Double Beta Decay Experiments - Focusing on AMoRE project

Yeongduk Kim Institute for Basic Science

2021.9.7.

Corfu, "Workshop on the Standard Model and Beyond"

I will talk about

- 1. Motivation of Neutrinoless DBD
- 2. Current status & Comparisons
- 3. Status of AMoRE experiment

Status of Neutrino mixing & oscillation

- Mass Ordering ?
- Mass limits from single beta decay
- Are neutrinos and antineutrinos the same particles ?
- Mass limits from $0\nu\beta\beta$ experiments.
- Neutrino mass from cosmology observation
- Are there sterile neutrinos ?

Updates for mass ordering in 2020

Esteban et al., JHEP09 2020, 178

- The best fit remains for the normal mass ordering, however, with reduced significance.
- Without SK-atm, inverted ordering is disfavored only with Δχ² = 2.7(1.6σ) to be compared with Δχ² = 6.2(2.5σ) in 2019.
- This change is driven by the new LBL results from T2K and NOvA.
 - For experimentalists, we need to assume Normal Ordering.

Eligio Lisi @ Neutel 2021

Cosmo data can add from ~0 to ~0.7 σ to the ~2.7 σ oscillation preference for NO

 \rightarrow overall ~ 2.7–3.4 σ hint for NO vs IO

Motivation of $0\nu\beta\beta$ - Most promising BSM Physics !

SM has only left(right)-handed massless (anti)neutrinos.

Dirac Neutrino Masses

$$L_D = -m_D(\overline{\mathbf{v}_R}\mathbf{v}_L + \overline{\mathbf{v}_L}\mathbf{v}_R)$$

• Lepton *# is conserved*.

 y^{ν} : Yukawa Coupling ~ 10^{-12}

• Higgs mechanism needs right-handed neutrinos, v_R .

Majorana Masses

- "right-handed Majorana mass term" can be ; $L_R = -m_R/2[\overline{(\nu_R)^c}\nu_R + \overline{\nu_R}(\nu_R)^c]$
- $(\nu)^c = \nu \rightarrow$ Majorana particle (No L# is needed)
- See-Saw Mechanism gives two Majorana mass eigenstates,

$$m_1 \simeq \frac{m_D^2}{m_R}$$
$$m_2 \simeq m_R$$

How to test if neutrinos are Majorana particles ?

 1939, Furry already suggested to search 0vββ to check Majorana's theory. Furry PR56, 1184(1939) • $T_{1/2}$ of $0\nu\beta\beta$ decay are inversely proportional to effective $0\nu\beta\beta$ neutrino mass, $m_{\beta\beta}$, which is a function of neutrino masses, mixing angles, and Majorana phases.

for light neutrino exchange model.

effective $0\nu\beta\beta$ neutrino mass is ;

$$m_{\beta\beta} = \left| \sum_{k=1}^{3} U_{ek}^{2} m_{k} \right| = \left| c_{13}^{2} c_{12}^{2} e^{2i\eta_{1}} m_{1} + c_{13}^{2} s_{12}^{2} e^{2i\eta_{2}} m_{2} + s_{13}^{2} e^{-2i\delta} m_{3} \right|$$

$$T_{1/2}^{0\nu} \rightarrow m_{\beta\beta}$$

for light neutrino exchange model.

Towards Majorana phases

$0\nu\beta\beta$ vs sterile neutrinos

- $0\nu\beta\beta$ limits can be converted to limits for heavy sterile neutrino mixing with electron neutrinos. (only for Majorana neutrino case)
- It is more severe than the direct beta decay limits.

In summary, $0\nu\beta\beta$ will

• confirm

- Neutrinos are Majorana particles and have Majorana masses.
- Lepton number non-conservation.

support on

- See-Saw model of the neutrino mass.
- Leptogenesis to account for the baryon asymmetry of the universe.

Best isotope for experiment ?

0νββ vs 2νββ T(1/2)

- Many isotopes are used for $0\nu\beta\beta$ searches.
- A correlation between $2\nu\beta\beta$ half-life(measured) vs $0\nu\beta\beta$ half-life calculated with various models for inverted mass ordering(20-49 meV).

Now, how sensitive are the 0νββ experiments ?

- $0\nu\beta\beta$ needs a good energy resolution and extremely low backgrounds.
- Sensitivities on the half-life depends on background and exposure

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{MT}{b\Delta E}}$$
 (for finite backgrounds)

Signal : sharp peak @ Q-value

Background Unit : ckky=counts/(keV kg year)

Future experiments

LEGEND-200

+ LEGEND-1000

+ KamLAND2-Zen

CUPID

CUPID pre-CDR arXiv:1907.09376 upgrade to CDR ongoing

 Single module: Li₂¹⁰⁰MoO₄ 45×45x45 mm - ~ 280 g
 57 towers of 14 floors with 2 crystals each - 1596 crystals ... ~240 kg of ¹⁰⁰Mo with >95% enrichment ~1.6×10²⁷ ¹⁰⁰Mo atoms · No reflecting foil Ge light detector as in CUPID-Mo, CUPID-0 **Baseline design** Gravity stacked structure Crystals thermally interconnected Tests ongoing Alternative design Crystals thermally independent No Cu holder for light detectors

nEXO

Charge collection tiles at anode

Photon detectors (SiPMs) on walls

High voltage field cage

Cathode

Comparison with other experiments.

- AMoRE-II is comparable to CUPID, LEGEND-200, KamLAND2-ZEN.
- IBS(CUP) has a MOU with INFN(Gran Sasso) to collaborate between AMoR E and CUPID.

Recent Limits & Persepectives

Principle of AMoRE Detector

• Use Mo containing Scintillating Bolometer : (⁴⁰Ca,X)¹⁰⁰MoO₄ + MMC

22

• For Each crystal, phonon and photon sensors made of MMCs+SQUIDs to separate alphas (background) and betas (signal). Highly Technical !

Real AMoRE Detector

Additionnally detect lights from scintillating crystal → can remove continuous alpha backgrounds.

<u>23</u>

Plan of AMoRE Project

Phases	AMoRE-Pilot	AMoRE-I	AMoRE-II						
Detector Setup (Not in scale)									
Crystals	⁴⁰ Ca ¹⁰⁰ MoO ₄ (CMO)	(⁴⁰ Ca,Li ₂) ¹⁰⁰ MoO ₄	Li ₂ ¹⁰⁰ MoO ₄ (LMO)						
Crystal # & Mass	6, 1.9kg	18, 6.2kg	596, 178kg						
Background Goal(ckky)	10-1	<10-2	<10-4						
T _{1/2} (year)	1.0×10^{23}	7.0×10^{24}	8.0x10 ²⁶						
$m_{\beta\beta}$ (meV)	1200-2100	140-270	13-25						
Location/Schedule	Y2L / 2015-2018	Y2L / 2020-2022	Yemilab / 2022-2027						

AMoRE-I

- AMoRE-I run began Aug. 2020 @ Y2L
- Purpose :
 - Check detector performance (LMO)
 - Understand background better.
- Same cryostat as pilot. 18 crystals.

AMoRE-II status

- Tested larger crystal to reduce channel numbers for bigger experiment.
- Preliminary 6cm(D)x6cm(H) crystal result is promising.

Expectation of AMoRE-II Backgrounds

1. All materials inside Pb shielding are measured by ICP-MS and(or) HPGe.

- 2. All outside sources are estimated by measurements and Geant4 simulation.
- 3. Muon induced backgrounds are simulated with the expected muon flux.
- 4. Projected total background level is $4.9(5)x10^{-5}$ ckky and $< 2x10^{-4}$ ckky for a limiting values.

Discovery Sensitivities

Discovery sensitivity :

28

The half-life for which an experiment has a 50% chance to measure a signal above background with a significance of at least 3 sigma (99.7%). $4x10^{26}$ years

Detection efficiency : 0.7, Background normalized to isotope mass

AMoRE-II @ Yemilab

Construction is going on..

AMoRE-II refrigerator

- Big and powerful dilution Refrigerator
- Three PTR (PT420 RM)
- 2.4 mW @ 120 mK,
- > 5 μ W @ 10 mK
- Delivered to IBS in Aug. 2020.

Future

- It should be more clear when we have first data of AMoRE-II with 90 crystals.
- Modular expansion is possible, increasing # of detectors.
- After AMoRE-II, ton scale experiment can be considered. \sim CUPID 1ton.
- Can we try to do research about possibility to enrich Mo-100?
- CUPID & AMoRE discuss to collaborate for future combination.

Summary

- $0\nu\beta\beta$ is one of the best probe for BSM physics.
- Experimentally will reach IO region ~ 2030, and will continue to lower the sensitivities.
- AMoRE experiment aims to be sensitive close to 10²⁷ year range for ¹⁰⁰Mo isotope and will be installed by end of 2022.
- Other experiments, LEGEND, CUPID, nEXO are actively pursued.
- $0\nu\beta\beta$ should be pursued for multiple isotopes.
- $0\nu\beta\beta$ can be discovered at anytime with new sensitivities.

Cosmological constraints

Dell'Oro et al., JCAP 12 (2015) 023

- $\Sigma < 84 \,\mathrm{meV}$ (1 σ C. L.)
- $\Sigma < 146 \,\mathrm{meV}$ (2 σ C. L.)
- $\Sigma < 208 \,\mathrm{meV}$ (3 σ C. L.)

Pileup background estimation

- A realistic estimation assuming real spectra and noise data from AMoRE-pilot
- □ Crystal size is important pile up event rate is proportional to square of single rates.
- □ 6cm crystal is acceptable.

Compare with CUPID-Mo

Schedule

- Construct AMoRE-II until Dec. 2021, and Upgrade to 100 kg of ¹⁰⁰Mo by 2023.
- Crystal growing takes time.

		_							_												_										_							
		2021				2022									2023								2024															
Item	Description	Q,	2	Q	3		Q	4		Q	1		Q2	2		Q3	ļ.		Q4	Ļ		Q1	L		Q2		(Q3		1	Q4			Q1			Q2	
		6	7	8	9	10	0 1	1 12	1	2	2 3	4	4 5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
	LSC excavationn						✦	-																														
Shielding	Clean room				->	•																																
Shielding	Install Shielding				+																																	
	Install muon vetos			-																																		
	Manufacture	+																																				
DR	Test @ HQ			-	-	÷	-		÷	→	•																											
DR	Install @ Yemi										-																											
	Install SSS & inner pb											F	\rightarrow	•																_								
	Crystal Production				-	t	+		F			t			÷						H								-	=		►					_	
	MMC & SQUID sensors				-		-	-	÷	+	+	÷									H								►	_								
_	Module assembly				_		_		t	+	->																_	_							_	_	_	_
Detector	Tower Assembly	_							1	-	+															_									_	_		_
Detector	Install Towers & Super. Shiled	1		1	_		_			_		t	-	·									_			_	_	_							_	_	_	_
	Closing & Run											\perp			i-						i			i			>			_	_					_	_	_
	Update to Full scale					_						\perp																				>						_
	Run Full AMoRE-II																																_				_	>
										_																												
	Pavement				_		_			_			_														_	_								_	_	_
		1																																				

<u>37</u>

Q value vs backgrounds

Energy [keV]

Current best results for 0vββ

2021.4.10

Nucl.	Q (keV)	Abun. (%)	$\begin{array}{c} T_{1/2}^{2\nu} \\ (10^{20} \mathrm{Y}) \end{array}$	Exp	$\begin{array}{c} T_{1/2}^{0\nu} \\ (10^{24} \mathrm{Y}) \end{array}$	M (eV)	Ref.
⁴⁸ Ca	4270.0	0.187	0.53(0.1)	CANDLES	> 0.058	<3.1-15.4	PRC 78 058501 (2008)
⁷⁶ Ge	2039.1	7.8	18.8(0.8)	GERDA-II	>180	<0.079-0.18	PRL125, 252502 (2020)
⁸² Se	2997.9	9.2	0.93(0.05)	CUPID-0	> 2.4	<0.38-0.77	PRL120, 232502 (2018)
¹⁰⁰ Mo	3034.4	9.6	0.0688(0.0025)	CUPID-Mo	>1.5	<0.3-0.5	arXiv:2011.13243(2020)
¹¹⁶ Cd	2813.4	7.6	0.269(0.009)	AURORA	> 0.19	<1-1.8	nulc-ex/1601.05578.
¹³⁰ Te	2527.5	34.5	7.91(0.21)	CUORE	> 32	<0.08-0.35	PRL124, 122501 (2020)
¹³⁶ Xe	2458.0	8.9	21.8(0.5)	KamLAND-Zen	> 107	<0.06-0.16	PRL117, 082503 (2016)
¹⁵⁰ Nd	3371.4	5.6	0.0934(0.0065)	NEMO-3	> 0.02	<1.6-5.3	PRD 94 072003 (2016)

Bolometer, Scintillation, Ionization

Detector Techniques for 0vββ

Similar techniques are used as direct dark matter experiments

Discovery potential for 0νββ

"Discovery probabilities of Majorana neutrinos based on cosmological data",

M. Agostini et al. PRD 103 (2021) 3, 033008

Experiments with sensitivities of the order of 10 meV \rightarrow discovery power bet ween 20 and 80%.

- 1. We'll learn that m_3 is the heaviest and $\theta_{23} > 45^{\circ}$.
- 2. Cosmological measurements of the sum of neutrino masses w
- ill have interesting upper and non-zero lower limits.
- 3. The value of δ_{CP} will not be zero or π .
- 4. The MiniBooNE low E excess will be explained.
- 5. The LSND excess will not be explained.
- 6. DUNE will mostly be on time.
- 7. $0\nu\beta\beta$ limits will improve but there will not be a signal.
- 8. At least one of these predictions will be wrong.

- Murray Goodman –

In "Long-Baseline Neutrino Oscillation Newsletters"

Review

• If total background in ROI <1, the sensitivity is

 $S_{0\nu} \propto MT,$ Background = $MT(\Delta E)B < 1 \rightarrow MT < \frac{1}{(\Delta E)B}$: Exposure for "0" background.

Exp	(ΔE) (keV)	B (ckty)	MT (t y)	T1/2(year)
LEGEND-200	3	2x10-1	1.7	~5x10 ²⁷
KAMLamd2-Zen	200	0.01	0.5	$\sim 2x10^{27}$
CUPID	5	0.1	2	~10 ²⁷
nEXO	25	1.4x10 ⁻²	3	~10 ²⁸
AMoRE	10	0.1	1	$\sim 8 \times 10^{26}$

Low temperature MMC sensor

• All fabrication can be done at CUP, IBS

Total = 157 (Au:Er one sided + Au:Er both sided + test pattern(33))

AMoRE-II Crystal Decision

45

H.J. Kim et al., Crystal Research & Technology, Nov. 2019

- LMO has light output smaller than CMO by a factor larger than 10.
- But, DP is similar between these two crystals.
- LMO crystal is chosen for AMoRE-II
- Crystal growing is easier

Crystals		Scinti	illation		Mech	nanical	The	ermal	Pro
	λ_{em} (nm)	Eg (eV)	τ (μs) @10K	E _{scin} (Rel.)	Dens. (g/cc)	Mo Fraction	Т _D (К)	T _M (C)	Con
CMO (CARAT)	540	3.78[1]	240	100	4.32	0.49	446	1445	High light out High melt T, difficult growing, high bkg, 48Ca
NMO-I (NIIC)	663	3.50	750	9	3.62	0.558			Good light out Cleavage plane
LMO (CUP)	535	4.26.[2]	23	5	3.03	0.562	765	705	Low melt. T, easy growing, low bkg, high T _D Low light, hygroscopic
PbMoO ₄	592	3.20[4]	20	105	6.95	0.269			High light out Low Mo fraction, higher bkg

Transparent front view of dry & radon clean room

Near future experiments

Evolution of KamLAND-Zen

Future

August 5, 2020

Dirac Masses

Balantekin, Ann.Rev.Nucl.Part.Sci. 68 (2018) 313

- Standard model (SM) has only left-handed neutrinos and righthanded antineutrinos.
- Lepton $#: L(\nu) = 1, L(\overline{\nu}) = -1 \rightarrow L$ is conserved.
- A Dirac neutrino mass can be generated with the same Higgs mechanism giving masses to quarks and charged leptons.
- Need to extend SM to add right-handed neutrinos, v_R .

No explanation why Higgs-neutrino Yukawa coupling is so small.

Majorana Masses

• Once a right-handed neutrino, v_R , is introduced, "right-handed Majorana mass term can be ;

$$L_{R} = -m_{R}/2 \overline{[(\nu_{R})^{c}}\nu_{R} + \overline{\nu_{R}}(\nu_{R})^{c}]$$

If $\nu \equiv \nu_{R} + (\nu_{R})^{c}$, $L_{R} = -(m_{R}/2)\overline{\nu}\nu + h.c.$
Here, $(\nu)^{c} = \nu \rightarrow$ Majorana particle
 $\mathcal{L}_{R} = -\frac{m_{R}}{2} \overline{(\nu_{R})^{c}}\nu_{R} + h.c.$,
See-Saw Mechanis

• If we add both Dirac and Majorana mass terms, two mass eigenstates are obtained. Both are Majorana particles.

$$m_{1} \simeq \frac{m_{D}^{2}}{m_{R}} \qquad For, m_{D} = m_{\mu} = 10^{2} MeV$$

$$m_{1} \simeq m_{R} \qquad m_{1} = 0.1 \ eV$$

$$m_{2} \simeq m_{R} \qquad \rightarrow m_{R} = 10^{8} \ GeV$$