$147.21 \pm 0.24 (147.33)$	$147.36 \pm 0.23 (147.46)$
	$147.07_{-0.27}^{+0.24}(147.06)$	$147.65 \pm 0.25 (147.63)$	$147.55_{-0.21}^{+0.24}(147.65)$	$147.87 \pm 0.23 (147.93)$	$147.96^{+0.25}_{-0.23}(148.10)$
$t_0[{ m Gyr}]$	$13.620^{+0.120}_{-0.042}(13.596)$	$13.517_{-0.049}^{+0.038}(13.502)$	$13.576^{+0.039}_{-0.034}(13.560)$	$13.531 \pm 0.028 (13.524)$	$13.522 \pm 0.027 (13.521)$
	$13.793 \pm 0.023 (13.800)$	$13.745 \pm 0.021 (13.756)$	$13.755 \pm 0.020 (13.760)$	$13.716 \pm 0.020 (13.710)$	$13.706 \pm 0.018 (13.709)$
$M_{ m B}[{ m mag}]$			$-19.317^{+0.021}_{-0.025}(-19.311)$	$-19.290 \pm 0.017(-19.278)$	$-19.282 \pm 0.017(-19.280)$
			$-19.407 \pm 0.013(-19.411)$	$-19.379 \pm 0.012 (-19.373)$	$-19.372 \pm 0.011 (-19.369)$
$H_0[{ m km/s/Mpc}]$	$70.77^{+0.79}_{-2.70}(71.22)$	$73.30^{+1.20}_{-1.00}(73.59)$	$71.72_{-0.92}^{+0.73}(71.97)$	$72.82 \pm 0.65(73.20)$	$73.16 \pm 0.64 (73.36)$
	$67.39 \pm 0.55(67.28)$	$68.84 \pm 0.48 (68.61)$	$68.55 \pm 0.44 (68.54)$	$69.57 \pm 0.42 (69.73)$	$69.83 \pm 0.37 (69.96)$
ω_m	$0.1426 \pm 0.0011 (0.1418)$	$0.1418 \pm 0.0011 (0.1418)$	$0.1423 \pm 0.0010 (0.1429)$	$0.1422 \pm 0.0010 (0.1418)$	$0.1416 \pm 0.0010(0.1411)$
	$0.1431 \pm 0.0011 (0.1432)$	$0.1401 \pm 0.0010 (0.1405)$	$0.1407 \pm 0.0010 (0.1406)$	$0.1388 \pm 0.0009 (0.1385)$	$0.1384 \pm 0.0008 (0.1378)$
Ω_{m}	$0.2860^{+0.0230}_{-0.0099}(0.2796)$	$0.2643^{+0.0072}_{-0.0090}(0.2618)$	$0.2768^{+0.0072}_{-0.0063}(0.2759)$	$0.2683 \pm 0.0052 (0.2646)$	$0.2646 \pm 0.0052 (0.2622)$
	$0.3151 \pm 0.0075 (0.3163)$	$0.2958 \pm 0.0061 (0.2984)$	$0.2995 \pm 0.0056 (0.2992)$	$0.2869 \pm 0.0051 (0.2849)$	$0.2837 \pm 0.0045 (0.2816)$
σ_8	$0.8210^{+0.0064}_{-0.0110}(0.8191)$	$0.8278 \pm 0.0086 (0.8260)$	$0.8240 \pm 0.0074 (0.8281)$	$0.8277 \pm 0.0075 (0.8274)$	$0.8244 \pm 0.0067 (0.8264)$
	$0.8121^{+0.0055}_{-0.0061}(0.8136)$	$0.8076^{+0.0058}_{-0.0067}(0.8064)$	$0.8087 \pm 0.0062 (0.8054)$	$0.8054 \pm 0.0064 (0.8047)$	$0.8030 \pm 0.0055 (0.8076)$
S_8	$0.801^{+0.026}_{-0.016}(0.791)$	$0.777 \pm 0.011 (0.772)$	$0.791 \pm 0.011 (0.794)$	$0.783 \pm 0.010 (0.777)$	$0.774 \pm 0.009(0.773)(0.773)$
	$0.832 \pm 0.013 (0.835)$	$0.802 \pm 0.011 (0.804)$	$0.808 \pm 0.010 (0.804)$	$0.788 \pm 0.010 (0.784)$	$0.781 \pm 0.008 (0.782)$
$D_H(2.33)/r_{ m d}$	$8.960^{+0.280}_{-0.380}(9.218)$	$9.240^{+0.035}_{-0.025}(9.252)$	$9.201^{+0.041}_{-0.017}(9.222)$	$9.232 \pm 0.025 (9.242)$	$9.249 \pm 0.025 (9.261)$
	$8.615 \pm 0.013 (8.614)$	$8.648 \pm 0.011 (8.643)$	$8.641 \pm 0.010 (8.639)$	$8.664 \pm 0.008 (8.667)$	$8.670 \pm 0.008 (8.675)$
$\chi^2_{ m min}$	2778.06	2793.38	4219.68	4097.32	4185.34
	2780.52	2820.30	4235.18	4138.26	4226.50
$\ln \mathcal{Z}$	-1423.17	-1432.71	-2144.75	-2084.37	-2133.85
	-1424.45	-1445.36	-2152.27	-2103.84	-2153.62
$\ln {\cal B}_{ij}$	-1.28	-12.65	-7.52	-19.47	-19.77

00

+BAOtr	Planck+BAOtr	Planck+BAOtr
	+PP&SH0ES	+PP&SH0ES+KiDS-1000
M	$\Lambda_{ m s}{ m CDM}$	$\Lambda_{ m s}{ m CDM}$
CDM	ΛCDM	ΛCDΜ
1.0σ	0.2σ	0.1σ
4.3σ	3.1σ	2.9σ
1.7σ	1.1σ	0.9σ
4.5σ	3.5σ	3.3σ
1.7σ	1.4σ	1.1σ
2.3σ	1.5σ	1.3σ
0.5σ	0.2σ	0.1σ
1.7σ	1.4σ	1.4σ
1.1σ	1.3σ	1.4σ
1.8σ	1.7σ	1.7σ
1.9σ	1.9σ	2.2σ
2.4σ	3.1σ	3.4σ
0.3σ	0.3σ	0.4σ
0.6σ	1.1σ	1.3σ

Ho'oleilana: An Individual Baryon Acoustic Oscillation?

R. BRENT TULLY,¹ CULLAN HOWLETT,² AND DANIEL POMARÈDE³

¹Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA ²School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia. ³Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA Université Paris-Saclay, 91191 Gif-sur-Yvette, France

ABSTRACT

Theory of the physics of the early hot universe leads to a prediction of baryon acoustic oscillations that has received confirmation from the pair-wise separations of galaxies in samples of hundreds of thousands of objects. Evidence is presented here for the discovery of a remarkably strong *individual* contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho'oleilana. The radius of the 3D structure is $155 h_{75}^{-1}$ Mpc. At its core is the Boötes supercluster. The Sloan Great Wall, CfA Great Wall, and Hercules complex all lie within the BAO shell. The interpretation of Ho'oleilana as a BAO structure with our preferred analysis implies a value of the Hubble constant of $76.9^{+8.2}_{-4.8}$ km s⁻¹ Mpc⁻¹.

The growth of structure of the minimally interacting pressureless sources (baryons and CDM) after decoupling

arXiv:2307.12763 arXiv:2308.07046 Dark energy in light of the early The density of virialized clusters as a probe of dark energy JWST observations: case for a Evangelos A. Paraskevas (D,¹*Leandros Perivolaropoulos (D,¹* ¹Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece negative cosmological constant? 23 August 2023

Shahnawaz A. Adil,^a Upala Mukhopadhyay,^b Anjan A. Sen,^b and Sunny Vagnozzi^{c,d}

^aDepartment of Physics, Jamia Millia Islamia, New Delhi-110025, India ^bCentre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025, India ^cDepartment of Physics, University of Trento, Via Sommarive 14, 38122 Povo (TN), Italy ^dTrento Institute for Fundamental Physics and Applications (TIFPA)-INFN, Via Sommarive 14, 38122 Povo (TN), Italy

E-mail: shahnawaz188483@st.jmi.ac.in, rs.umukhopadhyay@jmi.ac.in, aasen@jmi.ac.in, sunny.vagnozzi@unitn.it

Abstract. Early data from the James Webb Space Telescope (JWST) has uncovered the existence of a surprisingly abundant population of very massive galaxies at extremely high redshift, which are hard to accommodate within the standard Λ CDM cosmology. We explore whether the JWST observations may be pointing towards more complex dynamics in the dark energy (DE) sector. Motivated by the ubiquity of anti-de Sitter vacua in string theory, we consider a string-inspired scenario where the DE sector consists of a negative cosmological constant (nCC) and a evolving component with positive energy density on top, whose equation of state is allowed to cross the phantom divide. We show that such a scenario can drastically alter the growth of structure compared to ΛCDM , and accommodate the otherwise puzzling JWST observations if the dynamical component evolves from the quintessence-like regime in the past to the phantom regime today: in particular, we demonstrate that the presence of a nCC (which requires a higher density for the evolving component) plays a crucial role in enhancing the predicted cumulative comoving stellar mass density. Our work reinforces the enormous potential held by observations of the abundance of high-z galaxies in probing cosmological models and new fundamental physics, including string-inspired ingredients.

$\partial_t^2 \delta_{\rm m} = -2H \partial_t \delta_{\rm m} + 4\pi G \bar{\rho}_{\rm m} \delta_{\rm m}$

ABSTRACT

We use the spherical collapse model to demonstrate that the observable average density of virialized clusters depends on the properties of dark energy along with the properties of gravity on cluster scales and can therefore be used as a probe of these properties. As an application of this approach we derive the predicted virialized densities and radii of cluster mass structures for a wide range of values of the cosmological constant (including negative values) as a function of the turnaround redshift. For the value of $\Omega_{\Lambda,0} = -0.7$ (with $\Omega_{m,0} = 0.3$) preferred by Λ sign-switching models (Λ_s CDM) proposed for the resolution of the Hubble and S_8 tensions, we find an amplification of the density of virialized clusters which can be as large as 80% compared to Planck18/ Λ CDM for a turnaround redshift $z_{max} \ge 2$. Such an amplification may lead to more efficient early galaxy formation in this class of models in accordance with the recent findings of JWST.

Key words: Cosmology: Observations, Cosmology: Dark Energy

