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Present and future of hyperon physics

• LHCb     A. Alves et. al. Prospects for Measurements with Strange Hadrons at LHCb JHEP 05 (2019) 048

–  already measured, , for run II expects  events

–  ( ) BR of  possible with LHCb upgrade

– semileptonic modes,  decays, and others, improving current limits by orders of magnitude

• BESIII    M.Ablikim et. al. for BESIII, Future Physics Programme of BESIII Chin.Phys.C 44 (2020) 4, 040001, Hai-Bo Li Prospects for 
rare and forbidden hyperon decays at BESIII 

– Can collect 106-108  and test BR in  range

– Expect  fully reconstructed  and other two body chains

• Super tau-charm factory M. Achasov et. al. STCF Conceptual Design Report: Volume I - Physics & Detector e-Print: 
2303.15790

– Whereas BESIII could get , the super tau-charm factory 

Σ+ → pμ+μ− BR ≃ 2.4 × 10−8 ≳ 150
Ξ0 → pπ− ΔS = 2 10−9 − 10−10

Ω

Λ, Σ, Ξ, Ω 10−5 − 10−8

∼ 106 J/ψ → ΛΛ̄ → pπ−p̄π+

∼ 1010 J/ψ ∼ 3.4 × 1012 J/ψ



Outline of the talk

• Physics:  and  decays
– Rare decays 

•  - anomalies?

–complementary to 

–long distance dominated, very difficult to calculate precisely

•  - charged lepton flavour violation

–complementary to 

–  beyond kaon mixing

– CP violation beyond  and  

ΔS = 1 ΔS = 2

Σ+ → pμ+μ−

K+ → π+μ+μ−, KL → μ+μ−

Σ+ → pe±μ∓

KL → μ±e∓, K+ → π+μ±e∓

ΔS = 2
ϵ ϵ′ 



• Strong interactions:

•  from semileptonic decay and   from strong  decay
– corrections if decuplet is included

• Weak interactions 

•  from fits to weak non-leptonic hyperon decay (  or  wave usual 
problem) and  waves of  decay
– order of magnitude estimate

D, F . TBϕ
∼ 30 %

hD, hF, hC S P
P Ω → Bϕ

 at leading orderχPT

ℒs = f2
π

4 Tr (∂μU∂μU†) + TrB(i /∂ − M)B + iTrBγμ [Vμ, B]
+Tr (DBγαγ5{1α, B}+FBγαγ5[1α, B])
+ϵkln. [(Tnvw) α(1wl)αBvk + Bkv(1lw)α(Tnvw)α],

ℒsm
ΔS=1 ⊃ Tr (hD B{ξ† ̂κξ, B}+hF B [ξ† ̂κξ, B])+hC (Tkln)η (ξ† ̂κξ)no

(Tklo)η

Σ = eiφ/f , where f is the pion-decay constant in the chiral-symmetry limit and
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the octet baryons in the matrix
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; (2)

and the spin-32 decuplet baryons. Here we follow Jenkins and Manohar [3] and include the baryon-

decuplet fields explicitly in the Lagrangian. As they argue, the mass splitting between the octet and

decuplet baryons is small compared to the scale of chiral-symmetry breaking, and this enhances the

effects of the decuplet on the low-energy theory. The decuplet baryons are described by a Rarita-

Schwinger field T µ
abc, which satisfies the constraint γµT

µ
abc = 0 and is completely symmetric in its

SU(3) indices, a, b, c [3]. Its components are (with the Lorentz index suppressed)

T111 = ∆++ , T112 = 1√
3
∆+ , T122 = 1√

3
∆0 , T222 = ∆− ,

T113 = 1√
3
Σ∗+ , T123 = 1√

6
Σ∗0 , T223 = 1√

3
Σ∗− ,

T133 = 1√
3
Ξ∗0 , T233 = 1√

3
Ξ∗− , T333 = Ω− .

(3)

Under chiral SU(3)L × SU(3)R, these fields transform as

Σ → LΣR† , B → UBU † , T µ
abc → UadUbeUcfT

µ
def , (4)

where L,R ∈ SU(3)L,R and the matrix U is implicitly defined by the transformation

ξ ≡ eiφ/(2f) → LξU † = UξR† . (5)

We use the heavy-baryon formalism of Jenkins and Manohar [11] where the effective Lagrangian

is written in terms of velocity-dependent baryon fields, related to the ordinary baryon fields by

the transformation [12]

Bv(x) = eimB
$ v v·x B(x) , T µ

v (x) = eimB
$ v v·x T µ(x) , (6)

where mB is the baryon-octet mass in the chiral-symmetry limit.

2

!
!

“9780521768672AR” — 2013/12/10 — 20:38 — page 203 — #223 !
!

!
!

!
!

VII–1 QCD at low energies 203

Due to nonzero quark masses, these mesons are not actually massless, but should
be light if the quark masses are not ‘too large’.

What should the K , η8 masses be? Unfortunately, QCD is unable to answer
this question, even if we were able to solve the theory precisely. This is because
the quark masses are free parameters in QCD, and thus must be determined from
experiment. This means that the π , K , and η8 masses can be used to determine the
quark masses rather than vice versa. The discussion is somewhat more subtle than
this simple statement would indicate. Quark masses need to be renormalized, and
hence to specify their values one has to specify the renormalization prescription and
the scale at which they are renormalized. Under changes of scale, the mass values
change, i.e., they ‘run.’ However, quark mass ratios are rather simpler. The QCD
renormalization is flavor-independent, at least to lowest order in the masses. In this
situation, mass ratios are independent of the renormalization. There can be some
residual scheme dependence through higher-order dependence of the renormaliza-
tion constants on the quark masses. However, to first order, we can be confident
that the mass ratio determined by the π , K , η8 masses is the same ratio as found
from the mass parameters of the QCD lagrangian.

The content of chiral SU(3) is contained in an effective lagrangian expressed in
terms of U = exp[i(λ · ϕ)/F ] and having the same form as Eq. (1.2). The matrix
field λ · ϕ contained in U has the explicit representation,
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, (1.12)

as expressed in terms of the pseudoscalar meson fields. If we choose the parameters
in Eq. (1.2) to correspond to QCD without external sources, viz.,

s = m , p = 0 , DµU = ∂µU, (1.13)

the meson masses obtained by expanding to order ϕ2 are

m2
π = B0(mu + md) , m2

K± = B0(ms + mu),

m2
K0 = B0(ms + md) , m2

η8
= 1

3
B0(4ms + mu + md). (1.14)

Defining m2
K = 1

2(m
2
K± + m2

K0), we obtain from Eq. (1.14) the mass relations,

m̂

ms

= m2
π

2m2
K − m2

π

# 1
26

, (1.15a)

m2
η8

= 1
3

(
4m2

K − m2
π

)
, (1.15b)

π = 1
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344 Baryon properties

For the full SU(3) octet of baryons, the analog of ‘N ’ is

B = 1√
2
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, (3.2)

where the phases have been adjusted to match our quark model phase convention
of Eq. (XI–1.8). The SU(3) version of Eq. (3.1) becomes

LB = Tr
(
B̄ (i /D − m̄0)B − D

(
B̄γ µγ5{Aµ,B}

)
− F

(
B̄γ µγ5[Aµ,B]

))

− Z0

2
Tr

(
dm

(
B̄{ξmξ + ξ †mξ †, B}

)
+ fm

(
B̄

[
ξmξ + ξ †mξ †, B

]))

− Z1

2
Tr (B̄B) Tr (mU + U †m), (3.3)

where the covariant derivative is now DµB ≡ ∂µB + i[V µ,B], ξ is the SU(3)

generalization of the quantity in Eq. (3.1) with τ replaced by λ, m is the diagonal
SU(3) quark mass matrix,

m =
(
m̂, m̂, ms

)
diag = 1

3
(2m̂ + ms)1 + 1√

3
(m̂ − ms)λ8, (3.4)

and m̄0 is the degenerate baryon mass in the SU(3) chiral limit. Consistency of the
SU(2) and SU(3) lagrangians requires

D + F = ga, dm + fm = 1,

m0 = m̄0 + Z1ms − Z0ms(fm − dm). (3.5)

The description thus far is based on symmetry. It includes quark mass, but not
higher powers of derivatives.

Baryon mass splittings and quark masses

The various parameters (m̂,ms, Z0 etc.) appearing in the chiral lagrangians of
Eqs. (3.1), (3.3) can be determined from baryon mass and scattering data. In the
nonstrange sector, the nucleon mass is given in the notation of Eq. (3.1) as

mN = m0 + (Z0 + 2Z1)m̂. (3.6)

To isolate the effect of the nonstrange quark mass m̂ and of the constants Z0, Z1, it
will prove useful to define a quantity σ ,

σ = mN − m0 = m̂
〈N |uu + dd|N〉

2mN

= m̂ (Z0 + 2Z1). (3.7)

B =

ξ = eiπ/f , U = ξ2

Aμ = i(ξ∂μξ† − ξ†∂μξ)
̂κ = (λ6 + iλ7)/2



Σ+ → pμ+μ−



 - experimentΣ+ → pμ+μ−

HyperCP Collaboration: HyangKyu Park et al. PRL 94 (2005) 021801
Evidence for the decay  Σ+ → pμ+μ−

Figure 4(a) compares the dimuon mass distribution of
the three signal candidates with that expected in the SM
with the form factors described below. The reconstructed
dimuon masses for the three candidates, 214.7, 214.3, and
213:7 MeV=c2, all lie within the expected dimuon mass
resolution of ! 0:5 MeV=c2. The dimuon mass distribu-
tion for !"

p!! decays is expected to be broad unless the
form factor has a pole in the kinematically allowed range
of dimuon mass.

The expected SM distribution was used to estimate the
probability that the dimuon masses of the three signal
candidates be within 1 MeV=c2 of each other anywhere
within the kinematically allowed range. The probability is
0.8% for the form-factor decay model and 0.7% for the
uniform phase-space decay model. The unexpectedly nar-
row dimuon mass distribution suggests a two-body decay,
!" ! pP0; P0 ! !"!# (!"

pP!!), where P0 is an un-
known particle with mass 214:3$ 0:5 MeV=c2. The di-
muon mass distribution for the three signal candidates is
compared with MC !"

pP!! decays in Fig. 4(b), and good
agreement is found. Distributions of hit positions and
momenta of the proton, !", and !# of the three candidate
events were compared with MC distributions, and were
found to be consistent with both decay hypotheses.

To extract the !"
p!! branching ratio, the !" !

p"0;"0 ! e"e## (!"
pee#) decay was used as the normal-

ization mode, where the # was not detected. (HyperCP had
no # detectors.) The trigger for the !"

pee# events was the
Left-Right trigger prescaled by 100. The proton and two
unlike-sign electrons were required to come from a single
vertex, as were the three tracks of the signal mode.

The proton was selected to be the positively-charged
track with the greatest momentum, and the event was
discarded if the proton candidate did not have at least
66% of the total three-track momentum, as determined
by a MC simulation of !"

pee# decays. The reconstructed
mass for the 3" hypothesis was required to be outside
$10 MeV=c2 of the K" mass. The cuts on $2=ndf,
DCA, and the total momentum were the same as for the

signal mode. However, the decay vertex had to be more
than 168 cm downstream of the entrance of the vacuum
decay region and more than 32 cm upstream of its exit.
Since the # momentum was not measured, the x and y
positions of the !" trajectory at the target were determined
using only the three charged tracks, and those positions had
to be consistent with that expected from a MC simulation
of !"

pee# decays. To significantly reduce contamination
from photon-conversion events, the dielectron mass was
required to be between 50 and 100 MeV=c2. After appli-
cation of the above selection criteria, a total of 211 events
remained, as shown in Fig. 5. We performed a binned
maximum-likelihood fit for the mass distributions for
data and three MC samples: !"

pee# decays, K" ! """0,
"0 ! e"e## (K"

"ee#) decays, and uniform background.
From the fit, the number of observed !"

pee# decays was
Nobs

nor % 189:7$ 27:4 events, where the uncertainty is sta-
tistical. To extract the total number of normalization
events, values of &51:57$ 0:30'% and &1:198$ 0:032'%
were used, respectively, for the !" ! p"0 and "0 !
e"e## branching ratios [6].

The kinematic parameters for !" production at the
target were tuned to match the data and MC !"

pee# mo-
mentum distributions. The MC !"

pee# decays were gener-
ated using the decay model in Ref. [7] for "0 ! e"e##
("0

ee#) decays, and the "0 electromagnetic form-factor
parameter a % 0:032$ 0:004 was taken from Ref. [6].
After tuning of the parameters, comparisons of the distri-
butions of the MC events with the data for !"

pee# decays,
the decay vertex positions, momentum spectra, recon-
structed mass, hit positions of each charged particle, etc.
showed good agreement.

In the simulation of the !"
p!! decays, we used the form-

factor model of Bergström et al. [1], although we found
little difference between results using it and a uniform
phase-space decay model. The form-factor model uses

FIG. 4. Real (points) and MC (histogram) dimuon mass dis-
tributions for (a) !"

p!! MC events (arbitrary normalization) with
a form-factor decay (solid histogram) and uniform phase-space
decay (dashed histogram) model, and (b) !"

pP!! MC events
normalized to match the data.

FIG. 5. The reconstructed pe"e# mass distribution for the
normalization mode after all cuts. The histogram is the sum of
MC samples of !"

pee#, K"
"ee# decays and a uniform background,

where the relative amounts of each were determined by a fit, and
the number of MC events was normalized to match the number
of data events. The hatched area shows the main background
source (uniform background).

PRL 94, 021801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JANUARY 2005

021801-3

• HyperCP (2005) 

• LHCb (2018)   with no structure

B(Σ+ → pμ+μ−) = (8.6+6.6
−5.4 ± 5.5) × 10−8

B(Σ+ → pμ+μ−) = (2.2+1.8
−1.3) × 10−8

B(Σ+ → pP0 → pμ+μ−) = (3.1+2.4
−1.9 ± 1.5) × 10−8

MP0 = 214.3 ± 0.5 MeV
[43]. The peak position and resolution are calibrated using
the control channel Kþ → πþπ−πþ and by comparing
distributions in data and simulation. No bias is seen in
the peak position, while a relative positive correction of
25% with respect to the simulation is applied to the
resolution. A resolution of 4.28" 0.19 MeV=c2 is
obtained for the signal Σþ → pμþμ− distribution and is
used in the fit to define a Gaussian constraint to the width of
the signal distribution. The combinatorial background is
described as a modified ARGUS function with all param-
eters left free with the exception of the threshold, which is
fixed to the kinematic limit. The shape of this background
is also cross-checked with that of p̄μþμþ candidates
in data.
The invariant mass distribution of the Σþ → pμþμ−

candidates in data is shown in Fig. 2. The significance
of the signal is 4.1σ, obtained from a comparison of the
likelihood value of the nominal fit with that of a back-
ground-only fit [44], and with the relevant systematic
uncertainties included as Gaussian constraints to the
likelihood. A signal yield of 10.2þ3.9

−3.5 is observed. The
corresponding branching fraction is BðΣþ → pμþμ−Þ ¼
ð2.2þ0.9

−0.8
þ1.5
−1.1Þ × 10−8, where the first uncertainty is statis-

tical and the second is systematic, consistent with the SM
prediction. As a cross-check, the fit is repeated with tighter
or looser requirements on the BDT or on the particle
identification variables, and the signal yield is found to vary
consistently with the signal efficiency. The fit is also
repeated assuming a linear function for the background,
in place of an ARGUS function, and the signal yield and
significance are found to be stable. Candidates in data are
composed of about 48% Σ̄þ antibaryons in the final sample.
The distribution of the dimuon invariant mass after

background subtraction, performed with the sPlot method
[45], is shown in Fig. 3. A scan for a possible resonant
structure in the dimuon invariant mass is performed,
considering a region within two times the resolution in
the pμþμ− invariant mass around the known Σþ mass. The

distribution of these candidates as a function of the dimuon
invariant mass is shown in the Supplemental Material [46].
Steps of half the resolution on the dimuon invariant mass,
σðmμþμ−Þ, are considered in this scan, following the method
outlined in Ref. [47]. The value of σðmμþμ−Þ varies in the
range ½0.3; 2.3' MeV=c2 depending on the dimuon invari-
ant mass as shown in Ref. [46]. For each step the putative
signal is estimated in a window of"1.5 × σðmμþμ−Þ around
the considered particle mass, while the background is
estimated from the lower and upper sidebands contained
in the range ½1.5 − 4.0' × σðmμþμ−Þ from the same mass.
Only one of the two sidebands is considered when the
second is outside the allowed kinematic range. The local
p-value of the background-only hypothesis as a function of
the dimuon mass is shown in Ref. [46], and no significant
signal is found. The fit to the pμþμ− invariant mass is
then repeated restricting the sample to events within
1.5 times the resolution from the putative particle
(mμþμ− ∈ ½214.3" 0.75' MeV=c2). No significant signal
is found and a yield of 3.0þ1.7

−1.4 is measured corresponding to
30% of the Σþ → pμþμ− yield. An upper limit on the
branching fraction of the resonant channel is thus set with
the CLS method [48] at BðΣþ → pX0ð→ μþμ−ÞÞ < 1.4 ×
10−8ð1.7 × 10−8Þ at 90% (95%) confidence level.
In summary, a search for the Σþ → pμþμ− rare decay is

performed by the LHCb experiment using pp collisions at
center-of-mass energies

ffiffiffi
s

p
¼ 7 and 8 TeV, corresponding

to an integrated luminosity of 3 fb−1. Evidence for the
Σþ → pμþμ− decay is found with a significance of 4.1
standard deviations, including systematic uncertainties. A
branching fraction BðΣþ → pμþμ−Þ ¼ ð2.2þ1.8

−1.3Þ × 10−8 is
measured, consistent with the SM prediction. No signifi-
cant peak consistent with an intermediate particle is found
in the dimuon invariant-mass distribution of the signal
candidates.
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PHYSICAL REVIEW LETTERS 120, 221803 (2018)

221803-4

LHCb Collaboration: R. Aaij et al. 
PRL 120 (2018) 221803
Evidence for the rare decay  Σ+ → pμ+μ−

B(Σ+ → pP0 → pμ+μ−) < 1.4 × 10−8 at 90 %



sm calculation

• short distance: (Flavio wet basis at 1GeV)

• Long distance:

4μ
9 = 4GF

2
VtsV*td

e2

16π2 (d̄LγμsL) (μ̄γμμ), 4μ
10 = 4GF

2
VtsV*td

e2

16π2 (d̄LγμsL) (μ̄γμγ5μ)

ℒeff = ∑
i

Ci4i + H . c .

⟨p |dγκs |Σ+⟩ = − ūpγκuΣ ,

⟨p |dγνγ5s |Σ+⟩ = (D − F)(ūpγνγ5uΣ +
mΣ + mp

q2 − m2
K

ūpγ5uΣ qν)
⟹ BSD(Σ+ → pμ+μ−) ∼ 4(10−12)

ℳLD
SM = −ie2GF

q2 ūp(a + bγ5)σκνqκuΣ ūμγνvμ̄ − e2GF ūpγκ(c + dγ5)uΣ ūμγκvμ̄

•  are parity conserving

•  are parity violating

•  contribute to 

• All four are complex

a(q2), c(q2)
b(q2), d(q2)
a(0), b(0) Σ+ → pγ

Σ+ p

π γ

N

imaginary part

exp χPT
there is a new BESIII measurement


 Phys.Rev.Lett. 130 (2023) 21, 211901



Long distance BR ∼ 4(10−8)
• imaginary parts from cut 

incorporating theory uncertainty

• using  extract 
the real part from , use 

 range (four-fold ambiguity)

• Real parts of from a 
vector meson dominance model

• red lines LHCb central value 
and  upper limit

• another recent estimate

Ima(0), Imb(0)
Σ+ → pγ

2σ
c(q2), d(q2)

1.2 ≲ ℬ × 108 ≲ 10.2

2σ

1.6 ≲ ℬ × 108 ≲ 8.9
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Figure 1. Sample points of B(Σ+ → pµ+µ−)×108 in relation to the preferred ranges of Im(a, b) at
q2 = 0 and of Re(a, b), as explained in the text. Each horizontal red line marks the 2σ upper-limit
of the LHCb measurement [2].
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Figure 2. (a) The dimuon invariant-mass distribution, Γ′ = dΓ(Σ+ → pµ+µ−)/dq2 versus
Mµµ =

√
q2, calculated in the SM with Im(a, b, c, d) formulas derived in relativistic (solid curves)

or heavy-baryon (dashed curves) χPT. From bottom to top, the black, blue, green, and red solid
[dashed] curves correspond to Re(a, b)/MeV = (13.3,−6.0), (−13.3, 6.0), (6.0,−13.3), (−6.0, 13.3)
[(11.0,−7.4), (−11.0, 7.4), (7.4,−11.0), (−7.4, 11.0)], respectively. The light-orange (shaded) re-
gion enveloping the curves corresponds to the parameter space represented by the benchmark
points in figure 1. (b) The related differential rate

(
dΓ̂/dMµµ

)
/Γ̂ = 2Γ′Mµµ/Γ̂ normalized by

Γ̂ = Γ(Σ+ → pµ+µ−).
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Geng, Camalich, Shi, JHEP 02 (2022) 178

He, Tandean, G.V JHEP10(2018)040 



new physics at high scale

• constrain the  sector 

•  Relevant modes are long-distance dominated
–  - below SD in SM

–  - fits a new parameter in 

–  - very small phase space volume available

– there is room for NP but calculations are not precise

• hyperon decays can provide additional observables (polarization)
• complementary coverage of parameter space, some directions are well tested, 

some can still be very large

d̄sℓ+ℓ−

B(KL → μ+μ−)SD ≃ (2 ± 1.5) × 10−10 (exp − abs)
B(K+ → π+μ+μ−)exp ≃ (9.15 ± 0.08) × 10−8 NA62 χPT
B(KL → π0π0μ+μ−) < 9.2 × 10−11 KTeV at 90 %

4μ
9 = 4GF

2
VtsV*td

e2

16π2 (d̄LγμsL) (μ̄γμμ)

4μ
9′ 

= 4GF

2
VtsV*td

e2

16π2 (d̄RγμsR) (μ̄γμμ)

4μ
10 = 4GF

2
VtsV*td

e2

16π2 (d̄LγμsL) (μ̄γμγ5μ)

4μ
10′ 

= 4GF

2
VtsV*td

e2

16π2 (d̄RγμsR) (μ̄γμγ5μ)

ℒeff = ∑
i

Ci4i + H . c .

also 4S,S′ ,P,P′ 

47 = 4GF

2
VtsV*td

e2

16π2 ms(d̄LσμνsR) Fμν

47′ =
4GF

2
VtsV*td

e2

16π2 ms(d̄RσμνsL) Fμν



additional observables: forward-backward asymmetry

• forward-backward asymmetry 
(binned by  or integrated)

• based on the angle in the dimuon 
rest frame

• very small in SM

• LD-SD interference so sensitive to 
NP

q2

−1.4 ≲ AFB × 105 ≲ 0.6

⃗pμ−⃗pμ+

⃗pp

⃗pΣ+

θ

J
H
E
P
1
0
(
2
0
1
8
)
0
4
0

+ 2
(
β2|g̃|2m̂2

+ + β2|h̃|2m̂2
− + |j̃|2m̂2

+ + |k̃|2m̂2
−

)
q2

+ 8Re
[
ã∗c̃ f−M+ − b̃∗d̃ f+M− +

(
ẽ∗j̃ m̂2

+M− − f̃∗k̃ m̂2
−M+

)
mµ

]

+ 4
(
4m2

µ + m̂2
− + m̂2

+ − 4t
)
Re

[(
ã∗g̃ q2 + b̃∗h̃ q2 + c̃∗g̃ M+ − d̃∗h̃ M−

)
mµ

−
(
ã∗f̃ M+ − b̃∗ẽ M− + c̃∗f̃+ d̃∗ẽ

)
q2
]
, (3.2)

with

f± =
(
2m2

µ + q2
)
m̂2

± , m̂2
± = M2± − q2 , M± = mΣ ±mp , β =

√

1−
4m2

µ

q2
,

f =
(
m2

Σ +m2
p +m2

µ − q2 − t
)(
m2

µ − t
)
+m2

Σm
2
p . (3.3)

The allowed range of t is given by

tmax,min = 1
2

(
m2

Σ +m2
p + 2m2

µ − q2 ± β
√
λ̄
)
, λ̄ = m̂2

−m̂
2
+ . (3.4)

For ã, b̃, . . . , k̃ being independent of t, we can integrate eq. (3.1) over t to obtain

dΓ(Σ+ → pµ+µ−)

dq2

=

(
3β − β3

)
q2
√
λ̄

64π3m3
Σ

{[
m̂2

+

3
+

q2

2

]
|ã|2 +

[
1 +

m̂2
+

3q2

]
|c̃|2

2
+ M+Re(ã∗c̃)

}
m̂2

−

+

(
3β − β3

)
q2
√
λ̄

64π3m3
Σ

{[
m̂2

−
3

+
q2

2

]
|b̃|2 +

[
1 +

m̂2
−

3q2

]
|d̃|2

2
− M−Re(b̃∗d̃)

}
m̂2

+

+
β
√
λ̄

32π3m3
Σ

{[
3− β2

12
λ̄+

β2

2
m̂2

−q
2 + m̂2

+m
2
µ

]
|ẽ|2 +

[
β2|g̃|2 + |j̃|2

]m̂2
+q

2

4

+

[
3− β2

12
λ̄+

β2

2
m̂2

+q
2 + m̂2

−m
2
µ

]
|f̃|2 +

[
β2|h̃|2 + |k̃|2

]m̂2
−q

2

4

+ m̂2
+mµ M−Re(ẽ∗j̃)− m̂2

−mµ M+Re(f̃∗k̃)

}
. (3.5)

The quantities pertinent to Σ+ → pµ+µ− that have been measured so far are the

branching fraction and the dimuon invariant-mass distribution [1, 2]. If a good amount

of data on this decay become available from future experimental efforts, there are other

observables that can be analyzed.

One of them is the forward-backward asymmetry AFB of the muon defined as

AFB =

∫ 1
−1 dcθ sgn(cθ) Γ

′′
∫ 1
−1 dcθ Γ′′

, Γ′′ ≡ d2Γ(Σ+ → pµ+µ−)

dq2 dcθ
, cθ ≡ cos θ , (3.6)

where θ is the angle between the directions of µ− and p in the rest frame of the dimuon

system. As outlined in appendix A, from eqs. (3.1) and (3.2) we can get

d2Γ(Σ+ → pµ+µ−)

dq2 dcθ
= F0 + F1 cθ + F2 c

2
θ , (3.7)
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• if the muon polarisation can be 
measured
•  sensitive to P-violation in 

leptonic current (BSM)
•  is naive T odd (BSM)

•  sensitive to P-violation.   
(large in SM)

<latexit sha1_base64="mLUcjiWt52sxL45Xi+7GJDs4Tvc=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoY2ERwXxgcoS9zV6yZG/v2J0TwpF/YWOhiK3/xs5/4ya5QhMfDDzem2FmXpBIYdB1v53Cyura+kZxs7S1vbO7V94/aJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRjdTv/XEtRGxesBxwv2IDpQIBaNopcesy6gk9UnvrleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns4gk5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTN8nfaE5Qzm2hDIt7K2EDammDG1IJRuCt/jyMmmeVb2L6vn9eaV2ncdRhCM4hlPw4BJqcAt1aAADBc/wCm+OcV6cd+dj3lpw8plD+APn8wcOC5CG</latexit>PL

<latexit sha1_base64="C4PtozBbblTxcmC71bIz2u+c7a4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepYD+wDWWz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrPWZdRiWpT3p3vXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2YXT8iJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZk+j7pC80ZyrEllGlhbyVsSDVlaEMq2RC8xZeXSfOs6l1Uz+/PK7XrPI4iHMExnIIHl1CDW6hDAxgoeIZXeHOM8+K8Ox/z1oKTzxzCHzifPxETkIg=</latexit>PN

<latexit sha1_base64="FW2KiwAb2VXhG1jFGcIdLY97SNI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK/cI2lM120y7dbMLuRCih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6ea8SaLZaw7ATVcCsWbKFDyTqI5jQLJ28H4bua3n7g2IlYNnCTcj+hQiVAwilZ6zHqMSlKf9hv9csWtunOQVeLlpAI56v3yV28QszTiCpmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LVU04sbP5hdPyZlVBiSMtS2FZK7+nshoZMwkCmxnRHFklr2Z+J/XTTG88TOhkhS5YotFYSoJxmT2PhkIzRnKiSWUaWFvJWxENWVoQyrZELzll1dJ66LqXVUvHy4rtds8jiKcwCmcgwfXUIN7qEMTGCh4hld4c4zz4rw7H4vWgpPPHMMfOJ8/GiuQjg==</latexit>PT

additional observables: muon polarisation

⃗pΣ+

⃗pμ+

⃗pp

⃗pμ−

<latexit sha1_base64="FePF1sWR/+piarj43NWi85zr9VA=">AAAB73icdVDLSgNBEOyNrxhfUY9eBoPgKeyEkMct6MWDhwjmAckSZiezyZDZ2XVmVgghP+HFgyJe/R1v/o2zSQQVLWgoqrrp7vJjwbVx3Q8ns7a+sbmV3c7t7O7tH+QPj9o6ShRlLRqJSHV9opngkrUMN4J1Y8VI6AvW8SeXqd+5Z0rzSN6aacy8kIwkDzglxkrdPiUCNQfXg3zBLbquizFGKcHVimtJvV4r4RrCqWVRgBWag/x7fxjRJGTSUEG07mE3Nt6MKMOpYPNcP9EsJnRCRqxnqSQh095sce8cnVlliIJI2ZIGLdTvEzMSaj0NfdsZEjPWv71U/MvrJSaoeTMu48QwSZeLgkQgE6H0eTTkilEjppYQqri9FdExUYQaG1HOhvD1KfqftEtFXCmWb8qFxsUqjiycwCmcA4YqNOAKmtACCgIe4AmenTvn0XlxXpetGWc1cww/4Lx9ApHUj7A=</latexit>PL

<latexit sha1_base64="kHpa7twHx7CdkQLelQjoq0l84Tk=">AAAB73icdVDLSgNBEOyNrxhfUY9eBoPgKeyEkMct6MWTRDAPSJYwO5lNhszOrjOzQgj5CS8eFPHq73jzb5xNIqhoQUNR1U13lx8Lro3rfjiZtfWNza3sdm5nd2//IH941NZRoihr0UhEqusTzQSXrGW4EawbK0ZCX7COP7lM/c49U5pH8tZMY+aFZCR5wCkxVur2KRGoObge5Atu0XVdjDFKCa5WXEvq9VoJ1xBOLYsCrNAc5N/7w4gmIZOGCqJ1D7ux8WZEGU4Fm+f6iWYxoRMyYj1LJQmZ9maLe+fozCpDFETKljRooX6fmJFQ62no286QmLH+7aXiX14vMUHNm3EZJ4ZJulwUJAKZCKXPoyFXjBoxtYRQxe2tiI6JItTYiHI2hK9P0f+kXSriSrF8Uy40LlZxZOEETuEcMFShAVfQhBZQEPAAT/Ds3DmPzovzumzNOKuZY/gB5+0TlNyPsg==</latexit>PN

<latexit sha1_base64="zguoDf5QFP33i4FqloUBOGqTJXM=">AAAB73icdVDLSgNBEOyNrxhfUY9eBoPgKeyEkMct6MVjhLwgWcLsZDYZMju7zswKIeQnvHhQxKu/482/cTaJoKIFDUVVN91dfiy4Nq774WQ2Nre2d7K7ub39g8Oj/PFJR0eJoqxNIxGpnk80E1yytuFGsF6sGAl9wbr+9Dr1u/dMaR7JlpnFzAvJWPKAU2Ks1BtQIlBz2BrmC27RdV2MMUoJrlZcS+r1WgnXEE4tiwKs0Rzm3wejiCYhk4YKonUfu7Hx5kQZTgVb5AaJZjGhUzJmfUslCZn25st7F+jCKiMURMqWNGipfp+Yk1DrWejbzpCYif7tpeJfXj8xQc2bcxknhkm6WhQkApkIpc+jEVeMGjGzhFDF7a2ITogi1NiIcjaEr0/R/6RTKuJKsXxbLjSu1nFk4QzO4RIwVKEBN9CENlAQ8ABP8OzcOY/Oi/O6as0465lT+AHn7ROd9I+4</latexit>PT

J
H
E
P
1
0
(
2
0
1
8
)
0
4
0

210 220 230 240 250
0

10

20

30

40

50

60

MΜΜ !MeV"

!
T"
!#
"

Figure 3. The µ− transverse-polarization asymmetry P−
T in Σ+ → pµ+µ− versus Mµµ in the

SM. The light-orange (shaded) area represents the predicted range of P−
T and envelops curves

corresponding to those in figure 2 with the same curve styles.

To illustrate the prediction more specifically, we have drawn the solid [dashed] curves

corresponding to the first [last] 4 sets of Re(a, b) listed in table 1. In figure 2(b) the related

differential rate
(
dΓ̂/dMµµ

)
/Γ̂ = 2Γ′Mµµ/Γ̂, normalized by the total rate Γ̂ ≡ Γ(Σ+ →

pµ+µ−), offers a complementary picture of the Mµµ distribution. The Mµµ spectrum was

also measured by LHCb [2], but more data are needed to test the prediction clearly.

As for the other observables of interest, we find that the forward-backward asymmetry

AFB and the polarization asymmetries P−
L,N are tiny in the SM, below 10−4. In light of

eqs. (3.8), (3.17), and (4.1), this is attributable to the fact that all of these asymmetries

involve no more than one factor from the LD component and therefore in the SM are

proportional to at least one power of the product λty7A, which is about 1.9 × 10−6 in

size and comes from the SD amplitude. For this reason, we do not show their graphs and

only quote their integrated counterparts in table 1. In contrast, P−
T and P̃−

T can be large,

reaching up to roughly 60%, because they each contain interference terms between two

LD contributions. This is illustrated in the last column of table 1 and in figure 3, where

the light-orange (shaded) region indicates the P−
T range and encloses solid and dashed

curves corresponding to those in figure 2 with the same curve styles. Concerning the µ+

polarization asymmetries, it is simple to see from eqs. (3.18) and (4.1) that the SM predicts

P+
L,N = P−

L,N and P+
T $ P−

T . This also applies to the integrated asymmetries P̃±
L,N,T.

The smallness of AFB and P±
L,N within the SM implies that they can serve as places

to look for signals of physics beyond it. Unambiguous measurements of any one of these

quantities at the percent level or higher would be strong evidence for NP. In the next

section, we explore some scenarios which may bring about such signals.

5 New physics contributions

As explained in the last section, in the SM the asymmetries AFB and P±
L,N, as well as their

integrated partners, are suppressed by at least one power of the coefficients in the decay

– 10 –
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• BSM 
– keep rate unchanged: NP such that  

– modify only SD (combination of  and  can be very large, effectively removing  suppression)
– also affect kaon modes but complementary  

B(Σ+ → pμ+μ−) ≃ 2 × 10−8
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complementarity in parameter space

Choosing ĝA = (4 + 6i)× 10−8GeV−2 and ĝP satisfying 2ĝAmµ −B0 ĝP = 0, we have

δy7A =

√
2 ĝA

λtGF

$ −21.6− 13.5i , ĝP =
2ĝAmµ

B0

$ 2.22(2 + 3i)× 10−7 GeV−2 , (10)

where we have employed md +ms = 130MeV, which is at a renormalization scale of 1GeV. In this scenario, the decay

branching fraction B is only mildly increased and P̃µ
T moderately changed, but ÃFB and P̃µ

L,N can be hugely enhanced and

reach a few to a few tens percent, as the following plots and table show.
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SM + NP

δy7A ! −21.6− 13.5i

ĝP ! 2.22(2 + 3i)× 10−9 GeV−2

Re a

MeV

Re b

MeV
108 B ÃFB (%) P̃

µ
L

(%) P̃
µ
N

(%) P̃
µ
T

(%)

13.3 −6.0 1.8 12 −22 −5.6 46

−13.3 6.0 3.7 −1 8 5.1 51

6.0 −13.3 5.3 3 −16 −0.4 16

−6.0 13.3 9.3 0.2 8 1.2 20

11.1 −7.3 2.5 12 −13 −1.2 33

−11.1 7.3 4.8 1 11 4.4 38

7.3 −11.1 4.2 6 −13 0.2 20

−7.3 11.1 7.6 1 10 2.2 24

3

4μ
10 = 4GF

2
VtsV*td

e2

16π2 (d̄LγμsL) (μ̄γμγ5μ), 4μ
10′ =

4GF

2
VtsV*td

e2

16π2 (d̄RγμsR) (μ̄γμγ5μ)

4μ
P = 4GF

2
VtsV*td

e2

16π2 (d̄LsR) (μ̄γ5μ), 4μ
P′ =

4GF

2
VtsV*td

e2

16π2 (d̄RsL) (μ̄γ5μ)

C10 = − C10′ ⟹ dγμγ5s ⟹ ℳNP(K → πμ+μ−) = 0
CP = − CP′ ⟹ dγ5s ⟹ ℳNP(K → πμ+μ−) = 0

6.62 × 10−9 ≤ ℬ(KL → μ+μ−) = 0 ≤ 7.06 × 10−9

ℬ(KS → μ+μ−) = 0 ≤ 1.1 × 10−9

play  against  so thatC10 CP
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√
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2ĝAmµ
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$ 2.22(2 + 3i)× 10−7 GeV−2 , (10)

where we have employed md +ms = 130MeV, which is at a renormalization scale of 1GeV. In this scenario, the decay

branching fraction B is only mildly increased and P̃µ
T moderately changed, but ÃFB and P̃µ

L,N can be hugely enhanced and

reach a few to a few tens percent, as the following plots and table show.
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Re a

MeV

Re b

MeV
108 B ÃFB (%) P̃

µ
L

(%) P̃
µ
N

(%) P̃
µ
T

(%)

13.3 −6.0 1.8 12 −22 −5.6 46

−13.3 6.0 3.7 −1 8 5.1 51

6.0 −13.3 5.3 3 −16 −0.4 16

−6.0 13.3 9.3 0.2 8 1.2 20

11.1 −7.3 2.5 12 −13 −1.2 33

−11.1 7.3 4.8 1 11 4.4 38
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−7.3 11.1 7.6 1 10 2.2 24
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where we have employed md +ms = 130MeV, which is at a renormalization scale of 1GeV. In this scenario, the decay

branching fraction B is only mildly increased and P̃µ
T moderately changed, but ÃFB and P̃µ

L,N can be hugely enhanced and

reach a few to a few tens percent, as the following plots and table show.
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SM + NP

δy7A ! −21.6− 13.5i

ĝP ! 2.22(2 + 3i)× 10−9 GeV−2

Re a

MeV

Re b

MeV
108 B ÃFB (%) P̃

µ
L

(%) P̃
µ
N

(%) P̃
µ
T

(%)

13.3 −6.0 1.8 12 −22 −5.6 46

−13.3 6.0 3.7 −1 8 5.1 51

6.0 −13.3 5.3 3 −16 −0.4 16

−6.0 13.3 9.3 0.2 8 1.2 20

11.1 −7.3 2.5 12 −13 −1.2 33

−11.1 7.3 4.8 1 11 4.4 38

7.3 −11.1 4.2 6 −13 0.2 20

−7.3 11.1 7.6 1 10 2.2 24

3

LHCb : B(Σ+ → pμ+μ−) = (2.2+1.8
−1.3) × 10−8



What about the light new particle? - probably ruled out

� (gs + gp �5) s P0

P0
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�+ p
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�0�0 �0
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�+ p
�0

B(KL → π+π−P0) ≃ (1.8+1.6
−1.4) × 10−9

B(KL → π0π0P0) ≃ (8.3+7.5
−6.6) × 10−9 .

B(Ω− → Ξ−P0) ≃ (2.0+1.6
−1.2) × 10−6

B(Σ+ → pP0 → pμ+μ−) = (3.1+2.4
−1.9 ± 1.5) × 10−8 HyperCP

MP0 = 214.3 ± 0.5 MeV
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B(K+ → π+P0) ∼ 7+7
−6 × 10−6

B(KL → π0π0X0 → π0π0μ+μ−) < 1 × 10−10 KTeV at 90 %

B(Ω− → Ξ−P0) < 6.1 × 10−6 HyperCP
B(Σ+ → pP0 → pμ+μ−) < 1.4 × 10−8 LHCb at 90 %



CLFV:  B → B′ e±μ∓



CLFV

• At dimension six, NP operators with CLFV take the form (SMEFT)
   

 

• Matching at low scales to forms such as 

• Leading order  including octet and decuplet baryons coupled to external 
sources: 

ℒNP = 1
Λ2NP (

5

∑
k=1

cijxy
k >ijxy

k + (cijxy
6 >ijxy

6 + H . c.))
>ijxy

1 = qiγ
ηqj lxγηly >ijxy

2 = qiγ
ητIqj lxγητIly >ijxy

3 = diγ
ηdj exγηey

>ijxy
4 = diγ

ηdj lxγηly >ijxy
5 = qiγ

ηqj exγηey >ijxy
6 = liej dxqy

4ij
9(9′ ) = (s̄L(R)γμdk

L(R))(ℓ̄iγμℓj), 4ij
10(10′ ) = (s̄L(R)γμdk

L(R))(ℓ̄iγμγ5ℓj)⋯

χPT

d̄γηs ⇔ − 3
2 nγηΛ − pγηΣ+ + 3

2 ΛγηΞ0 − 1
2

Σ0γηΞ0 + Σ0γηΞ−

d̄s ⇔ 3
2

mΛ − mN

m̂ − ms
nΛ + mΣ − mN

m̂ − ms
pΣ+ + 3

2
mΞ − mΛ
ms − m̂

ΛΞ0 + mΞ − mΣ
m̂ − ms ( Σ0Ξ0

2
− Σ0Ξ−)

d̄γηγ5s ⇔ −D − 3F
6

nγηγ5Λ + (D − F)pγηγ5Σ+ − D − 3F
6

Λγηγ5Ξ0 D + F
2

Σ0γηγ5Ξ0 + (D + F)Σ0γηγ5Ξ− + CΞ0Ω−
η



measurements with hyperons complement those with kaons

ℬ (Ξ0 → Λe−μ+)[2.4 ( |Veμ |2 + |Aeμ |2 ) + 7.5 ( |Seμ |2 + |Peμ |2 ) + 6.5 Re (A*eμPeμ − V*eμSeμ)
+ 0.25 ( | Ṽeμ |2 + | Ãeμ |2 ) + 0.07 ( | S̃eμ |2 + | P̃eμ |2 ) − 0.08 Re (Ã*eμP̃eμ − Ṽ*eμS̃eμ)] × 10−5 ( 1 TeV4

ΛNP )
4

ℬ (KL → e±μ∓) = 3.8 [ | Ṽeμ + Ṽ*μe + 19 (S̃eμ − S̃*μe) |2 + | Ãeμ + Ã*μe − 19 (P̃eμ + P̃*μe) |2 ] × 10−1 ( 1 TeV4

ΛNP )
4

< 4.7 × 10−12

ℬ (K+ → π+e−μ+) = 8.7 [ |Vμe |2 + |Aμe |2 + 10 ( |Sμe |2 + |Pμe |2 ) + 3.6 Re (A*μePμe + V*μeSμe)] × 10−2 ( 1 TeV4

ΛNP )
4

< 1.3 × 10−11

ℒNP ⊃ −1
Λ2

NP
∑
ℓ,ℓ′ 

[dγκs ℓγκ(Vℓℓ′ 
+ γ5Aℓℓ′ )ℓ′ + dγκγ5s ℓγκ(Ṽℓℓ′ 

+ γ5Ãℓℓ′ )ℓ′ + ds ℓ(Sℓℓ′ 
+ γ5Pℓℓ′ )ℓ′ + dγ5s ℓ(S̃ℓℓ′ 

+ γ5P̃ℓℓ′ )ℓ′ ]

• kaon constraints on  are more sensitive than those on  

• hyperons are complementary, and sensitive to all the couplings but need to 
reach very low BR to be fully competitive with kaon modes

d̄(γμ)γ5s d̄(γμ)s



comparison of hyperon modes
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• Possible constraints for different hyperon modes 
•
• taking  TeV and assuming branching rations are probed at order 10-10.

•  decays are the most sensitive when the branching ratios are probed at the 
same level but only to some couplings

Λ → ne−μ+, Σ+ → pe−μ+, Ξ0 → Λe−μ+, Ω− → Ξ−e−μ+

ΛNP = 1
Ω
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current kaon constraints vs ℬΩ ∼ 4(10−12)
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• current constraints placed by ,  and  
conversion compared to what can be achieved if sensitivity at the level of 

 is reached

KL → e±μ∓ K+ → π+e−μ+ μ− → e−

ℬ(Ω− → Ξ−e−μ+) ≲ 10−12

• >eμ
1 = q1γηq2 ℓ1γηℓ2, >eμ

2 = q1γητIq2 ℓ1γητIℓ2, , >eμ
6 = ℓ1μdq2, ⋯



 hyperon decays|ΔS | = 2



 decays within SM|ΔS | = 2
• Within the SM look at kaon mixing

• But the matrix element is only sensitive to parity even part of the operators
• Hyperon decay is sensitive to both P odd and P even operators

ℋSM
ΔS=2 = ηccG2

Fm2
c

4π2 (V*cdVcs)2 dγαPLs dγαPLs
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What is CP Symmetry?
There are three fundamental discrete symmetries in nature: charge conjugation C, which takes a particle and transforms it into an antiparticle; parity inversion P, which reverses the
sign of all the coordinates; and time reversal T, which reverses the direction of time. It can be shown using very general arguments, that all theories must be invariant under the
product of the three: CPT.

It was long thought that all theories of nature were also invariant under each of C, P, and T separately as well. That is, until 1957 when parity was found not to be a good symmetry of
nature. Since CPT had to be invariant, the fall of parity conservation meant that either C, or T, or perhaps both had to be violated as well. It was soon found that C was violated.

Landau noticed, however, that CP seemed to be a good symmetry, and suggested that it, rather than C alone is the correct transformation to go from matter to antimatter. We can see
this in the figure below. One of the carriers of the weak force, the W-, is known to decay into an electron and an electron anti-neutrino, where the spin of the electron is in the opposite
direction to its momentum (we say it is in an anti-helicity state), and the spin of the anti-neutrino is in the direction of its momentum (we say it is in a helicity state). Under charge
conjugation (C), the W- is transformed into a W+, the electron, to a positron, and the anti-neutrino into a neutrino, with the helicities unaffected. But such a decay of the W+ does not
occur in nature! We do see it decaying into a positron and an electron neutrino, but not with same helicities as in the W- decay. That is, neutrinos with a positive helicity have never
been seen in nature.

However, if we go one step further, and transform the illegal W+ decay using the parity (P) operation, then we find something very interesting. Parity changes the direction of the
momentum vectors of the positron and neutrino, but it doesn't affect the spin or angular momentum of each. So it effectively changes the helicity of a particle. We end up with a
positron of postive helicy and an electron neutrino of negative helicity. These neutrinos do exist in nature and such a decay of the W+ has indeed been observed. So it appears that
parity violation is compensated by a failure of charged conservation and CP is the correct `mirror' that takes us from the world to the anti-world.

The Discovery of CP Violation
For a while it looked like Landau's hypothesis was good and though both C and P were violated maximally in weak interactions, CP was a good symmetry of nature. Then in 1964
Christenson, Cronin, Fitch, and Turlay reported a small, but significant violation of CP in the decay of the K-meson. It was known at the time that there were two neutron kaons, one
with CP odd and the other with CP even. To conserve CP, the CP-odd kaon had to decay into three pions and the CP-even kaon had to decay into two pions. Because the phase space
to decay into three pions is very small relative to the two-pion phase space, the rate into two pions is much greater, and hence the lifetime of the CP-even kaon is much shorter (by
about a factor of 500). Hence the CP-even kaon is called the KS (S for 'short') and the CP-odd kaon is called the KL (L for 'l

Cronin and Fitch's experiment showed that about one KL in 500 decays into two pions, the wrong CP state, rather than three pions. Hence CP is violated. To this day CP violation still
has only been seen in the decay of the KL. (To be precise, in four decay modes of the KL.) And it is now known that the CP violation comes about through the mixing of KS and KL --
through the so-called box diagrams shown below -- and not directly in the weak decay of the KL. Hence we call this indirect CP violation. Direct CP violation should be present to
some level in most weak decays if our standard model picture of CP violation is correct. To date however, there is no compelling evidence for direct CP violation and no evidence for
CP violation outside of the decay of the KL. HyperCP addresses both of these issues.

Why is CP Violation Important?
Any fundamental symmetry violation is important and must be understood. So for that reason alone CP violation should be studied. But unlike parity violation, CP violation could
have macroscopic consequences on a grand scale. Indeed, it could be the reason we are here at all!

In the Big Bang theory of the Universe, at early times (less than one microsecond) the Universe was a very hot plasma composed of equal amounts of quarks and anti-quarks, leptons
and anti-leptons. That is, the net baryon number of the universe (the amount of matter minus the amount of anti-matter) was zero. After about a microsecond baryons and anti-baryons
began to be formed as the Universe cooled down. The Universe was dense enough at this time, and until about one millisecond, that the baryons and anti-baryons should have almost
all mutually annihilated, producing photons. What should have been left was a very small and equal number of baryons and anti-baryons, the total number divided by the number of
photons being about 10-18. What we observe is quite different. There is no compelling evidence for any antimatter in the Universe (expect at accelerators such as Fermilab!) and the
ratio of baryons to photons isn't 10-18, but about 10-10. That is, eight orders of magnitude too large! So the Big Bang almost produced an equal amount of matter and antimatter, but
not quite: for every 10 billion anti-baryons, 10 billion and one baryons were produced.

What happened to cause this asymmetry between matter and anti-matter in the Universe. We only have one theory that has a chance of explaining the asymmetry, a theory due to
Sakharov. There are three ingredients needed to generate such an asymmetry.

1. A baryon nonconserving interaction.
2. Violation of both C and CP.
3. A departure from thermal equilibrium when the baryon number was being violated.

So in theory, the CP violation that we have observed in experiments on Earth could be the reason for this asymmetry between matter and anti-matter, and why we are here. If so, it
would be the first link between a macroscopic asymmetry in nature and a fundamental symmetry violation.

CP Violation in Hyperon Decays

What are Hyperons?

Hyperons are baryons, that is, particles composed of three quarks, like the proton and neutron, that have one or more strange quarks. A Lambda hyperon is composed of an up, down
and strange quark, and a Xi- hyperon is composed of a down and two strange quarks. They have relatively long lifetimes, and decay via the weak interaction as shown in the figure
below.

The Xi- decays almost exclusively into a Lambda and a pi-, whereas the Lambda decays about two-thirds of the time into a proton and a pi-, and about one-third of the time into a
neutron and a pio. When the Lambda decays into a proton and pi-, it is experimentally observed that the proton predominantly is found going off in the direction of the spin of the
Lambda. That is the decay distribution is not isotropic. Hence, as shown in the figure below, the decay violates parity conservation. The same is true with the decay of the Xi-.
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 matchingχPT

• the SM operator is part of the  so its coefficient can be related to 
 non-leptonic hyperon decay amplitudes

• Difficult due to  dominance but slightly better for S-wave 
(octet matrix element vanishes at leading order in )

•  but  not known yet - assume similar size for estimate 

(27L,1R)
ΔI = 3/2

ΔI = 1/2 Σ+ → nπ+

χPT

̂β27 = 0.076 ± 0.015 ̂δ27

>LL = dγαPLs dγαPLs = tkl,no ψkγ
αPLψn ψlγαPLψo

→ Λχ f2
π tkl,no[ ̂β27 (ξBξ†)nk (ξBξ†)ol

+ ̂δ27 ξnxξozξ†
vkξ

†
wl (Trvw)α(Trxz)α] ,

ℋsm
ΔI=3/2,ΔS=1 = 8( ̂c1 + ̂c2)GFV*udVus>ΔI=3/2

ΔS=1 , >ΔI=3/2
ΔS=1 = t̃kl,noψkγαPLψnψlγαPLψo

>ΔI=3/2
ΔS=1 → Λχ f2

π t̃kl,no [ ̂β27 (ξBξ†)nk (ξBξ†)ol
+ ̂δ27ξnxξozξ†

vkξ
†
wl (Trvw)η(Trxz)η]



•  hyperon decay rates from short-distance SM are very small

• Even though  only constrains the P-even part of the operator, the P-odd 
part is not independent in the SM

• There are also long-distance contributions which turn out to be much larger
–          Brod and Gorbahn PRL 108 (2012) 121801

ΔS = 2
ΔMK

ηcc = 1.87 ± 0.76

Short distance SM results

 measured valueΔMK



Long distance SM results

•  hyperon decay rates from long distance SM can be much larger, but still 
too small for observation. Uncertainty is large, order of magnitude estimate
ΔS = 2

Pole diagrams with

two weak interactions

S-waves

P-waves

For the ⌦� transitions, we have the rate �⌦�!B� = (EB + mB) |pB|3|CB�|2/(12⇡m⌦), the D-

wave part having been dropped. With Eq. (9) and the central values of the input parameters,

including C from AppendixA, we then find
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where the two entries for ⌦� ! nK� correspond to �̂27 = (1,�1)�̂27, respectively.

B. Long-distance contributions

These ⌅ and ⌦� modes are also a↵ected by the pole diagrams depicted in Fig. 2, with two

couplings from the lowest-order �S=1 chiral Lagrangian [14, 20]

Lsm
�S=1 = Tr

�
hD B

�
⇠†̂⇠, B

 
+ hF B

⇥
⇠†̂⇠, B

⇤�
+ hC

�
T kln

�⌘ �
⇠†̂⇠

�
no
(Tklo)⌘ (15)

transforming as (8L, 1R) under SU(3)L ⇥ SU(3)R and containing parameters hD,F,C and a 3⇥3

matrix ̂ with elements ̂kl = �2k�3l. The diagrams for the Bs and Cs, in Fig. 2(b,c), again include

a strong vertex from Eq. (7) as well.

Accordingly, for ⌅ ! N⇡ we derive the long-distance (LD) contributions
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FIG. 2: Feynman diagrams for the long-distance contributions to the S-wave (a) and P-wave (b) of ⌅ ! N⇡
and (c) the P-wave of ⌦�! B� with each hollow square symbolizing a weak coupling supplied by Lsm

�S=1

in Eq. (15).
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mN �m⌃

�

+
D � F

2
p
2 f⇡

✓
mN +m⌅

mN �m⌅

◆"
h2
D � 9h2

F

3(mN �m⇤)
+

h2
D � h2

F

mN �m⌃

#
, (17)

(a) (b) (c)

FIG. 2: Feynman diagrams for the long-distance contributions to the S-wave (a) and P-wave (b) of ⌅ ! N⇡
and (c) the P-wave of ⌦�! B� with each hollow square symbolizing a weak coupling supplied by Lsm

�S=1

in Eq. (15).
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Sample decays

• SM estimates

•  BR of  possible with LHCb upgrade
• Window to new physics constrained by kaon mixing

Ξ0 → pπ− 10−9 − 10−10

whereas the ⌦� outcomes,

B
�
⌦� ! nK��

sm = 7.7⇥ 10�13 , B
�
⌦� ! ⇤⇡��

sm = 1.3⇥ 10�13 ,

B
�
⌦� ! ⌃0⇡��

sm = 6.0⇥ 10�15 , (22)

are roughly comparable to those in Eq. (20).

To understand the parametric uncertainty of these SM predictions and their correlations, we

quote the 90%-CL intervals for each observable at a time in Table I, after implementing the steps

outlined in Appendix A. The second column of the table lists only the SD contributions, with �̂27
selected to have the same sign as �̂27. For the third column (labeled s̃), we have incorporated the

LD components, taking them to have the same phase as the SD ones and including the correlations

between the values of hD,F,C as obtained from fitting the S-waves of octet-hyperon nonleptonic

decays and P-waves of ⌦�! B� in the �S=1 sector. For the fourth column (labeled p̃), we

have repeated this exercise but with �̂27 and �̂27 having di↵erent signs, the SD and LD parts being

opposite in phase, and hD,F,C from fitting the P-waves of both the �S=1 octet-hyperon and ⌦�

decays. As anticipated, for the last column the SD terms are, on the whole, numerically insignificant

relative to the LD ones.

We complementarily show a number of pairwise 90%-CL regions of quantities induced by the

SM SD contributions alone in Fig. 3, with �̂27 and �̂27 having the same sign, and of the total SM

branching-fractions in Fig. 4, after applying the procedure delineated at the end of Appendix A.

For the top (bottom) plots in Fig. 4 the parameter choices are the same as those for the s̃ (p̃)

column in Table I specified in the previous paragraph.

In view of the smallness of the SM predictions in Table I, it is unlikely that they will be testable

any time soon. On the upside, the striking dissimilarity between Eqs. (19) and (21), and between the

corresponding entries in the third and fourth columns of Table I, implies that future observations of

⌅ ! N⇡ with branching fractions at the level of 10�12 or below could o↵er extra insight for dealing

with the S-/P-wave problem in the �S=1 nonleptonic decays of the octet hyperons. Furthermore,

Mode
Branching fractions

SD SD+LD (s̃) SD+LD (p̃)

⌅0 ! p⇡� (0.03, 1)⇥ 10�15 (0.01, 2.6)⇥ 10�14 (0.7, 8.2)⇥ 10�13

⌅0 ! n⇡0 (0.03, 1)⇥ 10�15 (0., 0.9)⇥ 10�15 (0.03, 0.4)⇥ 10�13

⌅� ! n⇡� (0.07, 2.6)⇥ 10�16 (0.01, 1.3)⇥ 10�14 (0.03, 0.3)⇥ 10�12

⌦� ! nK� (0.1, 6.5)⇥ 10�17 (0.2, 0.6)⇥ 10�12 (0.2, 2.1)⇥ 10�12

⌦� ! ⇤⇡� (0.2, 7.1)⇥ 10�17 (0.4, 1.5)⇥ 10�13 (0.2, 4.2)⇥ 10�13

⌦� ! ⌃0⇡� (0.04, 1.7)⇥ 10�17 (0.5, 3.1)⇥ 10�14 (0.05, 2.2)⇥ 10�14

TABLE I: The 90%-CL intervals of branching fractions of �S=2 nonleptonic hyperon decays from the
short-distance and complete contributions of the SM, as explained in the text.
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• effective Hamiltonian at dimension six: (example)

a) fine-tuned using

b) or   which is parity odd (difficult to construct a 
model (see Tandean, He, GV 2304.02559)

(>LL − >RR) ∼ dγαs dγαγ5s

 decays beyond SM|ΔS | = 2

SM LRM QCD

ℋ = CLL>LL + CRR>RR+CLR>LR + C′ LR>′ LR

>LL = dγαPLs dγαPLs, >RR = dγαPRs dγαPRs
>LR = dγαPLs dγαPRs, >′ LR = dPLs dPRs

K0 K0
>(′ )

LR

K0 K0
>LL,RR

≠



small contribution to  by fine-tuningΔMK

More generally, we may let gL and gR vary freely under the experimental requisites. In the

instance that gL,R are real, since the SM estimate �M sm
K = 5.8(2.4)⇥10�12 MeV from lattice-QCD

work [47] is currently much less precise than its measurement �M exp
K = 3.484(6)⇥ 10�12 MeV [4],

we impose �1 < �MZ0
K /�M exp

K < 0.5, consistent with the two-sigma range of �M exp
K ��M sm

K ,

but there is no constraint from ✏. For an example of this case, we pick the first option in Eq. (33)

and �̂27 = ��̂27, resulting in the allowed region of mZ0/gL versus gR/gL displayed in Fig. 5,3 where

mZ0/gL � 5 TeV reflects our assuming |gL|  1 to guarantee perturbativity. The vertical span of

the red area in this figure corresponds to 1.0 (1.2)⇥10�8  B
�
⌅0 ! p⇡� (n⇡0)

�
Z0  1.6 (1.9)⇥10�7

and 3.4 (1.2) ⇥ 10�9  B
�
⌦� ! nK�(⇤⇡�)

�
Z0  5.4 (2.0) ⇥ 10�8. These are much greater than

their SM counterparts in Eqs. (21)-(22) and might be su�ciently sizable to be within reach of LHCb

and BESIII in their future quests [5, 8] and of the proposed Super Tau-Charm Factory [8]. It should

be pointed out, however, that in specific Z 0 models the hyperon rates may be comparatively less

enhanced due to various restraints on the Z 0 couplings, such as the model discussed in Appendix B,

which yields B(⌅0 ! p⇡�)Z0 ⇠ 4⇥ 10�10.

3.385 3.390 3.395 3.400
5

10

15

20

25

30

103 gRêgL

m
Z'
êg L
HTe
V
L

BHX0Æp p-L ≥ 10-10

BHX0Æp p-L ≥ 10-8

FIG. 5: Sample region of mZ0/gL versus gR/gL which can yield B(⌅0 ! p⇡�)Z0 between 10�10 (blue) or
10�8 (red) and 1.6⇥ 10�7 and simultaneously satisfy the �MK requirement described in the text.

B. Leptoquark contributions

By introducing more than one leptoquark (LQ) it is possible to generate an e↵ective four-

quark �S=2 interaction that is parity-violating and hence eludes the kaon-mixing requirement.

The LQs of interest here, with their SM gauge-group assignments
�
SU(3)C , SU(2)L,U(1)Y

�
, are

S̃1 ⇠ (3, 1, 4/3) and R2 ⇠ (3, 2, 7/6) in the nomenclature of Ref. [48]. They can have renormalizable

3 By interchanging gL and gR, one could have another allowed region, which has the same shape and size. For

gL,R < 0 there are also two regions fulfilling the �MK requirement.
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• consider    FCNC couplings   

• then after QCD corrections 

Z′ ℒdsZ′ 

= − dγβ(gLPL + gRPR)s Z′ β

ΔMZ′ 

K = 2
4mK0 m2

Z′ 

ℜ (ηLL (g2
L + g2

R)⟨>LL⟩ + 2gLgR (ηLR⟨>LR⟩ + η′ LR⟨>′ LR⟩))

1 FLAG  Eur.Phys.J.C 80 (2020) 2, 113

2. J. Aebischer et. al JHEP 12 (2020) 187


• using lattice input1 and values from2 the last 2 
terms are negative, the first two positive

• allowing  which is the 
 range of 

• assuming  real there are regions of 
parameters with large  hyperon rates.

−1 < ΔMZ′ 

K /ΔMexp
K < 0.5

2σ ΔMEXP
K − ΔMSM

K
gL, gR

|ΔS | = 2

(see Tandean, He, GV 2304.02559)



CP violation in Hyperon non-leptonic decay



Hyperon non-leptonic decay - observables

Pf = (α + Pi⋅p̂f) p̂f + βPi×p̂f + γ p̂f×(Pi×p̂f)
1 + α Pi ⋅ p̂f

dΓℬi→ℬf π

dΩf
=

Γℬi→ℬf π

4π (1 + α Pi ⋅ p̂f)
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P

α
α

α
φ φ

α

⋅ ^ =
+ ⋅ ^

1 + ⋅ ^ ,

× ^ = 1 −
sin ^ + cos ^

1 + ⋅ ^ ,
(2)

Λ
Ξ Ξ

Ξ Ξ

Λ Ξ Ξ
Ξ Ξ

Ξ Ξ

2

P z
P z
P z

P z
x y

P z

as illustrated in Fig. 1. This means that the longitudinal (ẑ) component 
depends on αΞ, and the transversal components are rotated by the 
angle φΞ with respect to the Ξ− polarization.

The decay parameter αΞ appears explicitly in the angular distribution 
of the direct decay Ξ− → Λπ−, whereas the sequential decay distribution 
of the daughter Λ depends on both αΛ and φΞ. CP symmetry implies 
that the baryon decay parameters α and φ equal those of the antibaryon 
α  and φ  but with opposite sign. Hence, CP violation can be quantified 
in terms of the observables

A
α α
α α

φ
φ φ

=
+
−

, ∆ =
+
2

. (3)Y Y Y

Y Y

Y Y
CP CP

CP violation can only be observed if there is interference between 
CP-even and CP-odd terms in the decay amplitude. Because the decay 
amplitude for Ξ− → Λπ− consists of both a P-wave and an S-wave part, the 
leading-order contribution to the CP asymmetry, AΞ

CP, can be written as

A δ δ ξ ξ≈ − tan( − )tan( − ), (4)Ξ
CP P S P S

where tan(δP − δS) = β/α denotes the strong-phase difference of the 
final-state interaction between the Λ and π− from the Ξ− decay. 
CP-violating effects would manifest themselves in a nonzero weak-phase 
difference ξP − ξS (refs. 22–24), an observable that is complementary to 
the kaon decay parameter ε′ (refs. 13,14,25) because the latter only involves 
an S-wave. The strong-phase difference can be extracted from the φΞ 
parameter, and is found to be small3,26: (−0.037 ± 0.014). Hence, 
CP-violating signals in AΞ

CP are strongly suppressed and difficult to 
interpret in terms of the weak-phase difference.

An independent CP-symmetry test in Ξ− → Λπ− is provided by deter-
mining the value of ∆φCP. At leading order, this observable is related 
directly to the weak-phase difference:

〈 〉
〈 〉ξ ξ

β β
α α

α
α

∆φ( − ) =
+
−

≈
1 −

, (5)
P S LO

2

CP

where α α α= ( − )/2〈 〉 , and can be measured even if δP = δS. The absence 
of a strong suppression factor therefore improves the sensitivity to 
CP-violation effects by an order of magnitude with respect to that of 
the AΞ

CP observable22,23. To measure ∆φCP using the standard polarim-
eter technique from refs.21,28 requires beams of polarized Ξ− and Ξ +. In 
such experiments the precision is limited by the magnitude of the 
polarization and the accuracy of the polarization determination, which 
in turn is sensitive to asymmetries in the production mechanisms27. In 
fact, no experiment with a polarized Ξ + has been performed, and the 
polarization of the Ξ− beams were below 5% (ref. 3). Here we present an 
alternative approach, in which the baryon–antibaryon pair is produced 
in a spin-entangled CP eigenstate and all decay sequences are analysed 
simultaneously.

To the best of our knowledge, no direct measurements of any of the 
asymmetries defined in equation (3) have been performed for the Ξ− 
baryon. The HyperCP experiment28, designed for the purpose of CP tests 
in baryon decays, used samples of around 107–108 Ξ− and Ξ + events to 
determine the products αΞαΛ and α α¯ ¯Ξ Λ. From these measurements, the 
sum A A+Λ Ξ

CP CP was estimated to be (0.0 ± 5.5 ± 4.4) × 10−4, where the first 
uncertainty is statistical and the second systematic. In addition to the 
aforementioned problem of the smallness of φΞ, which limits the sensi-
tivity of AΞ

CP to CP violation, an observable defined as the sum of asym-
metries comes with other drawbacks: if AΛ

CP and AΞ
CP have opposite signs, 

the sum could be consistent with zero even in the presence of CP-violating 
effects. A precise interpretation therefore requires an independent 
measurement of AΛ

CP with matching precision. The most precise result 
so far is a recent BESIII measurement4 where AΛ

CP was found to be (−6 ± 
12 ± 7) × 10−3. Furthermore, ref. 4 revealed a 17% disagreement with previ-
ous measurements on the αΛ parameter26, a result that rapidly gained 
some support from a re-analysis of CLAS data5. Although the CLAS result 
is in better agreement with BESIII than with the Particle Data Group value 
from 2018 and earlier, there is a discrepancy between the CLAS and BESIII 
results that needs to be understood. This is particularly important 
because many physics quantities from various fields depend on the 
parameter αΛ. Examples include baryon spectroscopy, heavy-ion phys-
ics and hyperon-related studies at the Large Hadron Collider29–34.

In this work we apply a newly designed method2,35 to study entangled, 
sequentially decaying baryon–antibaryon pairs in the process 
e e J ψ Ξ Ξ→ / →+ − − +. This approach enables a direct measurement of all 
weak decay parameters of the Ξ− → Λπ−, Λ → pπ− decay, and the corre-
sponding parameters of the Ξ̄+ . The production and multi-step decays 
can be described by nine kinematic variables, here expressed as the 
helicity angles ξ θ θ φ θ φ θ φ θ φ= ( , , , , , , , , )Λ Λ Λ Λ p p p p . The first, θ, is the 

d
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Fig. 1 | Illustration of the polarization vectors of Ξ− and Λ in relation to the 
decay parameters α, β and γ of the Ξ− → Λπ− decay. The Λ polarization PΛ has a 
component in the longitudinal as well as the transverse direction, where the 
former (ẑ) is defined by the Λ momentum. The longitudinal component 

depends on the Λ emission angle and arises from the transferred Ξ− polarization 

ΞP  combined with the decay parameter α. The remaining Ξ− polarization is 
transferred to the transverse components according to Pβ Ξ  (x̂) and PγΞ Ξ  (ŷ). 
Quarks: d, down; s, strange; u, up; u , antiup.

Ablikim, M., Achasov, M. N., Adlarson, P., Cetin, H. O., Kolcu, O. B. (2022). Probing CP symmetry and weak phases with entangled double-strange baryons. Nature, 606(7912), 64.

And fron https://doi.org/10.1007/s00601-022-01762-0 


Figures from BESIII collaboration:

• CP tests:    

•

Δ = Γ − Γ
Γ + Γ

ACP = α + α
α − α

, BCP = β + β
α − α

68 Page 4 of 8 K. Schönning

Fig. 2 The angles ξ = θ, θ1,φ1, θ2, and φ2. The hyperon scattering angle θ is defined in the CMS system of the reaction whereas
the helicity angles θ1,φ1, θ2, and φ2 are defined in the rest system of the decaying hyperon/antihyperon. The figure is from Ref.
[30]

Table 1 # form factor measurement at q = 2.396 GeV

σ (e+e− → γ ∗ → ##̄)(pb) Eff. form factor Gef f R = |GE/GM | ∆Φ

118.7±5.3±5.1 0.123±0.003±0.003 0.96±0.14±0.02 37o±12o±6o

They are, however, independent of the parameters η, ∆Φ, αY and αȲ .
The term T0 + ηT5 in Eq. 2 represents the scattering angle distribution of the hyperon. The term√

1 − η2 sin(∆Φ)(αYT3 − αȲT4) accounts for the transverse polarization Py and the αY · αȲ (T1 +√
1 − η2 cos(∆Φ)T2 + ηT6) term describes the spin correlations between the hyperon and the antihyperon.

5.1.1 Hyperon Structure

At energies that do not coincide with a vector charmonium resonance, one-photon exchange (e+e− → γ ∗ →
Y Ȳ ) dominates the hyperon-antihyperon production. The cross section of this process is then related to the
effective form factor Gef f in the following way:

|G(q2)| =
√√√√

σ (q2)

(1 + 1
2τ )(

4πα2
EMβ

3q2 )
, (3)

where τ = q2

4m2
Y

, αEM is the electromagnetic coupling constant and β the Lorentz factor. Furthermore, the

parameter η from Eq. 2 is related to the modulus of the form factor ratio, R = GE/GM :

R = √
τ

√
1 − η

1 + η
. (4)

The phase ∆Φ then represents the relative phase between the electric and the magnetic form factor.
The BESIII Collaboration has applied this formalism on a data set corresponding to an integrated luminosity

of 66.9 pb−1 collected at an e+e− CMS energy of q = 2.396 GeV. We have performed an exclusive selection
of ##̄ final states, which resulted in a sample of 555 events. From this, we were able to extract the form factors
at q = 2.396 GeV, as summarised in Table 1. In particular, the phase ∆Φ was measured for the first time,
and found to be 37o ± 12o ± 6o. The first uncertainty is statistical and the second systematic. This is the first
measurement of its kind in the time-like region for any baryon and corresponds to a “snapshot” of a ##̄ pair
in the making [30].



Not all are the same size
• The matrix element receives contributions from different isospin and different 

parity amplitudes

•
           

One finds                                 

ℳ = GFm2
πuf (A − Bγ5) ui

S = A → S1eiδS
1 + S3eiδS

3

P = B
| ⃗pf |

Ef + mf
→ P1eiδP

1 + P3eiδP
3

ΔCP ≃ 2 S3
S1⏟

ΔI=1/2 rule

sin(δS
3 − δS

1)
strong phases

sin(ξS
3 − ξS

1)
weak phases

ACP ≃ −tan(δP − δS) tan(ξP − ξS)
BCP ≃ tan(ξP − ξS)



CP violation beyond SM - illustrative example

ℋeff(P even)

constraint from ε′

S (or D) waves P waves

ℋeff(P odd)

Λ, Ξ, Ω p, Λ, Ξ

π

constraint from ε

ℒNP ⊃ C848 + C8′ 
48′ 

,

48(8′ ) = 4GF

2
VtsV*td

gs

16π2 msdL(R)σμνTasR(L)Ga
μν

K0 K0

48 + 48′ 

K
π

π48 − 48′ 

|ϵ | = (2.228 ± 0.011) × 10−3, Re ( ϵ′ 

ϵ ) = (1.66 ± 0.23) × 10−3

Theory error at this level



BSM possible range

• use as an example                        

then             

             J. Tandean PHYSICAL REVIEW D 69, 076008 !2004!, N Salone et.al. PHYSICAL REVIEW D 105, 116022 (2022) 

• using 

• (theoretical uncertainty in SM)
             J. Aebischer, A. J. Buras, and J. Kumar, J. High Energy Phys. 12 (2020) 097.  

ℒNP ⊃ C848 + C8′ 
48′ 

, 48(8′ ) = 4GF

2
VtsV*td

gs

16π2 msdL(R)σμνTasR(L)Ga
μν

(ξP − ξS) ∼ (C′ ( ϵ′ 

ϵ )
BSM

+ C ϵBSM)
ϵ′ 

ϵ
BSM

≲ 1 × 10−3, ϵ BSM ≲ 2 × 10−4

Craig Dukes University of VirginiaDPF 2004

Results from CP Violation Search

Weighting Technique:
• ∼10% total data sample
• selected from end of 1999 run
• 118.6 million Ξ−

• 41.9 million Ξ+

• no acceptance or efficiency corrections

AΞΛ = [0.0±5.1(stat)±4.4(syst)]×10−4

Check with HMC Technique:
• ∼ 5% of the total data sample
• prescaled selection of 1997 and 1999
• 15 million Ξ−

• 30 million Ξ+

AΞΛ = [−7±12(stat)±6.2(syst)]×10−4

⇒20× improvement on previous result. -0.03
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• BESIII also has a new result from 
 events

• measure

448 × 106

e+e− → ψ(3686) → Ξ0Ξ0 → π0π0ΛΛ

BES III results vs BSM scenarios
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TABLE I: default

Number of J/ sensitivity to A⌅
CP

BESIII (current) 1.3⇥ 109 1.3⇥ 10�2

BESIII (future) 1⇥ 1010 4.8⇥ 10�3

tau-charm factory 3.4⇥ 1012 2.6⇥ 10�4

1

projections

AΞ0
CP = − 0.007 ± 0.082 ± 0.025

BESIII, Phys.Rev.D 108 (2023) 1, L011101

Tandean, He, G.V. Sci.Bull. 67 (2022) 1840

Salone et. al., PHYSICAL REVIEW D 105, 116022 (2022) 

 



Summary and conclusions

• Hyperon decays can play a role in probing BSM physics in the  sector, 
complementing kaon decays, but need much higher sensitivity 

• Decay modes allowed in the SM receive large long distance contributions that 
are difficult to estimate reliably, the lattice community has started to look at 
some of these modes

• Near future LHCb  can definitively rule out the “hyperCP” 
particle. It will also accurately measure the rate and spectrum.
– form factors
– new exotic particle searches

• expected sensitivity to  modes at LHCb can begin to probe exotic BSM 
scenarios

• Upcoming BESIII measurements will add to our picture of CP violation in 
hyperons

s → d

Σ+ → pμ+μ−

ΔS = 2


