Quantum tunneling in the real-time path integral by the Lefschetz thimble method

Jun Nishimura (KEK, SOKENDAI)

Workshop on Noncommutative and generalized geometry in string theory, gauge theory and related physical models

in Corfu Summer Institue

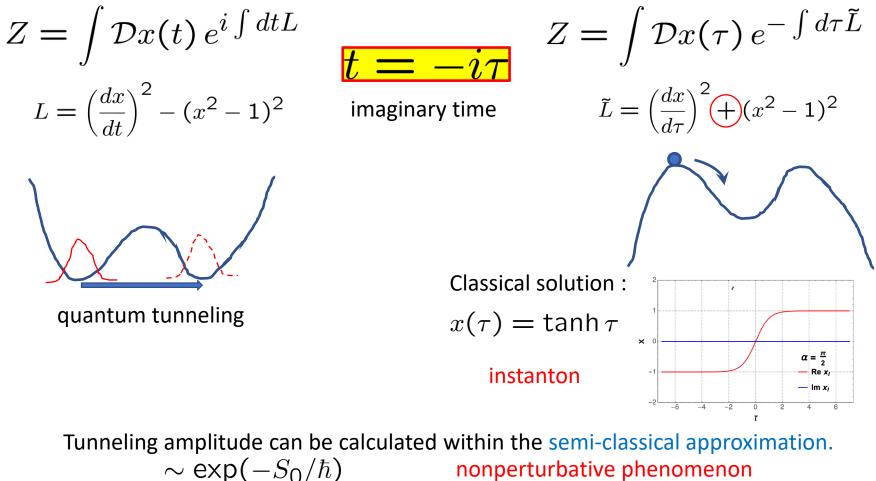
Sept. 18-25, 2022, Corfu, Greece

Ref.) JN, Katsuta Sakai, Atis Yosprakob, in preparation

Quantum tunneling

Described by instantons in the imaginary-time path integral

- decay rate of a false vacuum in QFT Coleman ('77)
- bubble nucleation in 1st order phase transitions,
- domain wall fusions etc.



nonperturbative phenomenon

How can we describe quantum tunneling directly in the real-time path integral ?

- Motivations :
 - In reality, there are also contributions from classical motion over the barrier (c.f., sphalerons in QFT)

To obtain the wave function after tunneling and its subsequent time-evolution.

 However, a naïve analytic continuation of instantons leads to singular complex trajectories.

Cherman-Ünsal ('14)

We clarify this issue completely by explicit Monte Carlo calculations.

Sign problem in Monte Carlo methods

The basic idea of Monte Carlo calculations

$$Z = \int \prod_{i=1}^{N} dx_i w(x_1, \cdots, x_N)$$

$$\langle O \rangle = \frac{1}{Z} \int \prod_{i=1}^{N} dx_i O(x_1, \cdots, x_N) w(x_1, \cdots, x_N)$$

$$> 0$$

> Generate configurations (x_1, \dots, x_N) with the probability distribution $\frac{1}{Z}w(x_1, \dots, x_N)$

► Calculate $\langle O \rangle$ as expectation values of $O(x_1, \cdots, x_N)$

Real-time evolution of the wave function :

$$\Psi(x_{f}, t_{f}) = \int \mathcal{D}x(t) \Psi(x(t_{i}), t_{i}) e^{iS[x(t)]}$$

complex weight !
cannot be identified as the probability distribution

sign problem !

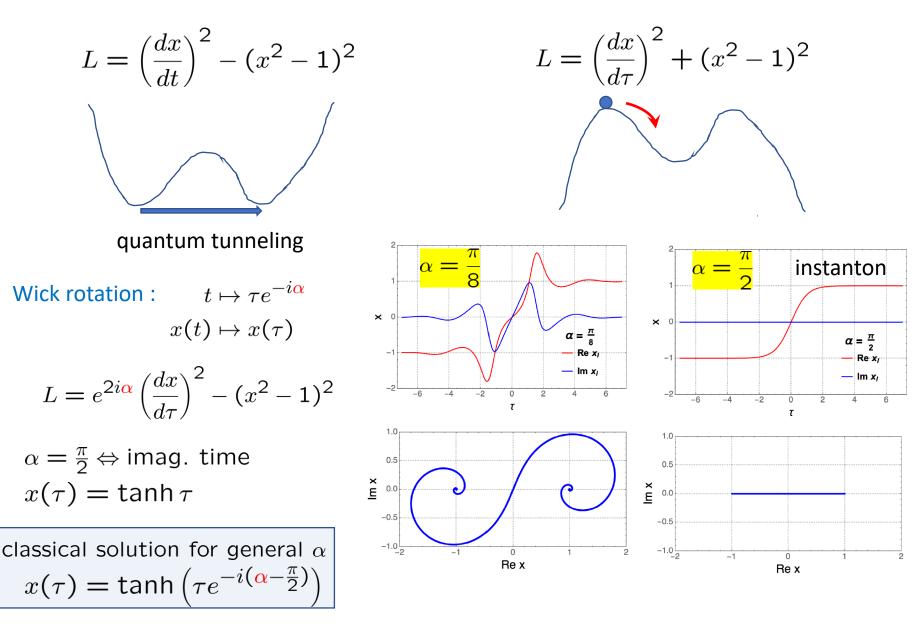
We use the Lefschetz thimble method to overcome this problem.

Plan of the talk

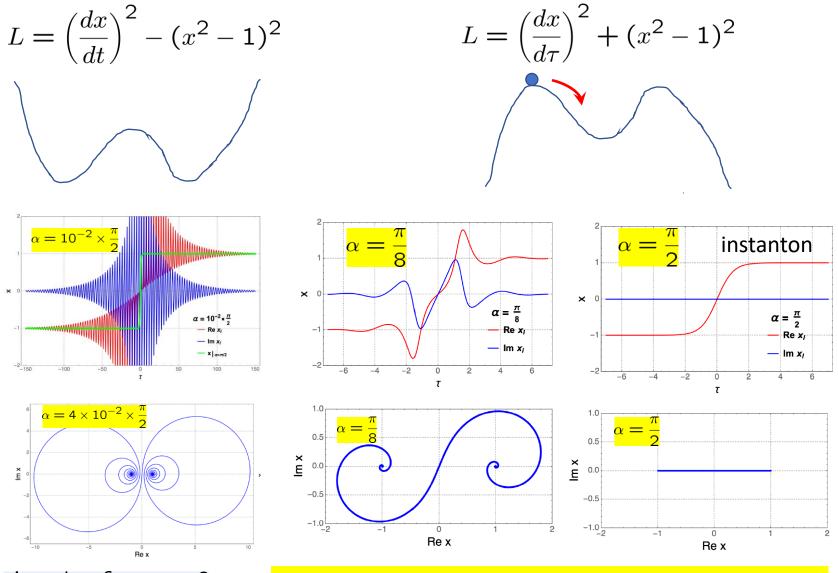
- 1. Brief review of previous works
- 2. Lefschetz thimble method
- 3. Backpropagating HMC algorithm
- 4. Optimizing the flow equation
- 5. Quantum tunneling in the real-time path integral
- 6. Summary and discussions

1.Brief review of previous works

Analytically continuation of instantons Cherman-Ünsal ('14)



Analytically continuation of instantons Cherman-Ünsal ('14)



singular for $\alpha \rightarrow 0$

What kind of path is responsible for quantum tunneling?

Exact classical solutions in the double-well potiential

Koike-Tanizaki ('14)

Jacobi elliptic function

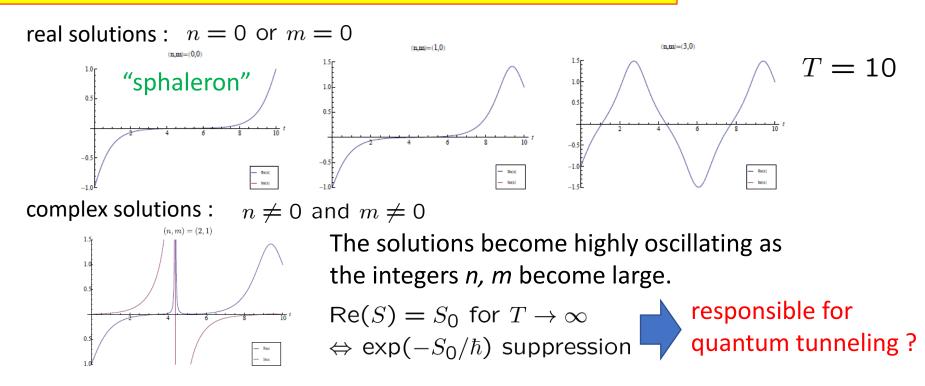
conservation of energy :
$$\left(\frac{dz}{dt}\right)^2 + (z^2 - 1)^2 = p^2$$

$$z(t) = \sqrt{\frac{p^2 - 1}{2p}} \operatorname{sd}\left(\sqrt{2p} t + c, \sqrt{\frac{1 + p}{2p}}\right)$$

integration constants : c , p \leftarrow boundary conditions

 $\begin{bmatrix} z\left(-\frac{T}{2}\right) = -1\\ z\left(\frac{T}{2}\right) = 1 \end{bmatrix}$

There are infinitely many solutions labeled by integers (n,m).



2.Lefschetz thimble method

We consider a general model defined by a multi-variable integral

$$Z = \int_{\mathbb{R}^N} dx \, e^{-S(x)}$$
$$x = (x_1, \cdots, x_N) \in \mathbb{R}^N$$
$$S(x) \in \mathbb{C}$$

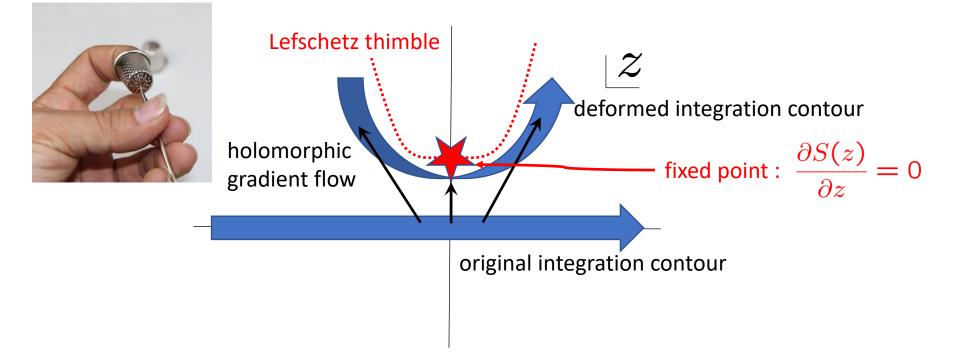
$$\langle \mathcal{O}(x) \rangle = \frac{1}{Z} \int_{\mathbb{R}^N} dx \, \mathcal{O}(x) \, e^{-S(x)}$$

^

Difficult to evaluate due to the sign problem.

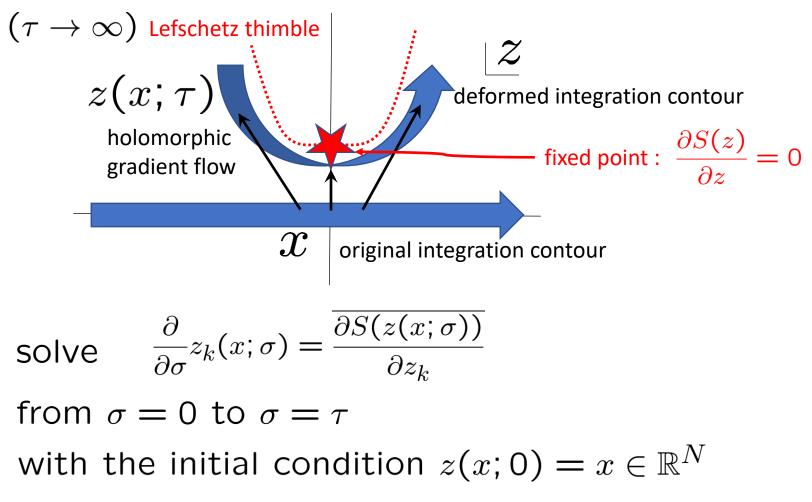
The generalized thimble method (GTM)

A.Alexandru, G.Basar, P.F.Bedaque, G.W.Ridgway and N.C.Warrington, JHEP 1605 (2016) 053

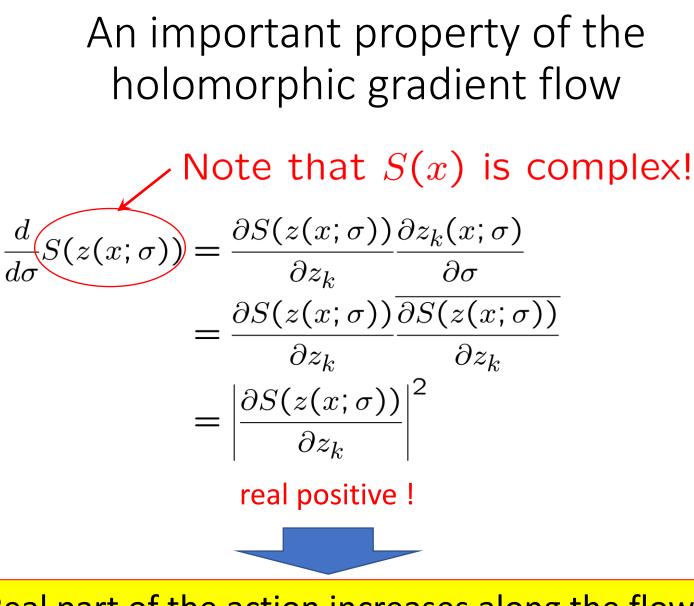


As a result of the property of the holomorphic gradient flow, the sign problem becomes milder on the deformed contour !

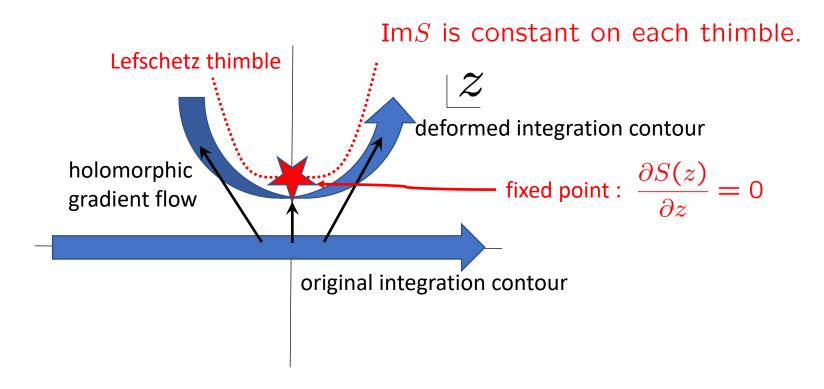
The holomorphic gradient flow



One obtains a one-to-one map from x to $z(x; \tau)$

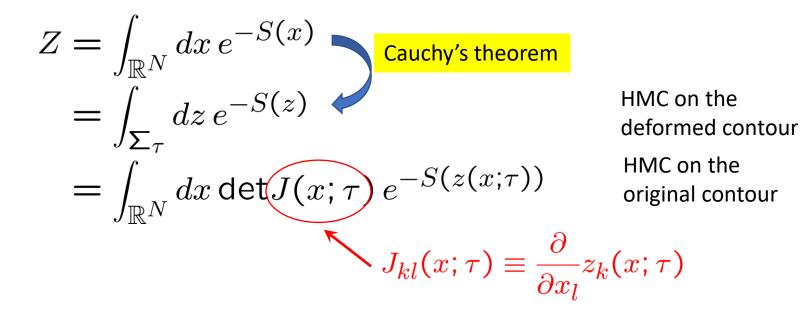


Real part of the action increases along the flow, while the imaginary part is kept constant. The integration is dominated by a small region of x as the flow-time increases.



As a result, the sign problem becomes milder !

The deformed integration contour $\Sigma_{\tau} = \{z(x; \tau) | x \in \mathbb{R}^N\}$ *N*-dimensional real manifold in \mathbb{C}^N



reweighting for the residual sign problem is necessary

$$\langle \mathcal{O}(x) \rangle = \frac{\langle e^{i\theta} \mathcal{O}(z(x;\tau)) \rangle_0}{\langle e^{i\theta} \rangle_0}$$

 $\theta = -\mathrm{Im}S(z) + \arg(\det J)$

Problems in the GTM

• One has to solve the holomorphic gradient flow

$$\frac{\partial}{\partial \sigma} z_k(x;\sigma) = \frac{\overline{\partial S(z(x;\sigma))}}{\partial z_k}$$

to sample each point on $\Sigma_{ au}$

HMC algorithm

Fukuma-Matsumoto-Umeda ('19)

- The Jacobian $J_{kl}(x;\tau) \equiv \frac{\partial}{\partial x_l} z_k(x;\tau)$ has to be calculated by solving the corresponding flow eq., which is the most time-consuming part.
- When there are more than one thimbles, the tunneling from one thimble region to another does not occur very frequently for large τ .

ergodicity problem

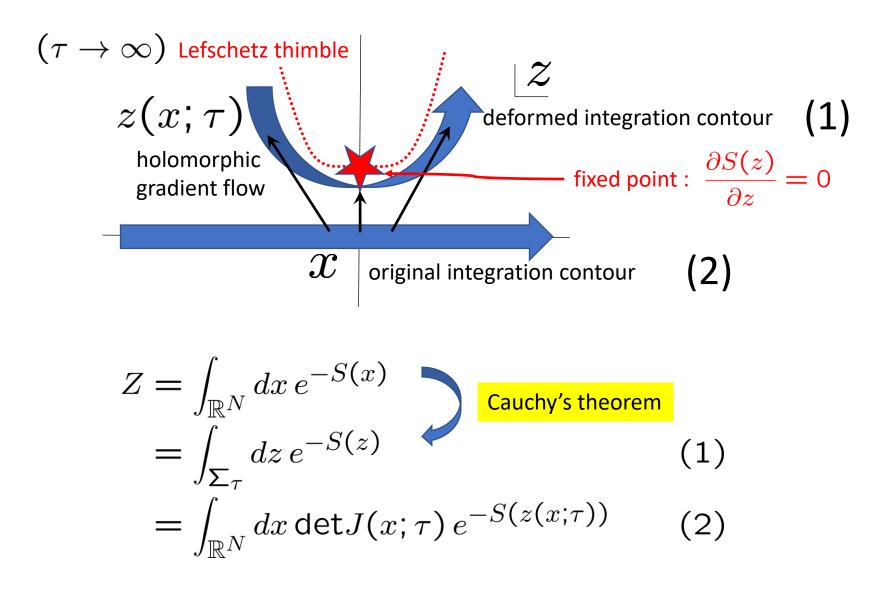
integrating over the flow time

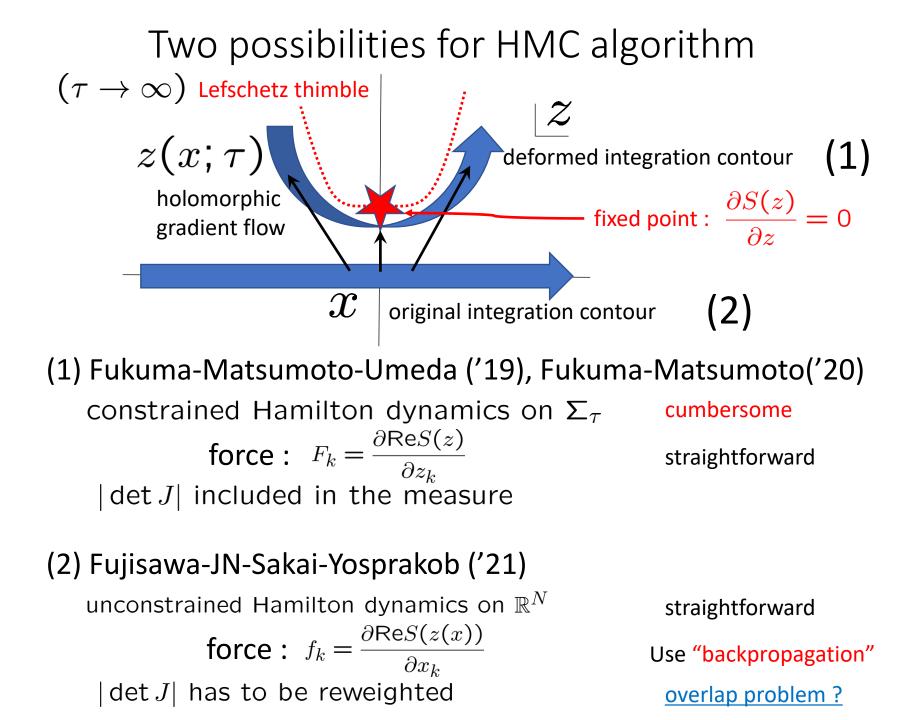
Fukuma-Matsumoto('20)

3. Backpropagating HMC algorithm

Fujisawa, JN, Sakai, Yosprakob, JHEP 04 (2022) 179 arXiv : 2112.10519 [hep-lat]

Two possibilities for HMC algorithm

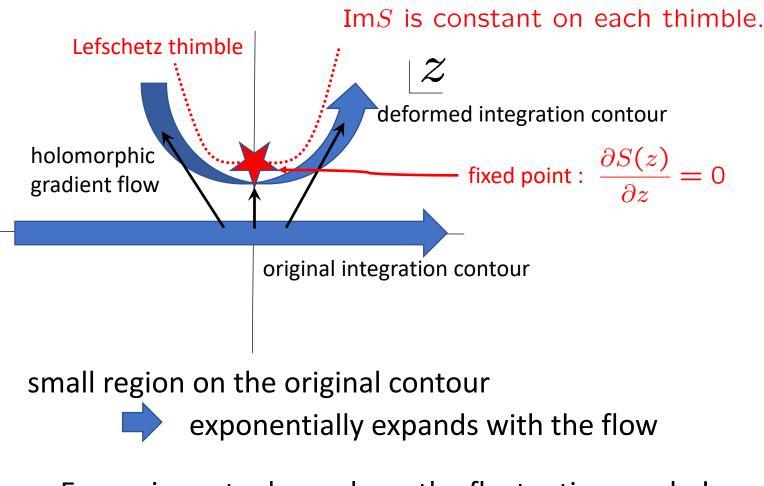




4. Optimizing the flow equation

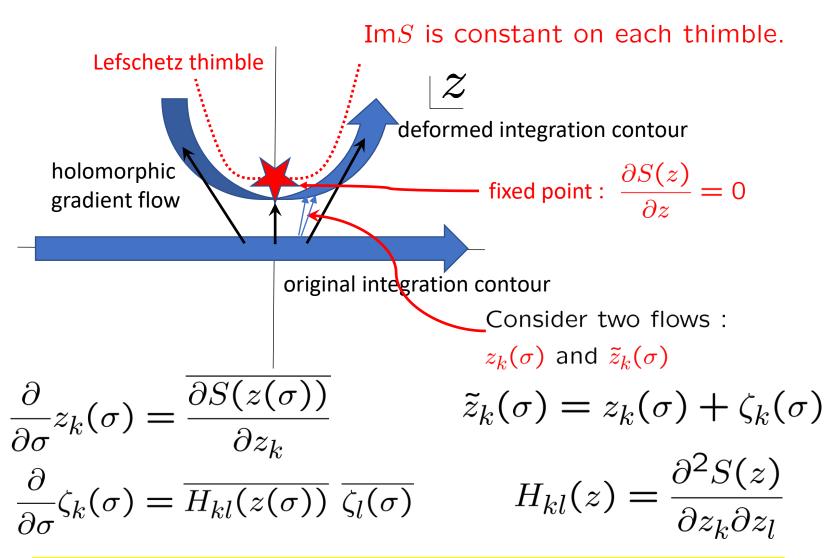
JN-Sakai-Yosprakob, in preparation

Diverging problem in flow eq.



Expansion rate depends on the fluctuation mode !

Expansion rate



expansion rate = singular values of H_{kl} (Hessian)

Singular value decomposition

general complex matrix A

$$A = U\Lambda V \qquad \qquad U, V : \text{ unitary}$$

$$\Lambda = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_N)$$

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$$

$$\frac{\partial}{\partial \sigma} \zeta_k(\sigma) = \overline{H_{kl}(z(\sigma))} \overline{\zeta_l(\sigma)} \qquad H = U^\top \wedge U$$
$$U \frac{\partial}{\partial \sigma} \zeta(\sigma) = \wedge \overline{U\zeta(\sigma)} \qquad \text{condition number}: \ \eta(H) = \frac{\lambda_1}{\lambda_N}$$

If the condition number is $\eta(H) \gg 1$, the expansion rates have a huge hierarchy !

In order to solve the sign problem,

$$au\gtrsim O\left(rac{1}{\lambda_N}
ight)$$

 $\lambda_1 \tau \gtrsim \frac{\lambda_1}{\lambda_N} \gg 1$ The flow diverges !

Optimizing the flow equation

flow eq.
$$\frac{\partial}{\partial \sigma} z_k(x; \sigma) = A_{kl} \frac{\partial S(z(x; \sigma))}{\partial z_l}$$

The crucial property of the flow eq. is maintained

$$\frac{d}{d\sigma}S(z(x;\sigma)) = \frac{\partial z_k(x;\sigma)}{\partial \sigma} \frac{\partial S(z(x;\sigma))}{\partial z_k}$$
$$= \frac{\overline{\partial S(z(x;\sigma))}}{\partial z_l} A_{kl} \frac{\partial S(z(x;\sigma))}{\partial z_k} \quad \text{real positive !}$$

if A is Hermitian with positive EVs.

$$A = V^{\dagger} \Omega V$$

$$\Omega = diag(\omega_1, \omega_2, \cdots, \omega_N)$$

$$\omega_k > 0$$

Optimal flow equation

$$\frac{\partial}{\partial \sigma} z_k(x; \sigma) = A_{kl} \frac{\overline{\partial S(z(x; \sigma))}}{\partial z_l}$$
 preconditioner
$$\tilde{z}_k(\sigma) = z_k(\sigma) + \zeta_k(\sigma)$$

$$\frac{\partial}{\partial \sigma} \zeta_k(\sigma) = A_{kl} \overline{H_{lm}(z(\sigma))} \overline{\zeta_m(\sigma)} \qquad H = U^\top \wedge U$$
$$\frac{\partial}{\partial \sigma} \zeta(\sigma) = A \overline{H} \overline{\zeta(\sigma)} \qquad A = V^\dagger \Omega V$$
$$= V^\dagger \Omega V U^\dagger \wedge \overline{U} \overline{\zeta(\sigma)}$$

Optimal choice for A : V = U $A = (\overline{H} \overline{H}^{\dagger})^{-1/2}$ $\Omega = \Lambda^{-1} = (H^{\dagger}H)^{-1/2}$

$$U\frac{\partial}{\partial\sigma}\zeta(\sigma) = \overline{U\zeta(\sigma)}$$

The expansion rates become **equal**.

5. Quantum tunneling in the real-time path integral

JN-Sakai-Yosprakob, work in progress

Time-evolution of the wave function

$$\Psi(x_{f}, t_{f}) = \int_{x(t_{f}) = x_{f}} \mathcal{D}x(t) \Psi(x(t_{i}), t_{i}) e^{iS[x(t)]}$$

$$S[x(t)] = \int dt \left\{ \frac{1}{2} m \left(\frac{dx}{dt} \right)^2 - V(x) \right\}$$

$$V(x) = \alpha (x^2 - 1)^2$$

$$\Psi(x, t_{\rm i}) = \exp\left\{-\frac{1}{4\sigma^2}(x-1)^2\right\}$$

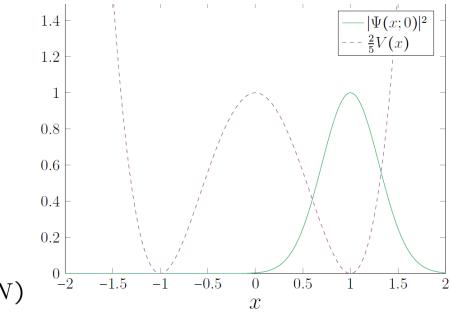
 $\alpha = 2.5 , \quad \sigma = 0.3$

Discretize the time as:

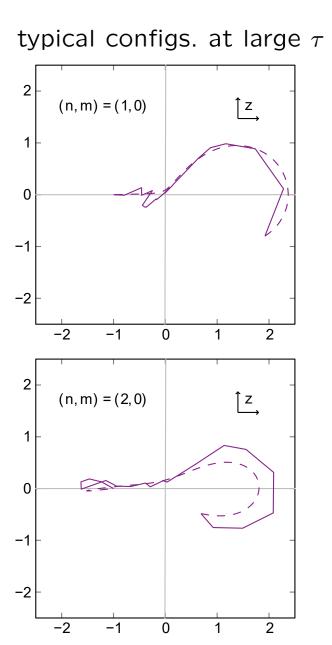
$$x_n = x(t_n)$$

$$t_n = \frac{n-1}{N}T \qquad (n = 1, \dots, N)$$

$$N = 20 , \quad T = 2$$



Results of GTM with the optimal flow



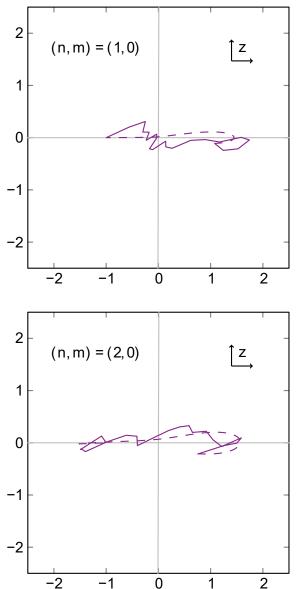
 $N_{\tau} = 10$, $0.2 < \tau < 4$ $t_{\rm HMC} = 1.0$, $N_{\rm HMC} = 10$ ensemble average ("weak value" of x(t)) $\langle x_{\mathsf{f}}|e^{-i\hat{H}(T-t)}\hat{x}e^{-i\hat{H}t}|\Psi_{\mathsf{i}}\rangle$ $\langle x_{\mathbf{f}}|e^{-i\hat{H}(T-t)}e^{-i\hat{H}t}|\Psi_{\mathbf{i}}\rangle$ [**⟨X** ⟩_{WM} agreement with C results obtained -1 by solving Schödinger eq. -2 -1 0 1 2

Quantum tunneling is represented by complex trajectories.

(But not the ones speculated by Koike-Tanizaki.)

Introducing momentum in the initial state

a typical config. at large au



 $\Psi(x,t_{\rm j}) = \exp\left\{-\frac{1}{4\sigma^2}(x-1)^2 + i\,p\,x\right\}$ ensemble average ("weak value" of x(t)) $\langle x_{\mathsf{f}}|e^{-i\hat{H}(T-t)}\hat{x}e^{-i\hat{H}t}|\Psi_{\mathsf{i}}\rangle$ $\langle x_{\mathbf{f}}|e^{-i\hat{H}(T-t)}e^{-i\hat{H}t}|\Psi_{\mathbf{i}}\rangle$ 2 **⟨***X*⟩_{₩Μ} 1 0 -1 -2 -2 -1 0 2 1 **Classical motion over the barrier**

becomes dominant.

 \rightarrow almost real trajectories

Relationship to the previous works

 Previous works considered the propagator. (fixed end points)

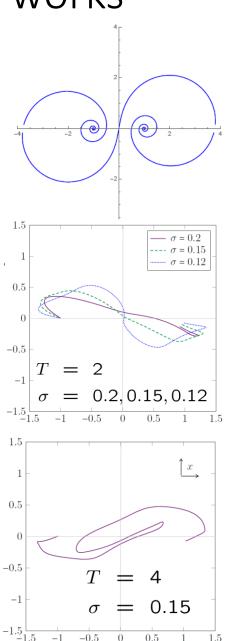
Koike-Tanizaki ('14), Cherman-Ünsal ('14)

We have introduced the initial wave function.

$$\Psi(x,t_{i}) = \exp\left\{-\frac{1}{4\sigma^{2}}(x-1)^{2}\right\}$$

As σ decreases, the weak value of x(t)shows spiral behaviors.

- In the long-time limit,
 - → singular trajectories
 (analytic continuation of instantons)



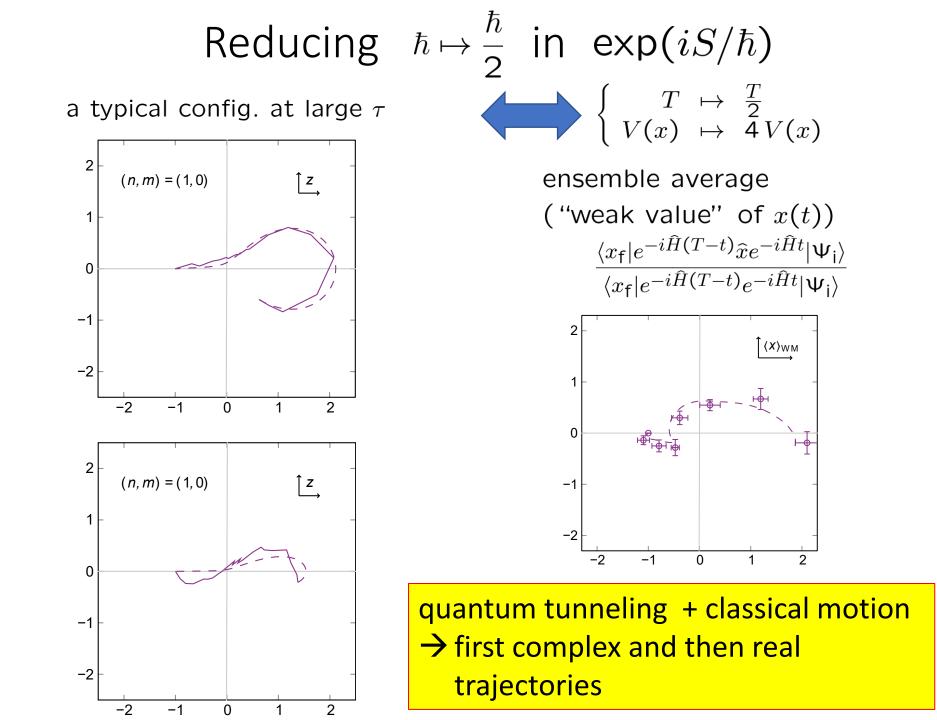
6. Summary and Discussions

Summary and discussions

- Quantum tunneling in the real-time path integral important applications in QFT, quantum cosmology etc..
- Unlike the previous work, we performed explicit MC calculations based on the Lefschetz thimble method.
- By introducing the initial wave function, we found :
 Complex trajectories are responsible for quantum tunneling.
 Introducing momentum makes the trajectories closer to real.
- HMC on the real axis (v.s. HMC on the deformed contour)
 - Calculation of the force by backpropagation is a breakthrough.
 - Optimizing the flow eq. is also important. No overlap problem due to reweighting [det J]

Useful for studying various systems with the sign problem. (finite density QCD, IKKT matrix model,...)

Backup slides



Good effects of the optimized flow on the Jacobian

$$J_{kl}(x;\tau) \equiv \frac{\partial}{\partial x_l} z_k(x;\tau)$$
$$\frac{\partial}{\partial \sigma} z_k(x;\sigma) = \frac{\overline{\partial S(z(x;\sigma))}}{\partial z_k}$$

flow eq. for the Jacobian :

$$\frac{\partial}{\partial \sigma} J_{kl}(x;\sigma) = \frac{\partial}{\frac{\partial Z_{kl}}{\partial z_{k}}} \frac{\overline{\partial S(z(x;\sigma))}}{\partial z_{k}}}{\frac{\partial^{2} S(z(x;\sigma))}{\partial z_{k} \partial z_{m}}} \frac{\partial}{\partial z_{l}} z_{m}(x;\sigma)}{\frac{\partial Z_{k}}{\partial z_{k} \partial z_{m}}} \frac{\partial}{\partial z_{k}} z_{m}(x;\sigma)}$$

$$H_{kl}(z) = \frac{\partial^2 S(z)}{\partial z_k \partial z_l}$$

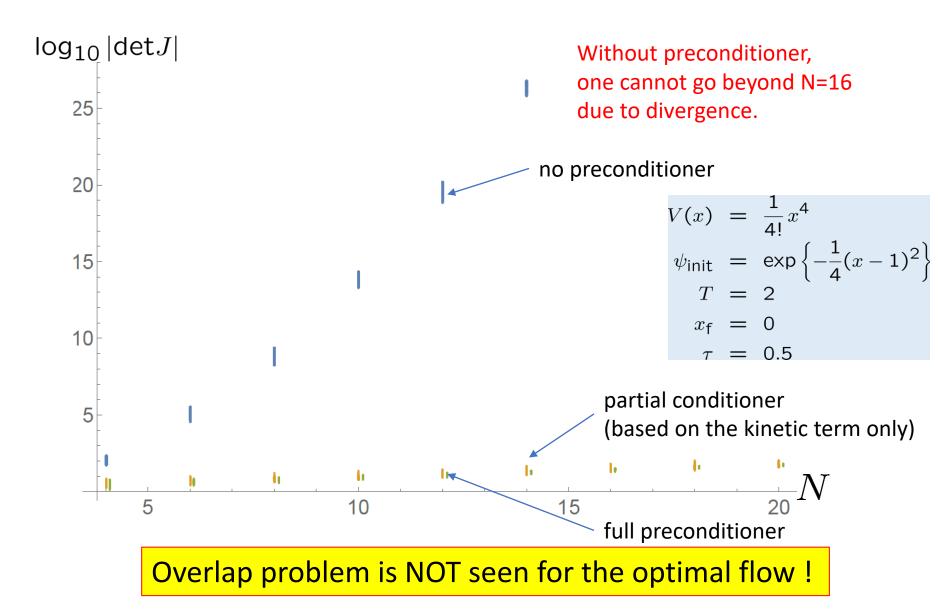
$$\frac{\partial}{\partial \sigma} z_k(x;\sigma) = A_{kl} \frac{\partial S(z(x;\sigma))}{\partial z_l}$$
$$A = (\overline{H} \, \overline{H}^{\dagger})^{-1/2}$$
$$= (H^{\dagger} H)^{-1/2}$$

$$\frac{\partial}{\partial \sigma} J_{kl}(x;\sigma) = \frac{\partial}{\partial x_l} A_{kp} \frac{\overline{\partial S(z(x;\sigma))}}{\partial z_p} \\ \sim A_{kp} \overline{H_{pm}(x;\sigma) J_{ml}(x;\sigma)}$$

$$U\frac{\partial}{\partial\sigma}J(x;\sigma)\sim\overline{UJ((x;\sigma))}$$

Rapid growth of |det J| is avoided.

Results from applications to real-time evolution in quantum mechanics



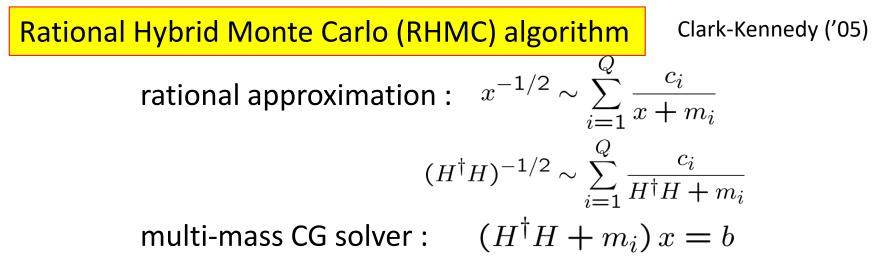
How to deal with the preconditioner

Optimal choice for A :
$$A = (\overline{H} \overline{H}^{\dagger})^{-1/2}$$

= $(H^{\dagger} H)^{-1/2}$

strange quark

We use a well-known technique for simulating QCD with (2+1)-flavor. $|\det D_{\mathsf{S}}| = \det(D_{\mathsf{S}}^{\dagger}D_{\mathsf{S}})^{1/2} = \int dF d\bar{F} e^{-\bar{F}(D_{\mathsf{S}}^{\dagger}D_{\mathsf{S}})^{-1/2}F}$



Need to solve this only for the smallest m_i .

The numerical cost for the optimal flow eq. is still O(N) !

Summary and discussions

- Quantum tunneling in the real-time path integral important applications in QFT, quantum cosmology etc..
- Unlike the previous work, we performed explicit MC calculations based on the Lefschetz thimble method.
- By introducing the initial wave function, we found :
 - Complex trajectories are responsible for quantum tunneling.
 - Introducing momentum makes the trajectories closer to real.
 - > Reducing \hbar leads to (complex + real) trajectories.
- HMC on the real axis (v.s. HMC on the deformed contour)
 - > Calculation of the force by backpropagation is a breakthrough.
 - > Optimizing the flow eq. is also important.

No overlap problem due to reweighting |det J|

Useful for various systems with the sign problem. (finite density QCD, IKKT matrix model,...)