

Centre National pour la Recherche Scientifique et Technique

Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Yassine El Ghazali (Ibn-Tofail University in Kenitra) On behalf of the ATLAS collaboration

Workshops on Elementary Particle Physics and Gravity, Corfu, Greece

August 30, 2021

Introduction

- Di-boson searches are highly motivated and have been proven fruitful in the past (Higgs discovery)
- Many theories predict di-boson resonances with different properties(charge, spin, width, production mechanism) such as:
 - Extended Higgs/Gauge sectors, Quantum Gravity ...

Three Benchmark Models

- Spin 0 Randall-Sundrum Radion
- Spin 1 HVT (W', Z')
- Spin 2 RS Graviton

Model		Spin	m = 8	00 GeV m =		= 3 TeV			
	WIOUCI		Spin	σ [pb]	$\mathcal B$	Γ/m	σ [fb]	В	Γ/m
RS rad	ion $(k\pi r_c = 35,$	$R \rightarrow WW$	0	0.54 (ggF)	0.43	2 6 × 10-3	1.38 (ggF)	0.44	0.022
Λ	R = 3 TeV)	$R \rightarrow ZZ$		1.1×10^{-3} (VBF)	0.21	2.0 × 10 *	5.5×10^{-3} (VBF)	0.22	0.052
	Model A	$W' \rightarrow WZ$		53	0.024	0.026	79	0.020	0.025
	MOUGIA	$Z' \to WW$		26	0.023	0.020	36	0.020	0.025
HVT	Model B	$W' \rightarrow WZ$	1	1.6	0.43	0.040	5.5	0.47	0.031
11 (1	Model D	$Z' \rightarrow WW$	1	0.86	0.41	0.040	2.5	0.47	0.051
	Model C	$W' \rightarrow WZ$		4.0×10^{-3}	0.50	3.5×10^{-3}	1.6×10^{-3}	0.50	3.3×10^{-3}
	(VBF)	$Z' \rightarrow WW$		2.7×10^{-3}	0.49	J.J × 10	1.0×10^{-3}	0.50	J.J × 10
Bu	ilk RS G _{KK}	$G_{\rm KK} \rightarrow WW$	2	1.9 (ggF)	0.28	0.037	0.47 (ggF)	0.20	0.062
(k)	$\overline{M}_{\rm Pl} = 1.0$)	$G_{\rm KK} \rightarrow ZZ$	2	0.050 (VBF)	0.14	0.037	$1.6 \times 10^{-2} \text{ (VBF)}$	0.10	0.002

 Search for new particles that decay into pairs of W/Z bosons in semileptonic channel Leptonic decays
Hadronic decays

-Cleaner signature -perform better at low masses Hadronic decays -Large branching ratio -perform better at high masses where SM background fall off

Different production modes:

ggF/DY and VBF

Analysis overview

Search strategy: look for excesses above the background in the reconstructed m(VV) or mT distribution New ideas: TCCs Large-R jets, ML-based ggF/VBF classification...

This talk covers results from Full Run 2 (139 /fb) data with three lepton channels

Object definition

• Leptons, jets and $ec{E}_{ ext{T}}^{ ext{miss}}$ are the basic objects for this analysis

leptons

Small-R jets

	Loose	Tight	
рТ	> 7 GeV	> 30 GeV	
η	< 2.47 (2.5) for e(µ)		
ID	Loose	Tight	
isolation	FCLoose at pT <100GeV	FixedCutHighPt CaloOnly	
d0(o)	<5 (3) for e(µ)		
Z0sin(θ)	< 0.5 mm		

 $ec{E}_{\mathrm{T}}^{\mathrm{miss}}$ is the negative vectorial sum of the transverse momenta o calibrated electrons, muons, small-R jets, and unassociated tracks

	Signal	VBF	
Collection	AntiKt EMTopo R=0.4		
η	< 2.5	< 4.5	
рТ	> 30 GeV		
JVT	0.59 for pT < 120 GeV, $ \eta $ < 2.5		

Large-R jet

	Collection	AntiKt TCC R=1.0		
	η	< 2.0		
זכ	рТ	> 200 GeV		
	mass	> 50 GeV 4		

Event selection and Categorization

W/Z tagging in TCC jet

- Highly boosted hadronic W/Z decays have small angular separation between the outgoing subjets
- Track information can improve both mass and substructure resolutions
- TrackCaloClusters used instead of LCTopo for Large-R jet reconstruction
 - Support of ID tracks gives better D2 resolution

• D2 is reconstructed by the energy correlation functions based on energies and pair-wise angles of the sub-constituents

$$D_{2}^{(\beta=1)} = E_{CF3} \left(\frac{E_{CF1}}{E_{CF2}}\right)^{3} \text{ Where } E_{CF1} = \sum_{i} p_{T,i} \qquad E_{CF2} = \sum_{ij} p_{T,i} p_{T,j} \Delta R_{ij} \Delta R_{ij} \Delta R_{ki}$$
$$E_{CF3} = \sum_{ijk} p_{T,i} p_{T,j} p_{T,k} \Delta R_{ij} \Delta R_{jk} \Delta R_{ki}$$

30% of improvement in signal sensitivity for m(VV) > 3 TeV

VBF/ggF Categorization using RNN

- RNN is an architecture able to solve problem in which the inputs are a recurrent sequence of information
- Use a RNN with jet 4-momenta (pT, E, η , ϕ) as inputs
- ggF(DY) vs VBF signal training
- Exclude jets from hadronic boson candidate decay
- With up-to 2 jets used for training

- Events with score > 0.8 are categorized into VBF category
- ~50% sensitivity improvement for VBF signal

Background modeling

- Background processes
 - \circ $\,$ W/Z +jets: W/Z production in association with jets $\,$
 - Top quark: both top-quark pair (ttbar) and single-top quark
 - Diboson: Non resonant diboson production (WW/WZ/ZZ)
 - Multijet: Non resonant QCD multijet production
- W/Z+jets and ttbar use data from CRs to constraint normalization

Bkg process	Modeling	CR
W/Z+jets	Sherpa	~
ttbar	Powheg+Pythia8	~
Single top	Powheg+Pythia8	
Diboson	Sherpa	
Multijet	Data-driven	

In 1 lepton channel, MJ contribution is estimated using a data-driven method which derives the shape of MET distributions of MJ contribution from MJ-enriched region The normalization is derived from fit on MET in the target SR/CRs

MJ contribution is estimated to be 5%

Signal Acceptance × Efficiency

 W/Z boson from V' and Gkk decays tend to be produced in the barrel (endcap) region for ggF/DY(VBF)

m(VV) spectra

- V+jets is dominant background in most regions
- Transverse mass is used instead of invariant mass in 0-lepton channel

$$m_{\rm T} = \sqrt{(p_{\rm T}^J + E_{\rm T}^{\rm miss})^2 - (\vec{p}_{\rm T}^J + \vec{E}_{\rm T}^{\rm miss})^2}$$

Results

- No significant excess observed
- Limits have been set on benchmark models for each production mode

Summary

- Search for diboson resonance has been performed using full Run 2 data (139/fb)
- Several new ideas have been employed (TCC, ML-based ggF/VBF categorization)
- No significant excess observed
- Limits set on several benchmark models

Current results Eur. Phys. J. C (2020) 80:1165

		-			
Production	RS radion	HVT			PS graviton
process	KS faulon		W'	Z'	K5 graviton
agE/DV	32(20)	Model A	3.9 (3.8)	3.5 (3.4)	20(22)
ggr/D1	5.2 (2.9)	Model B	4.3 (4.0)	3.9 (3.7)	2.0 (2.2)
VBF		Model C			0.76 (0.77)

Observed (expected) 95% CL lower limits on the mass in TeV

Previous 36/fb results JHEP 03 (2018) 042

	WW S	Selection			
Excluded	Н	RS G _{KK}			
Masses	Model A	Model B	$k/\bar{M}_{\rm Pl} = 1.0$		
Observed	<2750 GeV	<3000 GeV	<1750 GeV		
Expected	<2850 GeV	<3150 GeV	<1750 GeV		
	WZ S	election			
Excluded HVT					
Masses	Model A	Model B			
Observed	<2800 GeV	<3000 GeV			
Expected	<2900 GeV	<3200 GeV			

Using new techniques and more data improved the cross-section upper limits of a factor of three or more w.r.t. 36/fb results

Thank you for your attention

Backup

TrackCaloCluster (TCC)

ATL-PHYS-PUB-2017-015

ര

2

SOLENOID

Ø

(5)

- Take advantage of the tracking detector in jet reconstruction
- Combine track and calorimeter information on jet reconstruction
- Improvement on mass resolution at high pT
- Significant improvement jet substructure resolution (D2)
 - Good separation between two body decays and QCD jets

Postfit SR/CR yields

- Fit on invariant (transverse) mass on 1,2 (0) lepton channel
- 21 SR and 21 one-bin CRs

m(VV) spectra (0-lepton channel)

m(VV) spectra (1-lepton channel)

m(VV) spectra (2-lepton channel)

Observed limits

20

Observed limits

