Precise calculation of the W boson pole mass beyond the Standard Model

Corfu 2022

Peter Athron, Douglas H. J. Jacob, **Wojciech Kotlarski**, Dominik Stöckinger, Alexander Voigt

arXiv:2204.05285

Motivation: new CDF result

CDF 2022 result

 $M_W^{\rm CDF} = (80.4335 \pm 0.0094) \,\,{\rm GeV}$

World average without new CDF result

 $M_W^{2021} = (80.379 \pm 0.012) \text{ GeV}$

- SM prediction:
 - $M_W^{\text{SM, OS}} = (80.355 \pm 0.006) \text{ GeV}$

-
$$M_W^{\text{SM},\overline{\text{MS}}} = (80.351 \pm 0.004) \text{ GeV}$$

-
$$M_W^{\text{SM, fit}} = (80.3591 \pm 0.0052) \text{ GeV}$$

Side note: Why do we care about $M_{\rm W}$ at all?

- In principle there is nothing special about M_w as an observable.
- SM is a renormalizable theory. We need to fix 3 parameters: g_1 , g_2 , v so we only need 3 observables and we can choose them as we wish. You could also take M_W as an input.
- You cannot swipe the discrepancy under the carper --- if you take CDF result as an input than you'll see the problem somewhere else
- For practical reasons, we treat it as an output

 $\alpha = 7.2973525693(11)$ $M_Z = (91.1876 \pm 0.0021) \text{ GeV}$ $G_F = 1.1663787(6) \times 10^5 \text{ GeV}^{-2}$

 $M_W^{2021} = (80.379 \pm 0.012) \text{ GeV}$

How to compute m_w

Usually something like this

 au_{μ}

$$m_W = \frac{1}{2}g_2v + \text{quantum corrections}$$

For technical and precision reasons the actual setup is more complicated. Start with QED-like EFT

$$\mathcal{L} = \mathcal{L}_{QED} - \frac{4G_F}{\sqrt{2}} (\bar{e}\gamma^{\mu} P_L \nu_e) (\bar{\nu}_{\mu} \gamma_{\mu} P_L \mu) + h.c.$$
experiment
$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F(\rho) \left[1 + H_1(\rho) \frac{\alpha(m_{\mu})}{\pi} + H_2(\rho) \frac{\alpha^2(m_{\mu})}{\pi^2} \right]$$

$$\rho = \frac{m_e^2}{m_{\mu}^2}$$

$$G_F = G_F(\text{SM inputs, BSM params. inc. } m_W)$$

$$M_W$$

Fermi constant in the SM

Including quantum corrections, you can write the result as

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \hat{\alpha}}{2\hat{s}_W^2 m_W^2} \frac{1}{1 - \Delta \hat{r}_W}$$

which also correctly resums leading 2-loop SM corrections [G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B 351 (1991) 49] Solving for M_W

$$m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}}{\sqrt{2} G_\mu m_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)}} \right]$$

where

$$\hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2}$$

Spectrum generators

- For popular models that calculation have been done and packaged into computer programs
- Whenever you use a code that computes a particle spectrum from Lagrangian parameters for a given model you inevitably compute M_W along the way
- Examples:
 - MSSM: FeynHiggs, Spheno, SoftSUSY
 - Arbitrary models: SARAH/Spheno, FlexibleSUSY
- Historically, most SUSY spectrum generators follow the **BMPZ** paper [arXiv:9606211]
- Caveats:
 - When BMPZ wrote there work, no-one cared about heavy SUSY
 - The precision of evaluation of M_W might have been sufficient to compute SUSY spectrum, but maybe not enough to use it PEWO

Curious case of M_w calculations in spectrum generators

Importance of decoupling

M_w calculation with the decoupling property

Treat SM exactly, keep BSM at exactly 1-loop

$$M_W^2 = (M_W^{\rm SM})^2 \left(1 + \Delta_W\right)$$

where

$$\Delta_W = \frac{s_W^2}{c_W^2 - s_W^2} \left[\frac{c_W^2}{s_W^2} \left(\Delta \hat{\rho}_{\text{tree}} + \Delta \hat{\rho}_{\text{BSM}} \right) - \Delta \hat{r}_{W,\text{BSM}} - \Delta \alpha_{\text{em}}^{\text{BSM}} \right]$$

 $\Delta \hat{\rho}_{\text{tree}}, \Delta \hat{\rho}_{\text{BSM}}, \Delta \hat{r}_{W,\text{BSM}} \text{ and } \Delta \alpha_{\text{em}}^{\text{BSM}} \text{ are strict 1-loop quantities --- e.g.}$

$$\Delta \hat{\rho}_{\rm BSM} = \frac{\hat{\rho}_{\rm BSM}}{\hat{\rho}_{\rm SM}} - 1 = \frac{1}{m_Z^2} \left[\Sigma_Z(m_Z^2) - \Sigma_Z^{\rm SM}(m_Z^2) \right] - \frac{1}{m_W^2} \left[\Sigma_W(m_W^2) - \Sigma_W^{\rm SM}(m_W^2) \right]$$

The bracket [...] scales like 1/m². The prefactor has still a non-decoupling property

$$s_W^2 c_W^2 = \frac{\pi \,\alpha_{\rm em}(M_Z)}{\sqrt{2} \,M_Z^2 \,G_F \,\hat{\rho}_{\rm tree} \,(1 - \Delta \hat{r})}$$

9/24

Example of decoupling (MSSM)

FlexibleSUSY in a nutshell

- FlexibleSUSY is a spectrumgenerator generator. But what does it mean?
- There are codes like 2HDMC, SPheno, SOFTSUSY or SuSpect that calculate mass spectra and various observables for a predefined model (THDM in case of 2HDMC and MSSM/NMSSM in remaining cases).
- FlexibleSUSY creates a code analogue to such programs but for an arbitrary BSM model.
- Use known results for a generic QFT. Don't recalculate what you don't have to from the ground.
- Streamlining study of BSM phenomenology, reducing time needed to study a new model from years to weeks. No hand written code, less place for errors.

Program flow

- Analytic calculation: particle content + Lagrangian ⇒ tadpole equations, selfenergies, mass matrices, RGEs, vertices etc.
- Creates code for numerical evaluation of various observables

Observables

- 1-loop masses and mixing matrices (higher order corrections are available for specific particles and/or in specific models)
- Hybrid fixed order/EFT calculation of Higgs mass ensuring high precision even for a heavy BSM physics
- muon g-2, lepton's EDMs, $l \rightarrow l'\gamma$, $b \rightarrow s\gamma$, scalar decays, electron g-2 (private/on request), other LFV observables ($l \rightarrow 3l'$, $l \rightarrow l'$ conversion in nuclei etc, private/on request)
- New calculation of M_W (this talk)
- HiggsTools (a successor to HiggsBounds and HiggsSignals) interface (still private)

R-symmetry

- R-symmetry is an additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- For N=1 SUSY it is a global U(1)_R symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

Lagrangian invariance

- Kähler potential K term is automatically invariant
- R-charge of the superpotential W must be 2

$$Q_{R}(\mathscr{L})=0 \longrightarrow \mathcal{L} \ni \int d^{2}\theta W$$
$$Q_{R}(W)=+2$$

- soft-breaking terms must have R-charge 0

Low-energy R-symmetry realization

- Good: no barion and lepton number violating terms
 - Bad: No Majorana masses for higgsinos and gauginos

: <u>Dirac mas</u>	ses						
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039							
		<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$		
Singlet	Ŝ	1	1	0	0		
Triplet	Ť	1	3	0	0		
Octet	Ô	8	1	0	0		
R-Higgses	Â _u	1	2	-1/2	2		
	Â _d	1	2	1/2	2		
	Singlet Triplet Octet R-Higgses	Dirac massesetric SupersymmSinglet \hat{S} Triplet \hat{T} Octet \hat{O} R-Higgses \hat{R}_u \hat{R}_d	Dirac masses etric Supersymmetric StarSU(3) $_{C}$ Singlet \hat{S} 11Triplet \hat{T} 1008R-Higgses \hat{R}_{u} 1 \hat{R}_{d}	Dirac massesetric Supersymmetric Standardmod $SU(3)_C$ $SU(2)_L$ Singlet \hat{S} 11Triplet \hat{T} 13Octet \hat{O} 81R-Higgses \hat{R}_u 12 \hat{R}_d 12	Dirac massesetric Supersymmetric Standardmodel (MRS)SU(3) _C SU(2) _L U(1) _Y Singlet \hat{S} 110Triplet \hat{T} 130Octet \hat{O} 810R-Higgses \hat{R}_u 12-1/2 \hat{R}_d 121/2		

$$W = \mu_{d} R_{d} H_{d} + \mu_{u} R_{u} H_{u} - A_{d} \hat{R}_{d} \hat{T} \hat{H}_{d} + \Lambda_{u} \hat{R}_{u} \hat{T} \hat{H}_{u} + \lambda_{d} \hat{S} \hat{R}_{d} \hat{H}_{d} + \lambda_{u} \hat{S} \hat{R}_{u} \hat{H}_{u} - Y_{d} \hat{d} \hat{q} \hat{H}_{d} - Y_{e} \hat{e} \hat{l} \hat{H}_{d} + Y_{u} \hat{u} \hat{q} \hat{H}_{u}$$

 $\hat{\mathbf{b}}$ $\hat{\mathbf{c}}$ $\hat{\mathbf{b}}$ $\hat{\mathbf{c}}$

MSSM vs. MRSSM

MSSM superpotencial

 $\mu \hat{H}_u \hat{H}_d$ $-Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u$

MSSM soft-SUSY breaking terms

- B_{μ} term
- soft scalar masses
- Majorana gaugino masses ()

- A - terms

MRSSM superpotencial $\blacktriangleright \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$ $-Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d + Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u$ $\Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$ MRSSM soft-SUSY breaking terms – B_{μ} - term (though no B_{μ_u} , B_{μ_d}) soft scalar masses Dirac gaugino masses no A-terms One way to fix it: Dirac masses Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ $U(1)_{\rm R}$ Ŝ Singlet 1 1 0 0 Ť 1 3 0 Triplet 0 Additional fields:

Ô

Ŕ"

 \hat{R}_d

Octet

R-Higgses

8

1

1

1

2

2

0

-1/2

1/2

0

2

2

R-symmetry vs. matter parity

Consider R-symmetric transformation of a generic supermultiplet

$$R: \Phi(x,\theta,\bar{\theta}) \to \Phi'(x,e^{i\varphi}\theta,e^{-i\varphi}\bar{\theta}) = e^{i\varphi R_{\Phi}}\Phi(x,\theta,\bar{\theta})$$

In the MSSM one imposes the so-called matter parity

$$M_p = (-1)^{3(B-L)}$$

- this is equivalent to R-pairity which is defined on components of a supermultiplet as $P_R = (-1)^{3(B-L)+2s}$
- This is also equivalent to R-symmetry $R = e^{i\varphi R_{\Phi}}$ with $\varphi = \pi$ and $R_{\Phi} = 3(B L)$
- R-charges
 - MSSM: $R_{\Phi} = 0, 1$
 - MRSSM: $R_{\Phi} = 0, 1, 2$
 - R-symmetry is more restrictive than matter parity

Particle content summary: MSSM vs. MRSSM

different number of physical state ^C

completely new states

		Higgs			R-H	liggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	2

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

Majorana fermions

Dirac fermions

Exemplary mass spectrum

CDF 2022 excess in the MRSSM

M_w calculation in SARAH/SPheno

- Recently Benakli, Goodsell, Ke and Slavich presented their own implementation of a decoupling calculation [arXiv:2208.05867] which is now part of SARAH 4.15.0
- Their approach follows closely ours

FlexibleSUSY development and support

The code is written exploiting relatively modern features of C++ (C++14) with use of template metaprograming to reduce runtime overhead

Languages

Development is done in public on github

Large collection of unit tests, triggered by every commit to the main repository

release v2.7.1 💭 static analysis passing 💭 tests passing

In case of any problems, please file an issue. We'll be happy to assist you.

Conclusions and outlook

- Fully automated, state-of-the-art prediction of W boson mass in an (almost) arbitrary BMS model
- You can get FlexibleSUSY from github (current version is 2.7.1). Send me a message if you have any problems.

Conclusions and outlook

- Fully automated, state-of-the-art prediction of W boson mass in an (almost) arbitrary BMS model
- You can get FlexibleSUSY from github (current version is 2.7.1). Send me a message if you have any problems.

Be quick to use it before the CDF excess goes away ;p