

Top-quark physics in ATLAS and CMS

Markus Cristinziani on behalf of the ATLAS and CMS collaborations

Workshop on the Standard Model and Beyond Corfu, August 27 – September 7, 2023

Bundesministerium für Bildung und Forschung

Plan

Overview of most recent top-quark results by ATLAS and CMS

Since Corfu 2022

- 12 new results by CMS (6 papers submitted, 6 preliminary results) [Link]
- 20 new results by ATLAS (13 papers submitted, 7 preliminary results) [Link]
- cannot cover them all in 25 minutes

Plan

Overview of most recent top-quark results by ATLAS and CMS

Since Corfu 2022

- 12 new results by CMS (6 papers submitted, 6 preliminary results) [Link]
- 20 new results by ATLAS (13 papers submitted, 7 preliminary results) [Link]
- cannot cover them all in 25 minutes

Focus on

- papers submitted in the last 6 months
- preliminary results in the last 4 months

Covers many different aspects of the top programme at the LHC

Top-quark production

top-quark pair $\sigma \simeq 834 \text{ pb}$ @13 TeV (NNLO+NNLL)

single-top

t-channel $\sigma \simeq 214 \text{ pb}$ @13 TeV (NNLO)

The top quark: the heaviest known fundamental particle, $m_t \sim 172.5$ GeV Produced in pairs, singly, and with additional particles; sensitive to NP

s-channel $\sigma \simeq 11 \text{ pb}$ @13 TeV (NNLO)

tW $\sigma \simeq 79 \text{ pb}$ @13 TeV (NLO+NNLL)

LHC as top factory: ~120M pairs in Run-2 (140 fb⁻¹) in each experiment

tt cross section in eµ channel

Analysis at 13 TeV collision energy

- inclusive and (double-)differential lepton distributions
- fiducial region and full phase space
- profits from latest luminosity measurement
- improved reconstruction

JHEP 07 (2023) 141

tt cross section in eµ channel

Analysis at 13 TeV collision energy

- inclusive and (double-)differential lepton distance
- fiducial region and full phase space
- profits from latest luminosity measurement
- improved reconstruction

Inclusive result

- $\sigma_{t\bar{t}} = 829 \pm 1_{(\text{stat.})} \pm 13_{(\text{syst.})} \pm 8_{(\text{lumi.})} \pm 2_{(\text{beam})}$
- world-record 1.8% tt cross section uncertain
- agrees with NNLO prediction

JHEP 07 (2023) 141

	Source of uncertainty	$\Delta \sigma_{t \bar{t}}^{\mathrm{fid}} / \sigma_{t \bar{t}}^{\mathrm{fid}} \ [\%]$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ [
Stributions	Data statistics	0.15	0.15
	MC statistics	0.04	0.04
	Matrix element	0.12	0.16
	$h_{\rm damp}$ variation	0.01	0.01
	Parton shower	0.08	0.22
	$t\bar{t}$ + heavy flavour	0.34	0.34
	Top $p_{\rm T}$ reweighting	0.19	0.58
	Parton distribution functions	0.04	0.43
	Initial-state radiation	0.11	0.37
	Final-state radiation	0.29	0.35
	Electron energy scale	0.10	0.10
	Electron efficiency	0.37	0.37
	Electron isolation (in situ)	0.51	0.51
	Muon momentum scale	0.13	0.13
nh	Muon reconstruction efficiency	0.35	0.35
	Muon isolation (in situ)	0.33	0.33
	Lepton trigger efficiency	0.05	0.05
aintv	Vertex association efficiency	0.03	0.03
	Jet energy scale & resolution	0.10	0.10
	b-tagging efficiency	0.07	0.07
	$t\bar{t}/Wt$ interference	0.37	0.37
	Wt cross-section	0.52	0.52
	Diboson background	0.34	0.34
	$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
	Z + jets background	0.05	0.05
	Misidentified leptons	0.32	0.32
	Beam energy	0.23	0.23
	Luminosity	0.93	0.93
	Total uncertainty	1.6	1.8

tt cross section in eµ channel

Analysis at 13 TeV collision energy

- inclusive and (double-)differential lepton distributions
- fiducial region and full phase space
- profits from latest luminosity measurement
- improved reconstruction

Inclusive result

- $\sigma_{t\bar{t}} = 829 \pm 1_{(\text{stat.})} \pm 13_{(\text{syst.})} \pm 8_{(\text{lumi.})} \pm 2_{(\text{beam})} \text{ pb}$
- world-record 1.8% tt cross section uncertainty
- agrees with NNLO prediction

Differential results

somewhat in tension with state-of-the-art simulation

JHEP 07 (2023) 141

Top-quark jet substructure

- anti-k_t R=1.0 jets in single lepton chan. and fully hadronic tt events
- p_T (top-jet) ∈ (350,600) GeV

Differential cross section

- unfolded at particle level (IBU)
- using charged components of jet \rightarrow 50% better resolution

Eight variables, 1D & 2D

- **N-subjettiness** τ₃, τ₃₂, τ₂₁;
- norm. energy correlation f. ECF2, D₂, C₃;
- angularities LHA, $p_{T}^{d,*}$
- predicted substructure is more 3-body-like

ATLAS-CONF-2023-027

Top-quark jet substructure

- anti-k_t R=1.0 jets in single lepton chan. and fully hadronic tt events
- p_T (top-jet) ∈ (350,600) GeV

Differential cross section

- unfolded at particle level (IBU)
- using charged components of jet \rightarrow 50% better resolution

Eight variables, 1D & 2D

- **N-subjettiness** τ₃, τ₃₂, τ₂₁;
- norm. energy correlation f. ECF2, D₂, C₃;
- angularities LHA, $p_{T}^{d,*}$
- predicted substructure is more 3-body-like

ATLAS-CONF-2023-027

Top-quark jet substructure

- anti-k_t R=1.0 jets in single lepton chan. and fully hadronic tt events
- p_T (top-jet) ∈ (350,600) GeV

Differential cross section

- unfolded at particle level (IBU)
- using charged components of jet \rightarrow 50% better resolution

Eight variables, 1D & 2D

- **N-subjettiness** τ₃, τ₃₂, τ₂₁;
- norm. energy correlation f. ECF2, D₂, C₃;
- angularities LHA, $p_{T}^{d,*}$
- predicted substructure is more 3-body-like

ATLAS-CONF-2023-027

Prediction Data

0.8

0.6

0.2

Top-quark jet substructure

- anti-k_t R=1.0 jets in single lepton chan. and fully hadronic tt events
- p_T (top-jet) ∈ (350,600) GeV

Differential cross section

- unfolded at particle level (IBU)
- using charged components of jet \rightarrow 50% better resolution

Eight variables, 1D & 2D

- **N-subjettiness** τ₃, τ₃₂, τ₂₁;
- norm. energy correlation f. ECF2, D₂, C₃;
- angularities LHA, $p_{T}^{d,*}$
- predicted substructure is more 3-body-like

ATLAS-CONF-2023-027

First tt measurement in Run-3 at new energy, 1.21 fb⁻¹

- single and dilepton channels
- $p_T(\ell)>35$ GeV; new jet calibration; data driven Z+jets & QCD multijet
- ML fit with cut&count cross-check in eµ channel

arXiv:2303.10680

First tt measurement in Run-3 at new energy, 1.21 fb⁻¹

- single and dilepton channels
- $p_T(\ell)>35$ GeV; new jet calibration; data driven Z+jets & QCD multijet
- ML fit with cut&count cross-check in eµ channel

arXiv:2303.10680

Source	Uncerta
Lepton ID efficiencies	1.
Trigger efficiency	0.
JES	0.
b tagging efficiency	1.
Pileup reweighting	0.
ME scale, $t\bar{t}$	0.
ME scale, backgrounds	0.
ME/PS matching	0.
PS scales	0.
PDF and $\alpha_{\rm S}$	0.
Single t background	1.
Z+jets background	0.
W+jets background	0.
Diboson background	0.
QCD multijet background	d 0.
Statistical uncertainty	0.
Combined uncertainty	2.
Integrated luminosity	2.

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

arXiv:2308.09529

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

Strategy

- count b-tag multiplicity
- also extract b-tag efficiency

$$N_{1} = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_{b}\left(1-C_{b}\epsilon_{b}\right)+N_{1}^{\text{bkg}},$$
$$N_{2} = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{b}^{2}+N_{2}^{\text{bkg}},$$

arXiv:2308.09529

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

Strategy

- count b-tag multiplicity
- also extract b-tag efficiency

$$N_{1} = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_{b}\left(1-C_{b}\epsilon_{b}\right)+N_{1}^{\text{bkg}},$$
$$N_{2} = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{b}^{2}+N_{2}^{\text{bkg}},$$

arXiv:2308.09529

- 	
-------	--

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

Strategy

- count b-tag multiplicity
- also extract b-tag efficiency

$$N_{1} = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_{b}\left(1-C_{b}\epsilon_{b}\right)+N_{1}^{\text{bkg}},$$
$$N_{2} = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{b}^{2}+N_{2}^{\text{bkg}},$$

arXiv:2308.09529

4	*	-	-/	-
		-		

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

Strategy

- count b-tag multiplicity
- also extract b-tag efficiency

$$N_{1} = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_{b}\left(1-C_{b}\epsilon_{b}\right)+N_{1}^{\text{bkg}},$$
$$N_{2} = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{b}^{2}+N_{2}^{\text{bkg}},$$

arXiv:2308.09529

	Category	Uncertainty [%]		
		$\sigma_{t\bar{t}}$	$\sigma^{\mathrm{fid.}}_{Z \to \ell \ell}$	$R_{t\bar{t}/Z}$
$t\overline{t}$	$t\bar{t}$ parton shower/hadronisation	0.9	< 0.2	0.9
	$t\bar{t}$ scale variations	0.4	< 0.2	0.4
	<i>tt</i> normalisation	-	< 0.2	-
	Top quark $p_{\rm T}$ reweighting	0.6	< 0.2	0.6
Ζ	Z scale variations	< 0.2	0.4	0.3
Bkg.	Single top modelling	0.6	< 0.2	0.6
	Diboson modelling	< 0.2	< 0.2	0.2
	$t\bar{t}V$ modelling	< 0.2	< 0.2	< 0.2
	Fake and non-prompt leptons	0.6	< 0.2	0.6
Lept.	Electron reconstruction	1.2	1.0	0.4
	Muon reconstruction	1.4	1.4	0.3
	Lepton trigger	0.4	0.4	0.4
Jets/tagging	Jet reconstruction	0.4	-	0.4
	Flavour tagging	0.4	-	0.3
	PDFs	0.5	< 0.2	0.5
	Pileup	0.7	0.8	< 0.2
	Luminosity	2.3	2.2	0.3
	Systematic uncertainty	3.2	2.8	1.8
	Statistical uncertainty	0.3	0.02	0.3
	Total uncertainty	3.2	2.8	1.9

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

- eµ channel for tt
- ee and µµ for Z cross-section
- ratio cancels lumi dependence

Strategy

- count b-tag multiplicity
- also extract b-tag efficiency

$$N_{1} = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_{b}\left(1-C_{b}\epsilon_{b}\right)+N_{1}^{\text{bkg}},$$
$$N_{2} = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{b}^{2}+N_{2}^{\text{bkg}},$$

Results

- $\sigma_{t\bar{t}} = 850 \pm 3 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 20 \text{ (lumi.) pb}$
- $R_{t\bar{t}/Z} = 1.145 \pm 0.003 \text{ (stat.)} \pm 0.021 \text{ (syst.)} \pm 0.002 \text{ (lumi.)}$

arXiv:2308.09529

	Category	Uncertainty [%]		
		$\sigma_{t\bar{t}}$	$\sigma^{\text{fid.}}_{Z \to \ell \ell}$	$R_{t\bar{t}/Z}$
tī	$t\bar{t}$ parton shower/hadronisation	0.9	< 0.2	0.9
	$t\bar{t}$ scale variations	0.4	< 0.2	0.4
	$t\bar{t}$ normalisation	-	< 0.2	-
	Top quark $p_{\rm T}$ reweighting	0.6	< 0.2	0.6
Ζ	Z scale variations	< 0.2	0.4	0.3
Bkg.	Single top modelling	0.6	< 0.2	0.6
	Diboson modelling	< 0.2	< 0.2	0.2
	$t\bar{t}V$ modelling	< 0.2	< 0.2	< 0.2
	Fake and non-prompt leptons	0.6	< 0.2	0.6
Lept.	Electron reconstruction	1.2	1.0	0.4
	Muon reconstruction	1.4	1.4	0.3
	Lepton trigger	0.4	0.4	0.4
Jets/tagging	Jet reconstruction	0.4	-	0.4
	Flavour tagging	0.4	-	0.3
	PDFs	0.5	< 0.2	0.5
	Pileup	0.7	0.8	< 0.2
	Luminosity	2.3	2.2	0.3
	Systematic uncertainty	3.2	2.8	1.8
	Statistical uncertainty	0.3	0.02	0.3
	Total uncertainty	3.2	2.8	1.9

$\rightarrow tt$ cross-section summary

Single top production

top-quark pair $\sigma \simeq 834 \ \text{pb} \ @13 \ \text{TeV}$ (NNLO+NNLL)

single-top

t-channel $\sigma \simeq 214 \text{ pb}$ @13 TeV (NNLO)

s-channel $\sigma \simeq 11 \text{ pb}$ @13 TeV (NNLO)

tW $\sigma \simeq 79 \ \text{pb} \ @13 \ \text{TeV}$ (NLO+NNLL)

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

NN to separate signal from background

ATLAS-CONF-2023-026

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

- NN to separate signal from background
- Preliminary result, full Run-2 dataset
- $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\overline{t}} = 84^{+6}_{-5} \text{ pb},$
- $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

ATLAS-CONF-2023-026

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

- NN to separate signal from background
- Preliminary result, full Run-2 dataset

• $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\overline{t}} = 84^{+6}_{-5} \text{ pb},$

• $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

- cancellation of systematics
- sensitive to PDFs

ATLAS-CONF-2023-026

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

• NN to separate signal from background

Preliminary result, full Run-2 dataset

• $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\overline{t}} = 84^{+6}_{-5} \text{ pb},$

• $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

- cancellation of systematics
- sensitive to PDFs

Wtq vertex in production and decay $\rightarrow \sigma$ and Γ sensitive to $|V_{tq}|$

- assuming $|V_{tb}| \gg |V_{td(s)}| \to f_{LV} \cdot |V_{tb}| = 1.016 \pm 0.031$
- additionally $|V_{tb}| \in [0,1] \rightarrow |V_{tb}| > 0.95$ at 95% C.L.

ATLAS-CONF-2023-026

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

• NN to separate signal from background

Preliminary result, full Run-2 dataset

• $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\bar{t}} = 84^{+6}_{-5} \text{ pb},$

• $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

- cancellation of systematics
- sensitive to PDFs

Wtq vertex in production and decay $\rightarrow \sigma$ and Γ sensitive to $|V_{tq}|$

- assuming $|V_{tb}| \gg |V_{td(s)}| \to f_{LV} \cdot |V_{tb}| = 1.016 \pm 0.031$
- additionally $|V_{tb}| \in [0,1] \rightarrow |V_{tb}| > 0.95$ at 95% C.L.
- 2D contours, relaxing constraints, three scenarios

TLAS-CONF-2023-026

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

• NN to separate signal from background

Preliminary result, full Run-2 dataset

• $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\overline{t}} = 84^{+6}_{-5} \text{ pb},$

• $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

- cancellation of systematics
- sensitive to PDFs

Wtq vertex in production and decay $\rightarrow \sigma$ and Γ sensitive to $|V_{tq}|$

- assuming $|V_{tb}| \gg |V_{td(s)}| \to f_{LV} \cdot |V_{tb}| = 1.016 \pm 0.031$
- additionally $|V_{tb}| \in [0,1] \rightarrow |V_{tb}| > 0.95$ at 95% C.L.
- 2D contours, relaxing constraints, three scenarios

 $|\mathbf{V}_{td}| = \mathbf{0}$

Typical signal region: $1e/\mu$, 1 b-jet, 1 forward jet

• NN to separate signal from background

Preliminary result, full Run-2 dataset

• $\sigma_t = 137 \pm 8 \text{ pb}, \ \sigma_{\overline{t}} = 84^{+6}_{-5} \text{ pb},$

• $\sigma_{t+\bar{t}} = 221 \pm 13 \text{ pb}, \quad R_t = \sigma_t / \sigma_{\bar{t}} = 1.636^{+0.036}_{-0.034}$

- cancellation of systematics
- sensitive to PDFs

Wtq vertex in production and decay $\rightarrow \sigma$ and Γ sensitive to $|V_{tq}|$

- assuming $|V_{tb}| \gg |V_{td(s)}| \to f_{LV} \cdot |V_{tb}| = 1.016 \pm 0.031$
- additionally $|V_{tb}| \in [0,1] \rightarrow |V_{tb}| > 0.95$ at 95% C.L.
- 2D contours, relaxing constraints, three scenarios

 $|V_{tb}| = 1$

Preliminary result, 5 TeV pp collisions 257 pb⁻¹

- similar analysis strategy as for 13 TeV collisions
- significance: 6.1σ (6.4 σ expected)

Measurements compatible with SM predictions Additional probe for PDFs, at lower energies

ATLAS-CONF-2023-033

Single top pp cross-sections summary

Top-quark physics @ Corfu2023

Rare process & important background for 4t, ttH

Analysis strategy

- 2{SS and 3{ regions, jets and b-tags
- ttZ and WZ from control regions
- misidentified leptons from sidebands

ATLAS-CONF-2023-019

$\sigma_{t\bar{t}W} = 890 \pm 80 \text{ fb}$

• agrees with ref. prediction 722_{-78}^{+70} (scale) ± 7 (PDF) fb (JHEP 11 (2021) 029)

ATLAS-CONF-2023-019

$\sigma_{t\bar{t}W} = 890 \pm 80 \text{ fb}$

agrees with ref. prediction 722_{-78}^{+70} (scale) ± 7 (PDF) fb (JHEP 11 (2021) 029)

Events

ATLAS-CONF-2023-019

$\sigma_{t\bar{t}W} = 890 \pm 80 \text{ fb}$

• agrees with ref. prediction 722_{-78}^{+70} (scale) ± 7 (PDF) fb (JHEP 11 (2021) 029)

ATLAS-CONF-2023-019

Top-quark physics @ Corfu2023

$\sigma_{t\bar{t}W} = 890 \pm 80 \text{ fb}$

• agrees with ref. prediction 722_{-78}^{+70} (scale) ± 7 (PDF) fb (JHEP 11 (2021) 029)

Unfolded to particle-level vs N_{jet}

Variable N_{jets} $H_{\rm T,jets}$ $H_{\rm T,lep}$ $\Delta R_{lb, lead}$ $|\Delta \phi_{\rm ll, SS}|$ $|\Delta \eta_{\rm ll, SS}|$ M_{jj, lead}

agrees with simulations

ATLAS-CONF-2023-019

Very rare process sensitive to Higgs boson properties and BSM

- sensitive to top Yukawa coupling strengths, charge and CP properties

• enhanced in BSM scenarios: gluino pairs, heavy bosons in 2HDM, 4-fermion interactions

Observation combining several channels

- 2{SS and 3{ channels
- 8 control regions $t\bar{t}W^+$ and $t\bar{t}W^-$ are determined independently
- non-prompt leptons determined from p_T (3rd lepton)
- employ Graph Neural Network, check distributions for GNN score > 0.6

• measure: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5}$ pb, 6.1 σ significance

M. Cristinziani

EPJC 83 (2023) 496

Observation combining several channels

- 2{SS and 3{ channels
- 8 control regions $t\bar{t}W^+$ and $t\bar{t}W^-$ are determined independently
- non-prompt leptons determined from p_T (3rd lepton)
- employ Graph Neural Network, check distributions for GNN score > 0.6

• measure: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5}$ pb, 6.1 σ significance

M. Cristinziani

EPJC 83 (2023) 496

Observation combining several channels

- 2_lSS and 3_l channels
- 8 control regions $t\bar{t}W^+$ and $t\bar{t}W^-$ are determined independently
- non-prompt leptons determined from p_T (3rd lepton)
- employ Graph Neural Network, check distributions for GNN score > 0.6
- measure: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5}$ pb, 6.1 σ significance

EPJC 83 (2023) 496

Observation combining several channels

- 2{SS, 3{ and 4{ channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9σ (ATLAS 4.3σ)
- measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

arXiv:2305.13439

Top-quark physics @ Corfu2023

Observation combining several channels

- 2lSS, 3l and 4l channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9σ (ATLAS 4.3σ)
- measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

arXiv:2305.13439

Observation combining several channels

- 2{SS, 3{ and 4{ channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9 σ (ATLAS 4.3 σ)
- measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

M. Cristinziani

arXiv:2305.13439

Observation combining several channels

- 2{SS, 3{ and 4{ channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9σ (ATLAS 4.3σ)
- measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

M. Cristinziani

arXiv:2305.13439

Rare process \rightarrow test of SM

• multilepton channel

Analysis performed in 2 regions with different jet requirements

- top quark almost at rest
- top quark with large p_T

ttZ background

- large and interfering at NLO
- main systematics
- diagram removal vs. subtraction

Rare process \rightarrow test of SM

• multilepton channel

Analysis performed in 2 regions with different jet requirements

- top quark almost at rest
- top quark with large pT

ttZ background

- large and interfering at NLO
- main systematics
- diagram removal vs. subtraction

Rare process \rightarrow test of SM

• multilepton channel

Analysis performed in 2 regions with different jet requirements

- top quark almost at rest
- top quark with large pT

ttZ background

- large and interfering at NLO
- main systematics
- diagram removal vs. subtraction

Rare process \rightarrow test of SM

• multilepton channel

Analysis performed in 2 regions with different iet requirements

st at rest large p_T ering at NLO CS al vs. subtraction

Rare process \rightarrow test of SM

• multilepton channel

Analysis performed in 2 regions with different iet requirements

st at rest large p_T

```
\Box
```

```
ering at NLO
```

CS

al vs. subtraction

NZ production $(1.4\sigma \text{ expected}),$ $05 (stat.) \pm 0.10 (syst.) pb$

M. Cristinziani

Top+X summary: tt+X

ATLAS+CMS PI LHC <i>top</i> WG	reliminary	
$\sigma_{ttW} = 0.72^{+0.07}_{-0.08} (scale) \pm 0$ JHEP 11 (2021) 29 FxFx@2J+NLO_{EW}^{lead}+NL	0.01(PDF) pb $\sigma_{ttz} = 0.86^{+0.07}_{-0.08}(scale) \pm 0.02(PDF) pb$ EPJC 80 (2020) 428 NLO(QCD+EW)+NNLL	
	σ _{meas.} ± (stat.) ± (syst.)	
	0.89 ± 0.05 ± 0.07 pb	
ttvv	0.87 ± 0.04 ± 0.05 pb	
+Ŧ7	0.99 ± 0.05 ± 0.08 pb	
ιιΖ	0.95 ± 0.05 ± 0.06 pb	
t τ γ+tWγ eμ	$0.0396 \pm 0.0008 \stackrel{+0.0026}{_{-0.0022}} \text{pb} \times 20$	
t t γ dilepton	0.175 ± 0.003 ± 0.006 pb × 5	
t t γ I+jets	0.798 ± 0.007 ± 0.048 pb	
0.2	0.4 0.6	

400 600

Top+X summary: t+X

LHC*top*WG

Top+X summary: 4 top-quark observation

ATLAS+CMS Preliminary	√s = 13	
$\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb $\sigma_{t\bar{t}t\bar{t}}$ JHEP 02 (2018) 031 arX NLO(QCD+EW) NLO	= 13.4 ^{+1.0} (scale+ iv:2212.03259 D(QCD+EW)+NLL'	PDF) fb ⊢ tot.
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	+	$\sigma_{t\bar{t}t\bar{t}} \pm tot. (\pm st)$ 26 $^{+17}_{-15}$ (±8 $^{+1}_{-1}$
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	₽ ↓ ▼ ↓ 	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄)
CMS, 1L/2LOS/all-had, 138 fb ⁻¹ arXiv:2303.03864	₽	36 ⁺¹² (±7 ⁺¹ -11
CMS, comb., 138 fb⁻¹ arXiv:2303.03864	┟╶╶┯ ──┼ ┨	17±5 (±4 ±
ATLAS, 2LSS/3L, 140 fb ⁻¹ arXiv:2303.15061	┠┼╌╼═╌┼┨	22.5 ^{+6.6} _{-5.5} (^{+4.7}
CMS, 2LSS/3L, 138 fb ⁻¹ arXiv:2305.13439	╊╌╼╌╢	17.7 ^{+4.4} _{-4.0} (^{+3.7} _{-3.5}
0	20 40	60 80 σ _{tītī} [fb]

tt+leptons EFT interpretation

Associated production of top quarks and leptons

- Event categories according to leptons and b-tags
- EFT framework to search for new physics

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{d,i} \frac{c_i^d}{\Lambda^{d-4}} \mathcal{O}_i^d$$

トトトノ	4j 5j 6j 7j
トレレン	4j 5j 6j 7j
~ ^ ^ /	4j 5j 6j 7j
トレレン	4j 5j 6j 7j

\rightarrow	2j
\rightarrow	3i
Ś	4j
>	5j
-	•
1	2J
	3j
\rightarrow	4j
\rightarrow	5j
>	2j
>	3i
÷	4i
>	5i
>	2i
~	4j 2;
2	ວj ₄:
2	4j 5;
-	J
\rightarrow	2j
\rightarrow	3j
\rightarrow	4j
>	5j
\rightarrow	2j
\rightarrow	3i
>	4j
>	5j
	-

2j
3j
ij

tt+leptons EFT interpretation

Associated production of top quarks and leptons Event categories according to leptons and b-tags

EFT framework to search for new physics

No significant deviation with respect to SM prediction found

M. Cristinziani

arXiv:2307.15761

tt+leptons EFT interpre

M. Cristinziani

Lorentz invariance in tt eµ events

CMS preliminary result, 2016+2017 data

- differential tt cross section vs. sidereal time
- probing of Lorentz invariance in transformed production, Table Tites Dibusion given LHC rotation in time

Using eµ channel – estimating tt yield vs. sidereal time

- expected variations due to changes in LHC conditions vs. time
- profile likelihood fit no unfolding needed

No clear deviation of measurement wrt. SM

- limits set on Wilson coefficients which parametrise Lorentz-variant terms in SME Lagrangian $\mathscr{L}_{\text{SME}} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_{5} \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{t} \bar{\psi} \psi$
- compatible with Lorentz invariance with a precision of 0.1–0.8%

CMS-PAS-TOP-22-007 CMS 77.4 fb⁻¹ (13 TeV) Preliminary 6000 2016 2017 5000 Events 1000 Data/MC Sidereal hour + 0.25 \times (number of b jets -1) **CMS** *Preliminary* 77.4 fb⁻¹ (13 TeV) SM predictions 1.08 Data 1.06 /24) do_{tt}/dt (h⁻¹) 1.04 1.02 ¹/α) ⁴/α 0.96 0.94 0.92 10 12 14 16 18 20 22 24

Top-quark physics @ Corfu2023

Sidereal time (h)

Summary

Rich top-physics programme pursued at LHC

tt cross section

- uncertainty reduced to 1.8%; several energies; first Run-3 measurements
- detailed differential studies

Single top production

• extract V_{tb}; now also at 5 TeV

Top+X processes

- tttt observed by ATLAS and CMS
- ttW; tWZ

Searches with top quarks

- Lorentz invariance violation
- EFT interpretation

