Renormalization group and cMERA

Asato Tsuchiya (Shizuoka Univ.)

In collaboration with Takaaki Kuwahara, Gota Tanaka and Kazushi Yamashiro (Shizuoka U.) arXiv: 2210.xxxx

Corfu 2022 workshop on noncommutative and generalized geometry in string theory, gauge theory and related physical models

Corfu, September 19th, 2022

Emergence of space-time

Large N reduction

matrix models for noncritical strings

matrix models for superstring theory

AdS/CFT correspondence

(gauge/gravity correspondence)

Emergence of space-time seems natural in quantum gravity, since the space-time itself fluctuates in quantum gravity.

AdS/CFT correspondence Maldacena (1997) CFT in (d+1)-dim. (Quantum) gravity on AdS_{d+2} large N and strong coupling classical gravity $dz^2 + (dx^\mu)$ $z = \epsilon$ $z \gg 1$ xUV $x^{\mu} \to \rho x^{\mu}$ IR $z \to \rho z$ ϵ : lattice spacing \boldsymbol{z} z : scale for renormalization group

Susskind, Witten (1998), de Boer, Verlinde, Verlinde (2000)

Emergence of bulk geometry

In AdS/CFT, bulk geometry emerges from d.o.f. of quantum field theory

Can we derive (quantum) gravity directly from d.o.f. of quantum field theory?

Quantum entanglement is expected to give an answer or a hint to this question

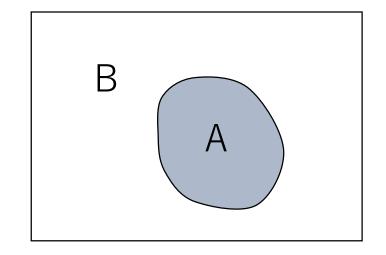
Entanglement entropy (EE)

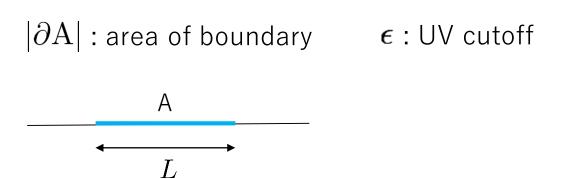
Definition of EE

 $\mathcal{H} = \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ $\rho_{A} = \operatorname{Tr}_{B} \rho_{\mathrm{tot}}$ $S_{A} = -\operatorname{Tr}_{A}(\rho_{A} \log \rho_{A})$

- EE in quantum field theory
 - d : space dimensionality

$$d \ge 2 \qquad S_{A} \propto \frac{|\partial A|}{\epsilon^{d-1}}$$
$$d = 1 \qquad S_{A} = \frac{c}{3} \log L$$





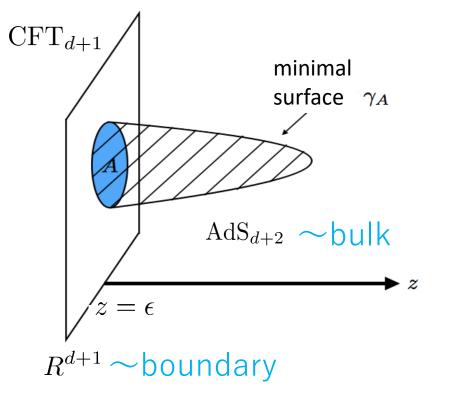
Quantum entanglement and geometry

Ryu-Takayanagi (RT) formula in AdS/CFT (2006)

 $S_{\rm A} = \frac{\rm Min(area(\gamma_{\rm A}))}{4G_{\rm N}}$

 $S_{\rm A}\,$: EE for the region A in CFT on the boundary

 $G_{\rm N}$: Newton constant



Quantum entanglement and emergence of space-time

- Understanding the relationship between emergence of space-time and quantum entanglement allows us to gain insights into the construction of quantum gravity.
- The cMERA, a continuum counterpart of the MERA, is expected to realize the emergence of space-time through quantum entanglement.
- While it is obtained successfully based on the variational method (VM) in free field theory, it is quite nontrivial to construct in interacting field theory, which is relevant in the context of AdS/CFT correspondence.
- Here we propose an approach based on the renormalization group to the cMERA in interacting field theory.

Contents

- 1. Introduction
- 2. MERA and cMERA
- 3. Renormalization group approach to cMERA
- 4. Perturbation theory
- 5. Toward nonperturbative cMERA
- 6. Conclusion and discussion

Matrix product state

By using tensor network, we can efficiently construct a trial wave function in quantum system

Ex.) spin chain consisting of n spins in 1d

 $\sigma_3 \sigma_4 \sigma_5$

$$|\Psi\rangle = \sum_{\sigma_1, \sigma_2, \dots, \sigma_n} \Psi(\sigma_1, \sigma_2, \dots, \sigma_n) |\sigma_1, \sigma_2, \dots, \sigma_n\rangle$$

 σ_6

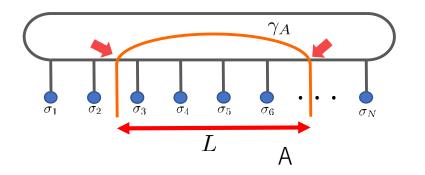
d.o.f.
$$s^n$$

matrix product state

 $\overline{\sigma_1}$

$$\Psi(\sigma_1, \sigma_2, ..., \sigma_n) = \operatorname{tr}[M^{(1)}(\sigma_1)M^{(2)}(\sigma_2)...M^{(n)}(\sigma_n)] \quad M^{(i)}_{\alpha\beta}(\sigma) : \ \chi \times \chi \text{ matrix} \qquad \overline{\alpha}$$
d.o.f. $ns\chi^2$
determined by VA

EE in matrix product state



 γ_A : curve connecting two ends of A #bonds(γ_A) : # of bonds crossed by γ_A χ : bond dimension $\chi \chi$

S

bond represents correlation b/w tensors

each bond contributes to EE at most by $\log\chi$

 $S_{A} \leq \frac{\min(\#bonds(\gamma_{A}))\log \chi}{=2}$

$$\implies S_A \le 2\log \chi$$
 Cf.) EE in quantum critical system in 1d $S = \frac{c}{3}\log L$

matrix product state does not reproduce EE in quantum critical system in 1d

Tree-structure tensor network

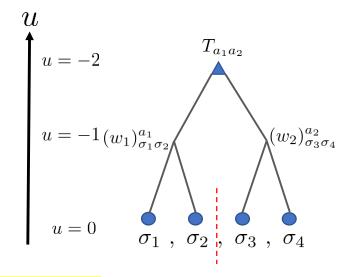
Tree-structure tensor network (TTN)

Ex.) spin-chain consisting of 4 spins in 1d

$$|\Psi_1\rangle = \sum_{\sigma_1,\sigma_2,\sigma_3,\sigma_4} \sum_{a_1,a_2} T_{a_1a_2}(w_1)^{a_1}_{\sigma_1\sigma_2}(w_2)^{a_2}_{\sigma_3\sigma_4} |\sigma_1,\sigma_2,\sigma_3,\sigma_4\rangle$$

$$=\sum_{a_1,a_2}T_{a_1a_2}\left|a_1\right\rangle\otimes\left|a_2\right\rangle$$

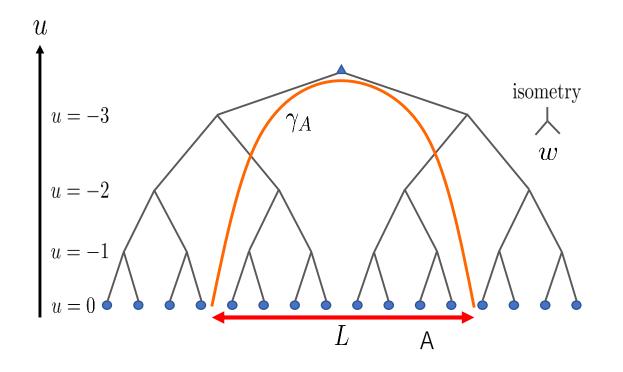
tensors *T*, w_1 and w_2 called isometry merge two spins into one spin tensors are determined by VM



If layers parametrized by u are regarded as scale, TTN looks like RG in real space, but not exactly RG

correlation b/w spin 2 and spin 3 is not taken into account

EE in TTN

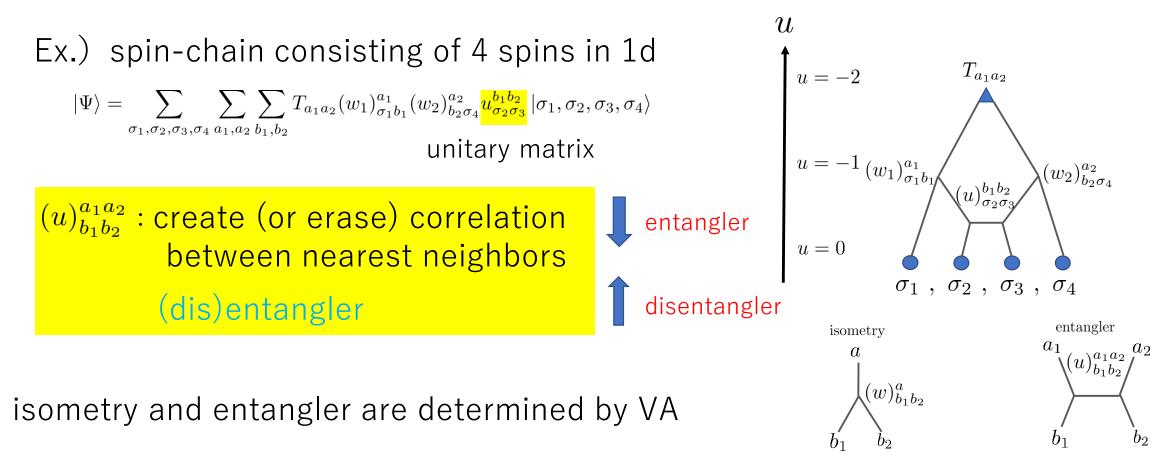


 $\min(\#bonds(\gamma_A)) = 2$ also in this case

$$\implies S_A \le 2\log \chi$$

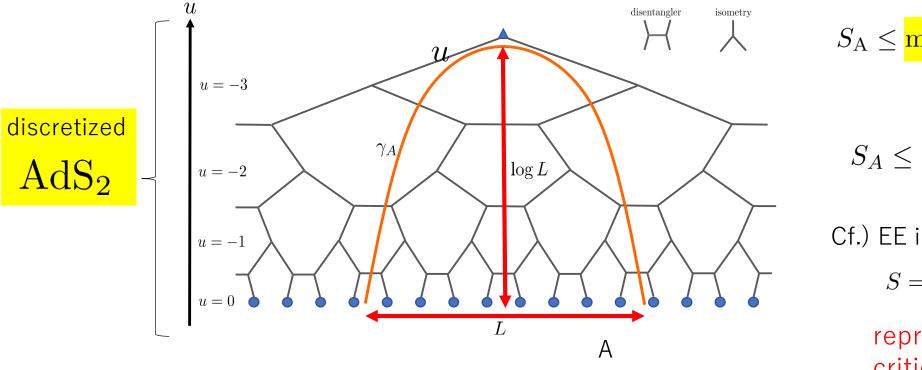
TTN does not reproduce EE in quantum critical system in 1d

Multi-scale Entanglement Renormalization Ansatz



MERA and AdS/CFT

Swingle (2009)



$$S_{\mathrm{A}} \leq rac{\min(\#\mathrm{bonds}(\gamma_{\mathrm{A}}))}{= 2 \log L}$$

 \downarrow
 $S_{A} \leq (2 \log \chi) \log L$

Cf.) EE in quantum critical system in 1d

$$S = \frac{c}{3} \log L$$

reproduce EE in 1d quantum critical system

Motivated by RT formula, we regard $\#bonds(\gamma_A)$ as discrete length

$$ds^2 = du^2 + \frac{e^{2u}}{\epsilon^2} dx^2 ds^2 = \frac{dz^2 + dx^2}{z^2}$$

$$\epsilon : \text{lattice spacing} \quad z = \epsilon e^{-u} \quad \text{AdS}_2 \text{ (constant time slice of AdS}_3)$$

MERA and AdS/CFT (cont'd)

> quantum critical system has scale invariance entangler $(u)_{b_1b_2}^{a_1a_2}$ are constant

$$ds^2 = du^2 + \frac{e^{2u}}{\epsilon^2} dx^2$$

 \succ in non-critical system, $(u)_{b_1b_2}^{a_1a_2}$ depend on u

$$ds^2 = g_{uu}(u)du^2 + \frac{e^{2u}}{\epsilon^2}dx^2$$

 $\frac{g_{uu}(u)}{g_{uu}(u)}$: strength of entanglement at the scale u

cMERA

Haegeman, Osborne, Verschelde, Verstraete(2011) Nozaki, Ryu, Takayanagi(2012)

- > taking the continuum limit of the tensor network is quite nontrivial
- Continuum MERA should be important for extracting geometry
- trial function for ground state at UV ground state at IR

$$|\Psi_0\rangle = U(0, -\infty)|\Omega\rangle$$
 $\hat{L}|\Omega\rangle = 0$

entanglement renormalization transformation

$$\begin{split} U(u_1, u_2) &= \operatorname{P} \exp\left(-i \int_{u_1}^{u_2} (\hat{K}(u) + \hat{L}) du\right) \\ \hat{K}(u) &: \text{entangler} \\ \hat{L} &: \text{dilation operator} \quad t \to \rho^2 t, \ x^i \to \rho x^i \end{split}$$

> In free field theory, $\hat{K}(u)$ can be determined by the variational method

 $|\Psi_0
angle$ agrees with the ground state

Quantum information metric

> Hilbert-Schmidt distance $D_{\rm HS}(\rho_A, \rho_B) = \frac{1}{2} {\rm Tr}(\rho_A - \rho_B)^2$

> Quantum information metric

 $D_{\rm HS}(\rho_{\lambda}, \rho_{\lambda+\delta\lambda}) = G_{\lambda\lambda}(\delta\lambda)^2 + \mathcal{O}((\delta\lambda)^3)$

> For pure states $\rho_A = |\Psi_A\rangle \langle \Psi_A|$ and $\rho_B = |\Psi_B\rangle \langle \Psi_B|$, $D_{\rm HS}(\Psi_A, \Psi_B) = 1 - |\langle \Psi_A | \Psi_B \rangle|^2$ $G_{\lambda\lambda}(\delta\lambda)^2 = 1 - |\langle \Psi(\lambda) | \Psi(\lambda + \delta\lambda) \rangle|^2$

Quantum information metric in cMERA

$$\begin{split} G_{uu}du^2 &= \mathcal{N}^{-1}(1 - |\langle \Psi(u)|e^{i\hat{L}du}|\Psi(u+du)\rangle|^2) \\ |\Psi(u)\rangle &= U(u,-\infty)|\Omega\rangle & \text{we subtract contribution of} \\ \hat{L}: \text{dilatation operator} & \text{contribution of entangler} \end{split}$$

 $G_{uu} = \mathcal{N}^{-1}(\langle \Psi_0(u) | \hat{K}(u)^2 | \Psi_0(u) \rangle - \langle \Psi_0(u) | \hat{K}(u) | \Psi_0(u) \rangle^2)$

measure local quantum entanglement

 \implies should be related to geometry at $\,u$

conjecture $G_{uu} \sim g_{uu}$

Free scalar field theory

In free scalar field theory

$$G_{uu}(u) = \frac{e^{4u}}{4(e^{2u} + m^2/\Lambda^2)^2} \xrightarrow{\text{Mozaki, Ryu,}} G_{uu}(u) \rightarrow \frac{1}{4} \qquad \text{AdS metric} \qquad \begin{array}{c} \text{Nozaki, Ryu,} \\ \text{Takayanagi(2012)} \end{array}$$

> In the case where the region A is a half space ($x^1 > 0$), by calculating EE based on $|\Psi_0(u)\rangle$ and comparing the result with the RT formula, one obtains $G_{uu} \sim g_{uu}$ Fernandez, Melgarejo, Molina, Vilaplana (2021)

- > However, this is an observation for fee field (the RT formula is not applicable)
- > Indeed, classical geometry corresponds to the strong coupling regime in field theory
- \succ Thus, it is important to find the entangler $\hat{K}(u)$ in interacting field theory

Contents

- 1. Introduction
- 2. MERA and cMERA
- 3. Renormalization group approach to cMERA
- 4. Perturbation theory
- 5. Toward nonperturbative cMERA
- 6. Conclusion and discussion

Renormalization group approach

- > How to assume $\hat{K}(u)$ in VA for interacting field theory is not clear
- We construct cMERA based on the renormalization group (RG) rather than VA
- > Cf.) VA for interacting scalar field theory
- ≻ Cf.) RG approach
 - O(N) vector free field theory
 - interacting scalar field theory

Fernandez-Melgarejo, Molina-Vilaplana (2020) We make a comment later

Fliss, Leigh, Parrikar (2018)

Cotler, Mozaffar, Mollabashi, Naseh (2018) different from ours our method is much simpler

RG approach to cMERA (cont'd)

1. We obtain the ground state at scale u, $|\Psi_0(u)
angle$, based on RG

2. By calculating $\frac{\partial_u |\Psi_0(u)\rangle}{\partial_u}$, we obtain the entangler $\hat{K}(u)$

$$|\Psi_{0}(u)\rangle = \operatorname{P}\exp\left[-i\int_{u_{\mathrm{IR}}}^{u} du'(\hat{K}(u') + \hat{L})\right]|\Psi_{0}(u_{\mathrm{IR}})\rangle$$
$$\xrightarrow{\partial_{u}|\Psi_{0}(u)\rangle} = -i(\hat{K}(u) + \hat{L})|\Psi_{0}(u)\rangle$$

RG

1. perturbation theory insights into nonperturbative cMERA know what type of terms appear generally

2. nonperturbative method \sim exact renormalization group (functional renormalization group)

Contents

- 1. Introduction
- 2. MERA and cMERA
- 3. Renormalization group approach to cMERA
- 4. Perturbation theory
- 5. Toward nonperturbative cMERA
- 6. Conclusion and discussion

Perturbation theory

➢ equation for cMERA

$$\begin{array}{l} \partial_u |\Psi_0(u)\rangle = -i(\hat{K}(u) + \hat{L}) |\Psi_0(u)\rangle = \hat{X} |\Psi_0(u)\rangle \\ \\ \hat{X} = -i(\hat{K}(u) + \hat{L}) \quad \mbox{ anti-Hermitian operator} \end{array}$$

> perturbative expansion

$$\begin{split} |\Psi_{0}(u)\rangle &= |\Psi_{0}^{(0)}(u)\rangle + \alpha |\Psi_{0}^{(1)}(u)\rangle + \cdots \\ \hat{X}(u) &= \hat{X}_{0} + \alpha \hat{X}_{1} + \cdots \\ \text{Oth order in } \alpha \quad \partial_{u} |\Psi_{0}^{(0)}\rangle &= \hat{X}_{0} |\Psi_{0}^{(0)}\rangle & \longrightarrow \text{ obtain } \hat{X}_{0} \text{ and substitute it} \\ \text{1st order in } \alpha \quad \partial_{u} |\Psi_{0}^{(1)}\rangle &= \hat{X}_{1} |\Psi_{0}^{(0)}\rangle + \hat{X}_{0} |\Psi_{0}^{(1)}\rangle \\ &\longrightarrow \text{ obtain } \hat{X}_{1} \end{split}$$

(d+1)-dimensional free scalar field

➤ Lagrangian

$$L = \int d^d x \left[-\frac{1}{2} \partial_\mu \hat{\phi}(t, x) \partial^\mu \hat{\phi}(t, x) - \frac{1}{2} m^2 \hat{\phi}^2(x) \right]$$

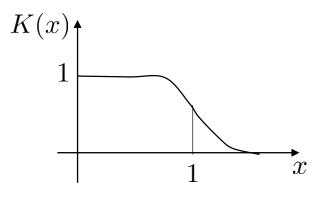
 \succ introduction of effective cutoff Λ

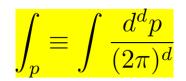
$$L_{\Lambda} = \int_{p} K^{-1}\left(\frac{p^{2}}{\Lambda^{2}}\right) \left[\frac{1}{2}\dot{\hat{\phi}}(t,p)\dot{\hat{\phi}}(t,-p) - \frac{1}{2}(p^{2}+m^{2})\hat{\phi}(t,p)\hat{\phi}(t,-p)\right]$$

> canonical conjugate momenta and canonical commutation relation

$$\hat{\pi}(p) \equiv \frac{\delta L_{\Lambda}}{\delta \dot{\phi}(-p)} = K^{-1}(p^2/\Lambda^2) \dot{\hat{\phi}}(p) \qquad [\hat{\phi}(p), \hat{\pi}(q)] = i(2\pi)^d \delta(p+q) \\ [\hat{\phi}(p), \hat{\phi}(q)] = [\hat{\pi}(p), \hat{\pi}(q)] = 0$$

cutoff function





(d+1)-dimensional free scalar field (cont'd)

➤ Hamiltonian

$$H_{\Lambda} = \int_{p} \frac{1}{2} K\left(\frac{p^{2}}{\Lambda^{2}}\right) \left[\hat{\pi}(p)\hat{\pi}(-p) + K^{-2}\left(\frac{p^{2}}{\Lambda^{2}}\right)(p^{2} + m^{2})\hat{\phi}(p)\hat{\phi}(-p)\right]$$

➤ rescaling

$$\hat{\phi}(k) \to e^{-\frac{d+1}{2}u} \hat{\phi}(e^{-u}k), \quad \hat{\pi}(k) \to e^{-\frac{d-1}{2}u} \hat{\pi}(e^{-u}k)$$

➤ rescaled Hamiltonian

$$\begin{split} H(u) &= \int_{p} \frac{1}{2} K_{p} \begin{bmatrix} \hat{\pi}(p) \hat{\pi}(-p) + K_{p}^{-2} \omega_{p}^{2} \hat{\phi}(p) \hat{\phi}(-p) \end{bmatrix} \\ &\frac{\Lambda = \Lambda_{0} e^{u}}{\Lambda_{0}} \text{ bare cutoff} \quad \text{UV limit } u = 0 \quad \text{IR limit } u = -\infty \\ &K_{p} = K(p^{2}/\Lambda_{0}^{2}) \\ &\omega_{p} = \sqrt{p^{2} + e^{-2u}m^{2}} \quad u \text{ -dependence appears only here} \end{split}$$

(d+1)-dimensional free scalar field (cont'd)

creation-annihilation operators

$$\hat{a}(k) = \frac{1}{\sqrt{2}} \left(\sqrt{K_k^{-1} \omega_k} \hat{\phi}(k) + \frac{i}{\sqrt{K_k^{-1} \omega_k}} \hat{\pi}(k) \right)$$
$$\hat{a}^{\dagger}(k) = \frac{1}{\sqrt{2}} \left(\sqrt{K_k^{-1} \omega_k} \hat{\phi}(-k) - \frac{i}{\sqrt{K_k^{-1} \omega_k}} \hat{\pi}(-k) \right)$$

$$[\hat{a}(p), \hat{a}^{\dagger}(q)] = (2\pi)^d \delta(p-q)$$

➤ Hamiltonian

$$H(u) = \int_{p} \frac{1}{2} K_{p} \left[\hat{\pi}(p) \hat{\pi}(-p) + K_{p}^{-2} \omega_{p}^{2} \hat{\phi}(p) \hat{\phi}(-p) \right] = \int_{p} \omega_{p} \left(\hat{a}^{\dagger}(p) \hat{a}(p) + \frac{V}{2} \right)$$

no cutoff dependence

V volume of space

(d+1)-dimensional free scalar field (cont'd)

➤ vacuum (ground state)

 $\hat{a}(p)|\Psi_0(u)\rangle = 0$

 \succ *m*-particle state

$$|\Psi_m(k_1,\cdots,k_m;u)\rangle = \frac{1}{\sqrt{m!}} \prod_{i=1}^m \hat{a}^{\dagger}(k_i) |\Psi_0(u)\rangle$$

➢ energy eigenvalue

$$H(u)|\Psi_m(k_1,\cdots,k_m;u)\rangle = \left(\sum_{i=1}^m \omega_{p_i} + \int_p \frac{V}{2}\omega_p\right)|\Psi_m(k_1,\cdots,k_m;u)\rangle$$

vacuum energy

no cutoff dependence

Vacuum wave functional for free scalar field

- \succ eigenstate of $\hat{\phi}$
 - $\hat{\phi}(p)|\phi\rangle = \phi(p)|\phi\rangle$
- wave functional for vacuum (ground state)

$$\Psi_{0}[\phi; u] \equiv \langle \phi | \Psi_{0}(u) \rangle$$

$$0 = \langle \phi | \hat{a}(p) | \Psi_{0}(u) \rangle = \frac{1}{\sqrt{2}} \left\{ \sqrt{K_{p}^{-1} \omega_{p}} \phi(p) + \frac{1}{\sqrt{K_{p}^{-1} \omega_{p}}} \frac{\delta}{\delta \phi(-p)} \right\} \Psi_{0}[\phi; u]$$

$$\Psi_{0}[\phi; u] = \exp \left[-\frac{1}{2} \int_{p} \phi(p) K_{p}^{-1} \omega_{p} \phi(-p) + \frac{V}{4} \int_{p} \ln \left(2K_{p}^{-1} \omega_{p} \right) \right]$$
normalization $1 = \langle \Psi_{0}(u) | \Psi_{0}(u) \rangle = \int \mathcal{D} \phi | \Psi_{0}[\phi](u) |^{2}$

Ground state in interacting theory

➤ Hamiltonian

$$\begin{split} H(u) &= H_0(u) + \alpha H_{int}(u) \\ H_0(u) &= \int_p K_p \frac{1}{2} \left(\hat{\pi}(p) \hat{\pi}(-p) + K_p^{-1} \omega_p^2 \hat{\phi}(p) \hat{\phi}(-p) \right) \\ H_{int}(u) &= \underbrace{\frac{\delta m^2(u)}{2} \int_p \hat{\phi}(p) \hat{\phi}(-p)}_{\text{mass counter term}} + \frac{\lambda(u)}{4!} \int_{p_1, \cdots, p_4} \prod_{i=1}^4 \hat{\phi}(p_i) (2\pi)^d \delta\left(\sum p_i\right) \\ \text{mass counter term} \end{split}$$

perturbative expansion

$$|\Psi_0(u)\rangle = |\Psi_0^{(0)}(u)\rangle + \alpha |\Psi_0^{(1)}(u)\rangle + \mathcal{O}(\alpha^2)$$
$$E_0(u) = E_0^{(0)}(u) + \alpha E_0^{(1)}(u) + \mathcal{O}(\alpha^2)$$

Ground state in interacting theory (cont'd)

Formula for the first order in perturbative expansion

$$|\Psi_0^{(1)}(u)\rangle = \sum_{n\neq 0} \int_{k_1,\dots,k_n} \frac{\langle \Psi_n^{(0)}(k_1,\dots,k_n;u) | H_{\text{int}}(u) | \Psi_0^{(0)}(u) \rangle}{E_0^{(0)}(u) - E_n^{(0)}(k_1,\dots,k_n;u)} |\Psi_n^{(0)}(k_1,\dots,k_n;u)\rangle$$

➢ We obtain

$$\begin{split} |\Psi_{0}^{(1)}(u)\rangle &= -\frac{\lambda}{4!} \int_{k_{1},...,k_{4}} \frac{(2\pi)^{d} \delta(k_{1} + \dots + k_{4})}{\omega_{k_{1}} + \dots + \omega_{k_{4}}} \prod_{i=1}^{4} \sqrt{\frac{K_{k_{i}}}{2\omega_{k_{i}}}} \hat{a}^{\dagger}(k_{i}) |\Psi_{0}^{(0)}\rangle \\ &- \left(\frac{\delta m^{2}}{2} + \frac{\lambda}{4!} \int_{p} \frac{6K_{p}}{2\omega_{p}}\right) \int_{k} \frac{1}{2\omega_{k}} \frac{K_{k}}{2\omega_{k}} \hat{a}^{\dagger}(k) \hat{a}^{\dagger}(-k) |\Psi_{0}^{(0)}\rangle \\ &\qquad K_{p} = K(p^{2}/\Lambda_{0}^{2}) \\ &\qquad \omega_{p} = \sqrt{p^{2} + e^{-2u}m^{2}} \end{split}$$

Wave functional through path-integral

path-integral representation of ground state

$$\Psi_0[\phi] = \lim_{T \to \infty} \int_{\varphi(0,p) = \phi(p)} D\varphi \ e^{-\int_{-T}^0 d\tau L} = \lim_{T \to \infty} \langle \phi | e^{-TH} | \Phi \rangle \sim \langle \phi | \Psi_0 \rangle$$

$$Lagrangian L(u) = L_0(u) + L_{int}(u)$$

$$L_0(u) = \int_p K_p^{-1} \left[\frac{1}{2} \partial_\tau \varphi(\tau, p) \partial_\tau \varphi(\tau, -p) + \frac{1}{2} \omega_p^2 \varphi(\tau, p) \varphi(\tau, -p) \right]$$

 \succ Expand around a classical solution in L_0

 $\varphi(\tau, p) = \frac{\varphi_{c}(\tau, p)}{\varphi_{c}(\tau, p)} + \frac{\chi(\tau, p)}{\chi(\tau, p)}$

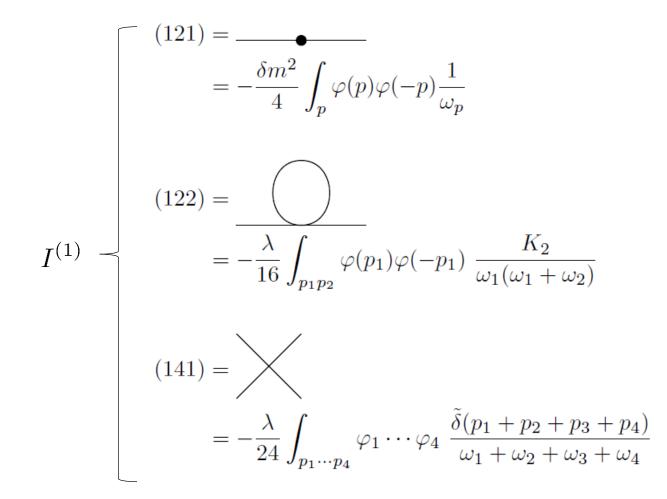
classical quantum solution fluctuation b.c. $\varphi_{c}(0,p) = \phi(p)$ $\chi(0,p) = 0$

$$\begin{split} \varphi_{c}(\tau,p) &= \frac{e^{\omega_{p}(\tau+T)} - e^{-\omega_{p}(\tau+T)}}{e^{\omega_{p}T} - e^{-\omega_{p}T}} \phi(p) \\ \chi(\tau,p) &= \sum_{n=1}^{\infty} \sin\left(\frac{\pi n}{T}\tau\right) \chi_{n}(p) \\ \langle \chi(\tau,p)\chi(\tau',p') \rangle \xrightarrow{T \to \infty} \frac{K_{p}}{2\omega_{p}} (e^{-\omega_{p}|\tau-\tau'|} - e^{\omega_{p}(\tau+\tau')}) (2\pi)^{d} \delta(p+p') \end{split}$$

 $\varphi(0,p) = \phi(p)$

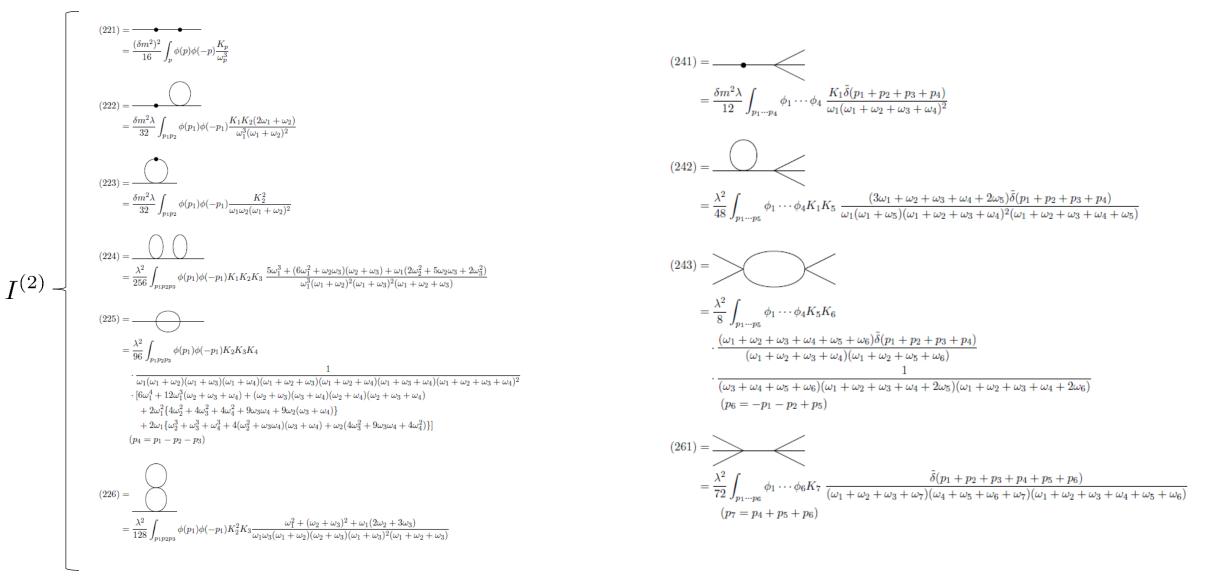
T

first order in perturbative expansion $\Psi_0 = e^I \Psi_0^{(0)}$ $I = 1 + \alpha I^{(1)} + \alpha^2 I^{(2)} + \cdots$



agree with the results
 obtained in canonical formulation

Second order in perturbative expansion



Obtain \hat{X}_0

$$\begin{split} \partial_{u}\Psi_{0}^{(0)}[\phi] &= \partial_{u}\exp\left[-\frac{1}{2}\int_{p}\phi(p)K_{p}^{-1}\omega_{p}\phi(-p) + \frac{V}{4}\int_{p}\ln\left[2K_{p}^{-1}\omega_{p}\right]\right] \\ &= \int_{p}\left\{-\frac{1}{2}\phi(p)K_{p}^{-1}\partial_{u}\sqrt{p^{2} + e^{-2u}m^{2}}\phi(-p) + \frac{V}{4}\partial_{u}\sqrt{p^{2} + e^{-2u}m^{2}}\right\}\Psi_{0}^{(0)}[\phi] \\ &= m^{2}e^{-2u}\int_{k}\frac{1}{4\omega_{k}^{2}}\left\{a^{\dagger}(k)a^{\dagger}(-k) + a^{\dagger}(k)a(k) + a(-k)a^{\dagger}(-k) + a(k)a(-k) - V\right\}\Psi_{0}^{(0)}[\phi] \\ &= m^{2}e^{-2u}\int_{k}\frac{1}{4\omega_{k}^{2}}a^{\dagger}(k)a^{\dagger}(-k)\Psi_{0}^{(0)}[\phi] \end{split}$$

$$\begin{split} & & & \\ \hat{X}_{0} = m^{2}e^{-2u} \int_{k} \frac{1}{4\omega_{k}^{2}} \{ \hat{a}^{\dagger}(k) \hat{a}^{\dagger}(-k) - \hat{a}(k) \hat{a}(-k) \} = -im^{2}e^{-2u} \int_{k} \frac{1}{4\omega_{k}^{2}} \{ \hat{\phi}(k) \hat{\pi}(-k) + \hat{\pi}(k) \hat{\phi}(-k) \} \\ & & \\ & & \\ \hat{a}(k) | \Psi_{0}^{(0)}(u) \rangle = 0 \end{split}$$
 obtained as anti-Hermitian operator

Obtain \hat{X}_1

$$\begin{split} \hat{X}_{1} &= -im^{2}e^{-2u}\frac{\lambda}{4!}\int_{k_{1},\dots,k_{4}}\left\{\left(\frac{1}{\omega_{k_{1}}+\dots+\omega_{k_{4}}}\right)^{2}\left(\frac{1}{\omega_{k_{1}}}+\dots+\frac{1}{\omega_{k_{4}}}\right) + \frac{1}{\omega_{k_{1}}+\dots+\omega_{k_{4}}}\left(\frac{1}{2\omega_{k_{1}}^{2}}+\dots+\frac{1}{2\omega_{k_{4}}^{2}}\right)\right\} \\ & \times \frac{1}{4}\tilde{\delta}(k_{1}+\dots+k_{4})\left\{\left(-\hat{\phi}(k_{1})\hat{\phi}(k_{2})\hat{\phi}(k_{3})\frac{K_{k_{4}}}{2\omega_{k_{4}}}\hat{\pi}(k_{4}) + \frac{K_{k_{1}}}{2\omega_{k_{1}}}\hat{\pi}(k_{1})\frac{K_{k_{2}}}{2\omega_{k_{2}}}\hat{\pi}(k_{2})\frac{K_{k_{3}}}{2\omega_{k_{3}}}\hat{\pi}(k_{3})2\hat{\phi}(k_{4})\right) \\ & + \frac{(3 \text{ terms exchange of } 1,2,3,4 \quad)}{1,2,3,4 \quad)}\right\} & \text{does not exist in the ansatz used in the variational method} \\ & + 2im^{2}e^{-2u}\left\{\frac{\delta m^{2}}{2} + \frac{\lambda}{4!}\int_{p}\frac{6K_{p}}{2\omega_{p}}\right\}\int_{k}\frac{1}{2\omega_{k}^{3}}\frac{K_{k}}{2\omega_{k}}\left\{\hat{\phi}(k)\hat{\pi}(-k) + \hat{\pi}(k)\hat{\phi}(-k)\right\} & \text{Fernandez-Melgarejo, Molina-Vilaplana (2020)} \\ & + i\left\{\frac{\partial_{u}\delta m^{2}}{2} + \frac{\lambda}{4!}\int_{p}\frac{6K_{p}}{2\omega_{p}^{2}\omega_{p}}m^{2}e^{-2u}\right\}\int_{k}\frac{1}{2\omega_{k}}\frac{K_{k}}{2\omega_{k}}\left\{\hat{\phi}(k)\hat{\pi}(-k) + \hat{\pi}(k)\hat{\phi}(-k)\right\} \end{split}$$

obtained as anti-Hermitian operator

$$\partial_u \delta m^2 = -\frac{\lambda}{4} \int_p \frac{2\frac{p^2}{\Lambda_0^2} K_p'}{\omega_p} - 2\delta m^2$$

Contents

- 1. Introduction
- 2. MERA and cMERA
- 3. Renormalization group approach to cMERA
- 4. Perturbation theory
- 5. Toward nonperturbative cMERA
- 6. Conclusion and discussion

Toward nonperturbative cMERA

In the spirit of the exact RG (functional RG), we derive a nonperturbative functional differential equation for the ground state wave functional

$$\Psi_{0}[\phi] = \int_{\varphi(0,p)=\phi(p)} D\varphi \ e^{-\int_{-\infty}^{0} d\tau L}$$

$$0 = \frac{\partial}{\partial u} \int \mathcal{D}\phi \ \Psi^{*}[\phi] \Psi[\phi]$$

$$\longrightarrow \ \partial_{u} \Psi_{0}[\phi](u) = -\int_{p} \frac{\dot{K}_{k}}{4\omega_{k}} \left[\frac{\delta^{2} \Psi_{0}[\phi](u)}{\delta\phi(k)\delta\phi(-k)} + \frac{1}{\Psi_{0}[\phi](u)} \frac{\delta\Psi_{0}[\phi](u)}{\delta\phi(k)} \frac{\delta\Psi_{0}[\phi](u)}{\delta\phi(-k)} \right]$$

- We confirmed that the vacuum wave functional that we obtain perturbatively satisfies this equation to the first order. We are examining the second order
- We expect to find the nonperturbative entangler by solving this equation nonperturbatively We can infer from perturbative results what type of terms appear in the solution

Contents

- 1. Introduction
- 2. MERA and cMERA
- 3. Renormalization group approach to cMERA
- 4. Perturbation theory
- 5. Toward nonperturbative cMERA
- 6. Conclusion and discussion

Conclusion

> We proposed a method based on RG to construct cMERA in interacting field theory

$$\begin{split} |\Psi_0(u_1)\rangle &= U(u_1, u_2) |\Psi(u_2)\rangle \qquad U(u_1, u_2) = \operatorname{Pexp}\left(-i \int_{u_1}^{u_2} (\hat{K}(u) + \hat{L}) du\right) \\ \partial_u |\Psi_0(u)\rangle &= -i(\hat{K}(u) + \hat{L}) |\Psi_0(u)\rangle \end{split}$$

first obtain $|\Psi_0(u)\rangle$ based on RG and determine $\hat{K}(u)$ using the above equation

> We construct cMERA perturbatively to gain insight into nonperturbative cMERA e.g. what type of terms appear generally in $\hat{K}(u)$

our $\hat{K}(u)$ includes a type of terms that are not included in the trial ansatz for $\hat{K}(u)$ in VA by Fernandez-Melgarejo and Molina-Vilaplana (2020)

> We also discussed a nonperturbative method based on the exact RG

calculate EE and find relationship between entangler and geometry in interacting field theory

develop nonperturbative cMERA further

> extension to gauge field theory