PHENOMENOLOGY OFTHE SUPER-WEAK U(I) EXTENSION OFTHE STANDARD MODEL

 Zoltán TrócsányiEötvös University and MTA-DE Particle Physics Research Group based on arXiv: I8I2.II 189 (Symmetry), I9 I I. 07082 (PRD), 2 I04.I I 248 (JCAP), 2I04.I457I (PRD), 2 I 05 .I 3360 with S. Iwamoto,T.J. Kärkkäinen, Z. Péli, K. Seller

Corfu-202I,Workshop on the Standard Model and Beyond Corfu, 5 September 2021

OUTLINE

1. Status of particle physics
2. Super-weak $U(1)_{z}$ extension of $S M$
3. Neutrino masses
4. Dark matter candidate
5. Neutrino benchmarks
6. Conclusions

Status of particle physics: energy frontier

- LEP, LHC: SM describes final states of particle collisions precisely

[talk by Kordas]

Status of particle physics: energy frontier

- LEP, LHC: SM describes final states of particle collisions precisely [talk by Kordas]
- No proven sign of new physics beyond SM at colliders*
[ATLAS and CMS highlights]

Status of particle physics: energy frontier

- LEP, LHC: SM describes final states of particle collisions precisely [talk by Kordas]
- No proven sign of new physics beyond SM at colliders*
[ATLAS and CMS highlights]
- SM vacuum is metastable
[Bezrukov et al, arXiv:1205.2893; Degrassi et al, arXiv:1205.6497]
*There are some indications below discovery significance (such as lepton
flavor non-universality in meson decays)
[talk by Pepe-Altarelli]

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: \wedge CDM ($\Omega_{\mathrm{m}}=0.3$)

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: \wedge CDM ($\Omega_{\mathrm{m}}=0.3$)
- Neutrino flavours oscillate

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: \wedge CDM ($\Omega_{\mathrm{m}}=0.3$)
- Neutrino flavours oscillate
- Existing baryon asymmetry cannot be explained by CP asymmetry in SM

Status of particle physics: cosmic and intensity frontiers

- Universe at large scale described precisely by cosmological SM: \wedge CDM ($\Omega_{\mathrm{m}}=0.3$)
- Neutrino flavours oscillate
- Existing baryon asymmetry cannot be explained by CP asymmetry in SM
- Inflation of the early, accelerated expansion of the present Universe
[https://pdg.lbl.gov]

Extension of SM

- Neutrinos must play a key role in the quest for BSM theory with non-zero masses they must feel another force apart from the weak one, such as Yukawa coupling to a scalar, which requires the existence of right-handed neutrinos

Extension of SM

- Neutrinos must play a key role in the quest for BSM theory with non-zero masses they must feel another force apart from the weak one, such as Yukawa coupling to a scalar, which requires the existence of right-handed neutrinos
- Simplest extension of $G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ is to $G=G_{S M} \times U(1)_{z}$

Extension of SM

- Neutrinos must play a key role in the quest for BSM theory with non-zero masses they must feel another force apart from the weak one, such as Yukawa coupling to a scalar, which requires the existence of right-handed neutrinos
- Simplest extension of $G_{S M}=S U(3)_{c} \times S U(2)_{\llcorner } \times U(1)_{\gamma}$ is to $\mathrm{G}=\mathrm{G}_{\mathrm{SM}} \times \mathrm{U}(1)_{z}$
renormalizable gauge theory without any other symmetry
- Fix z-charges by requirement of

Extension of SM

- Neutrinos must play a key role in the quest for BSM theory with non-zero masses they must feel another force apart from the weak one, such as Yukawa coupling to a scalar, which requires the existence of right-handed neutrinos
- Simplest extension of $G_{S M}=S U(3)_{c} \times S U(2)_{\llcorner } \times U(1)_{r}$ is to $\mathrm{G}=\mathrm{G}_{\mathrm{sM}} \times \mathrm{U}(1)_{z}$
renormalizable gauge theory without any other symmetry
- Fix z-charges by requirement of
- gauge and gravity anomaly cancellation and

Extension of SM

- Neutrinos must play a key role in the quest for BSM theory with non-zero masses they must feel another force apart from the weak one, such as Yukawa coupling to a scalar, which requires the existence of right-handed neutrinos
- Simplest extension of $G_{S M}=S U(3)_{c} \times S U(2)_{\llcorner } \times U(1)_{r}$ is to $G=G_{S M} \times U(1)_{z}$
renormalizable gauge theory without any other symmetry
- Fix z-charges by requirement of
- gauge and gravity anomaly cancellation and
- gauge invariant Yukawa terms for neutrino mass generation

Particle content of SM

Particle content of SM+SW

Expected consequences

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Kärkkäinen and ZT, arXiv:2105.13360]

Expected consequences

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural candidate for WIMP dark matter if it is sufficiently stable
[Seller et al, arXiv:2104.11248]

Expected consequences

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural candidate for WIMP dark matter if it is sufficiently stable
[Seller et al, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis
(under investigation)

Expected consequences

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural candidate for WIMP dark matter if it is sufficiently stable
[Seller et al, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis
- The second scalar together with the established BEH field may be the source of accelerated expansion now and inflation in the early universe
[Péli et al, arXiv:1911.07082 and also under investigation]

Expected consequences

- Dirac and Majorana neutrino mass terms are generated by the SSB of the scalar fields, providing the origin of neutrino masses and oscillations
[Kärkkäinen and ZT, arXiv:2105.13360]
- The lightest new particle is a natural candidate for WIMP dark matter if it is sufficiently stable
[Seller et al, arXiv:2104.11248]
- Diagonalization of neutrino mass terms leads to the PMNS matrix, which in turn can be the source of lepto-baryogenesis (under investigation)
- The second scalar together with the established BEH field may be the source of accelerated expansion now and inflation in the early universe
[Péli et al, arXiv:1911.07082 and also under investigation]
Extensive phenomenological studies are required to confront the predictions of the model with measurements, and decide whether or not these promises are fulfilled

Particle model

fermion fields (Weyl spinors):

$$
\begin{aligned}
& \psi_{q, 1}^{f}=\binom{U^{f}}{D^{f}}_{\mathrm{L}} \quad \psi_{q, 2}^{f}=U_{\mathrm{R}}^{f}, \quad \psi_{q, 3}^{f}=D_{\mathrm{R}}^{f} \\
& \psi_{l, 1}^{f}=\binom{\nu^{f}}{\ell^{f}}_{\mathrm{L}} \quad \psi_{l, 2}^{f}=\nu_{\mathrm{R}}^{f}, \quad \psi_{l, 3}^{f}=\ell_{\mathrm{R}}^{f}
\end{aligned}
$$

Particle model

- fermion fields (Weyl spinors):

$$
\begin{array}{cc}
\psi_{q, 1}^{f}=\binom{U^{f}}{D^{f}}_{\mathrm{L}} & \psi_{q, 2}^{f}=U_{\mathrm{R}}^{f},
\end{array} \psi_{q, 3}^{f}=D_{\mathrm{R}}^{f} .
$$

- with extended $\mathrm{U}(1)$ part of the covariant derivative:

$$
\mathcal{D}_{\mu}^{\mathrm{U}(1)}=-\mathrm{i}\left(y g_{y} B_{\mu}+z g_{z} B_{\mu}^{\prime}\right)
$$

Particle model

- fermion fields (Weyl spinors):

$$
\begin{aligned}
& \psi_{q, 1}^{f}=\binom{U^{f}}{D^{f}}_{\mathrm{L}} \quad \psi_{q, 2}^{f}=U_{\mathrm{R}}^{f}, \quad \psi_{q, 3}^{f}=D_{\mathrm{R}}^{f} \\
& \psi_{l, 1}^{f}=\binom{\nu^{f}}{\ell^{f}}_{\mathrm{L}} \quad \psi_{l, 2}^{f}=\nu_{\mathrm{R}}^{f}, \quad \psi_{l, 3}^{f}=\ell_{\mathrm{R}}^{f}
\end{aligned}
$$

- with extended $\mathrm{U}(1)$ part of the covariant derivative:

$$
\mathcal{D}_{\mu}^{\mathrm{U}(1)}=-\mathrm{i}\left(y g_{y} B_{\mu}+z g_{z} B_{\mu}^{\prime}\right)
$$

- the new $U(1)$ kinetic term includes kinetic mixing:

$$
\mathcal{L} \supset-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{4} F^{\prime \mu \nu} F_{\mu \nu}^{\prime}-\frac{\epsilon}{2} F^{\mu \nu} F_{\mu \nu}^{\prime}
$$

Scalars

- Standard Φ complex $\operatorname{SU}(2)_{\llcorner }$doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

Scalars

- Standard Φ complex $\operatorname{SU}(2)_{\llcorner }$doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential
$V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|\chi|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}\lambda_{\phi} & \frac{\lambda}{2} \\ \frac{\lambda}{2} & \lambda_{\chi}\end{array}\right)\binom{|\phi|^{2}}{|\chi|^{2}}$

Scalars

- Standard Φ complex $\operatorname{SU}(2)_{\llcorner }$doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential

$$
V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|\chi|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}
\lambda_{\phi} & \frac{\lambda}{2} \\
\frac{\lambda}{2} & \lambda_{\chi}
\end{array}\right)\binom{|\phi|^{2}}{|\chi|^{2}}
$$

- After SSB, $\mathrm{G} \rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{U}(1)_{\text {oed }}$ in R_{ξ} gauge

Scalars

- Standard Φ complex $\operatorname{SU}(2)_{\llcorner }$doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential

$$
V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|\chi|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}
\lambda_{\phi} & \frac{\lambda}{2} \\
\frac{\lambda}{2} & \lambda_{\chi}
\end{array}\right)\binom{|\phi|^{2}}{|\chi|^{2}}
$$

- After SSB, $\mathrm{G} \rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{U}(1)_{\text {oed }}$ in R_{ξ} gauge

$$
\phi=\frac{1}{\sqrt{2}}\binom{-\mathrm{i} \sqrt{2} \sigma^{+}}{v+h^{\prime}+\mathrm{i} \sigma_{\phi}}
$$

Scalars

- Standard Φ complex $\operatorname{SU}(2)_{\llcorner }$doublet and new x complex singlet:

$$
\mathcal{L}_{\phi, \chi}=\left[D_{\mu}^{(\phi)} \phi\right]^{*} D^{(\phi) \mu} \phi+\left[D_{\mu}^{(\chi)} \chi\right]^{*} D^{(\chi) \mu} \chi-V(\phi, \chi)
$$

- with scalar potential

$$
V(\phi, \chi)=V_{0}-\mu_{\phi}^{2}|\phi|^{2}-\mu_{\chi}^{2}|\chi|^{2}+\left(|\phi|^{2},|\chi|^{2}\right)\left(\begin{array}{cc}
\lambda_{\phi} & \frac{\lambda}{2} \\
\frac{\lambda}{2} & \lambda_{\chi}
\end{array}\right)\binom{|\phi|^{2}}{|\chi|^{2}}
$$

- After SSB, $\mathrm{G} \rightarrow \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{U}(1)_{\text {oed }}$ in R_{ξ} gauge

$$
\phi=\frac{1}{\sqrt{2}}\binom{-\mathrm{i} \sqrt{2} \sigma^{+}}{v+h^{\prime}+\mathrm{i} \sigma_{\phi}} \quad \& \quad \chi=\frac{1}{\sqrt{2}}\left(w+s^{\prime}+\mathrm{i} \sigma_{\chi}\right)
$$

Fermion-scalar interactions

- In addition to the standard Yukawa terms we assume neutrino Yukawa terms:

$$
-\mathscr{L}_{\mathrm{SW}} \supset \frac{1}{2} \overline{\bar{v}_{\mathrm{R}}} \mathbf{Y}_{N}\left(v_{\mathrm{R}}\right)^{c} \chi+\overline{v_{\mathrm{R}} \mathbf{Y}_{\nu} \varepsilon_{a b} L_{\mathrm{L} a} \phi_{b}}+\text { h.c. }
$$

Fermion-scalar interactions

- In addition to the standard Yukawa terms we assume neutrino Yukawa terms:

$$
-\mathscr{L}_{\mathrm{SW}} \supset \frac{1}{2} \overline{\bar{v}_{\mathrm{R}}} \mathbf{Y}_{N}\left(v_{\mathrm{R}}\right)^{c} \chi+\overline{v_{\mathrm{R}} \mathbf{Y}_{\nu} \varepsilon_{a b} L_{\mathrm{L} a} \phi_{b}}+\text { h.c. }
$$

that are gauge invariant if $z_{\chi}=-2 z_{\nu_{\mathrm{R}}}$

Fermion-scalar interactions

- In addition to the standard Yukawa terms we assume neutrino Yukawa terms:

$$
-\mathscr{L}_{\mathrm{SW}} \supset \frac{1}{2} \overline{\bar{v}_{\mathrm{R}}} \mathbf{Y}_{N}\left(v_{\mathrm{R}}\right)^{c} \chi+\overline{v_{\mathrm{R}} \mathbf{Y}_{\nu} \varepsilon_{a b} L_{\mathrm{L} a} \phi_{b}}+\text { h.c. }
$$

that are gauge invariant if $z_{\chi}=-2 z_{\nu_{\mathrm{R}}}$

- These lead to Majorana and Dirac mass terms after SSB

Anomaly free charge assignment

[Dobrescu et al, hep-ph/0212073]

field	$S U(3)_{\mathrm{c}}$	$S U(2)_{\mathrm{L}}$	y_{j}	$z_{j}^{(\mathrm{aq}}$
$U_{\mathrm{L}}, D_{\mathrm{L}}$	3	2	$\frac{1}{6}$	Z_{1}
U_{R}	3	1	$\frac{2}{3}$	Z_{2}
D_{R}	3	1	$-\frac{1}{3}$	$2 Z_{1}-Z_{2}$
$\nu_{\mathrm{L}}, \ell_{\mathrm{L}}$	1	2	$-\frac{1}{2}$	$-3 Z_{1}$
ν_{R}	1	1	0	$Z_{2}-4 Z_{1}$
ℓ_{R}	1	1	-1	$-2 Z_{1}-Z_{2}$
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}
χ	1	1	0	z_{χ}

(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

Anomaly free charge assignment

field	$S U(3)_{\mathrm{c}}$	$S U(2)_{\mathrm{L}}$	y_{j}	$z_{j}^{\text {(a) }}$	$z_{j}^{(\mathrm{b})}$
$U_{\mathrm{L}}, D_{\mathrm{L}}$	3	2	$\frac{1}{6}$	Z_{1}	$\frac{1}{6}$
U_{R}	3	1	$\frac{2}{3}$	Z_{2}	$\frac{7}{6}$
D_{R}	3	1	$-\frac{1}{3}$	$2 Z_{1}-Z_{2}$	$-\frac{5}{6}$
$\nu_{\mathrm{L}}, \ell_{\mathrm{L}}$	1	2	$-\frac{1}{2}$	$-3 Z_{1}$	$-\frac{1}{2}$
ν_{R}	1	1	0	$Z_{2}-4 Z_{1}$	$\frac{1}{2}$
ℓ_{R}	1	1	-1	$-2 Z_{1}-Z_{2}$	$-\frac{3}{2}$
ϕ	1	2	$\frac{1}{2}$	z_{ϕ}	1
χ	1	1	0	z_{χ}	-1

(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

Anomaly free charge assignment

field	$S U(3)_{\mathrm{c}}$	$S U(2)_{\mathrm{L}}$	y_{j}	$z_{j}^{(\mathrm{a}}$	$z_{j}^{(\mathrm{b})}$
$U_{j}=z_{j} / z_{\phi}-y_{j}^{\mathrm{c}}$					
$U_{\mathrm{L}}, D_{\mathrm{L}}$	3	2	$\frac{1}{6}$	Z_{1}	$\frac{1}{6}$
U_{R}	3	1	$\frac{2}{3}$	Z_{2}	$\frac{7}{6}$
D_{R}	3	1	$-\frac{1}{3}$	$2 Z_{1}-Z_{2}$	$-\frac{5}{6}$
$\nu_{\mathrm{L}}, \ell_{\mathrm{L}}$	1	2	$-\frac{1}{2}$	$-3 Z_{1}$	$-\frac{1}{2}$
ν_{R}	1	1	0	$Z_{2}-4 Z_{1}$	$-\frac{1}{2}$
$\frac{1}{2}$	0				
ℓ_{R}	1	1	-1	$-2 Z_{1}-Z_{2}$	$-\frac{3}{2}$
ϕ	1	2	$\frac{1}{2}$	$\frac{1}{2}$	
ϕ	1	1	0	z_{ϕ}	1

(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

After SSB neutrino mass terms appear

$$
\begin{gathered}
-\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \bar{\nu}_{R}^{c} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \mathbf{\nu}_{\nu} \nu_{R}+\text { h.c. } \\
\mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \quad \mathbf{M}_{D}=\frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{gathered}
$$

After SSB neutrino mass terms appear

$$
\begin{gathered}
-\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \frac{\nu_{R}^{c}}{\nu_{N}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \mathbf{\nu}_{L} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
\mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \quad \mathbf{M}_{D}=\frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{gathered}
$$

In flavor basis the full 6×6 mass matrix reads

$$
\mathbf{M}^{\prime}=\left(\begin{array}{cc}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
$$

After SSB neutrino mass terms appear

$$
\begin{gathered}
-\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \frac{\nu_{R}^{c}}{\nu_{R}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \mathbf{\nu}_{L} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
\mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \quad \mathbf{M}_{D}=\frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{gathered}
$$

In flavor basis the full 6×6 mass matrix reads

$$
\mathbf{M}^{\prime}=\left(\begin{array}{rr}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
$$

so v_{L} massless, but v_{L} and v_{R} have the same q-numbers, can mix, leading to type-I see-saw

After SSB neutrino mass terms appear

$$
\begin{gathered}
-\mathcal{L}_{Y}^{\ell}=\frac{w+s^{\prime}+\mathrm{i} \sigma_{\chi}}{2 \sqrt{2}} \frac{\nu_{R}^{c}}{\nu_{R}} \mathbf{Y}_{N} \nu_{R}+\frac{v+h^{\prime}-\mathrm{i} \sigma_{\phi}}{\sqrt{2}} \overline{\nu_{L}} \mathbf{Y}_{\nu} \nu_{R}+\text { h.c. } \\
\mathbf{M}_{N}=\frac{w}{\sqrt{2}} \mathbf{Y}_{N} \quad \mathbf{M}_{D}=\frac{v}{\sqrt{2}} \mathbf{Y}_{\nu}
\end{gathered}
$$

In flavor basis the full 6×6 mass matrix reads

$$
\mathbf{M}^{\prime}=\left(\begin{array}{cc}
\mathbf{0}_{3} & \mathbf{M}_{D}^{T} \\
\mathbf{M}_{D} & \mathbf{M}_{N}
\end{array}\right)
$$

so v_{L} massless, but v_{L} and v_{R} have the same q-numbers, can mix, leading to type-I see-saw

Dirac and Majorana mass terms appear already at tree level by SSB (not generated radiatively)

Neutrino masses at tree level

the weak (flavour) eigenstates: $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}, \nu_{R, 1}, \nu_{R, 2}, \nu_{R, 3}\right)$
can be transformed into the basis of $v_{i}(i=1-6)$ mass eigenstates with a 6×6 unitary matrix U :

$$
\mathbf{U}^{T} \mathbf{M}^{\prime} \mathbf{U}=\mathbf{M}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right)
$$

Neutrino masses at tree level

the weak (flavour) eigenstates: $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}, \nu_{R, 1}, \nu_{R, 2}, \nu_{R, 3}\right)$
can be transformed into the basis of $v_{i}(i=1-6)$ mass eigenstates with a 6×6 unitary matrix \mathbf{U} :

$$
\mathbf{U}^{T} \mathbf{M}^{\prime} \mathbf{U}=\mathbf{M}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right)
$$

decomposed into two 3×6 blocks:

$$
\mathbf{U}=\binom{\mathbf{U}_{L}}{\mathbf{U}_{R}^{*}}
$$

Neutrino masses at tree level

the weak (flavour) eigenstates: $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}, \nu_{R, 1}, \nu_{R, 2}, \nu_{R, 3}\right)$
can be transformed into the basis of $v_{i}(i=1-6)$ mass eigenstates with a 6×6 unitary matrix U :

$$
\mathbf{U}^{T} \mathbf{M}^{\prime} \mathbf{U}=\mathbf{M}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right)
$$

decomposed into two 3×6 blocks:

$$
\mathbf{U}=\binom{\mathbf{U}_{L}}{\mathbf{U}_{R}^{*}}
$$

where \mathbf{U}_{L} and $\mathbf{U}_{R}{ }^{*}$ are semi-unitary: $\mathbf{U}_{L} \mathbf{U}_{L}^{\dagger}=\mathbf{1}_{3}, \quad \mathbf{U}_{R} \mathbf{U}_{R}^{\dagger}=\mathbf{1}_{3}$,
but

$$
\mathbf{U}_{L}^{\dagger} \mathbf{U}_{L}+\mathbf{U}_{R}^{T} \mathbf{U}_{R}^{*}=\mathbf{1}_{6}
$$

useful relations collected in the appendix of our paper

Neutrino masses at tree level

Full diagonalization is cumbersome \rightarrow can use approximate diagonalization in the see-saw limit

$$
\left(\begin{array}{cc}
\mathbf{M}_{v} & 0 \\
0 & \mathbf{M}_{N}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \mathbf{M}_{\mathrm{D}}^{T} \\
\mathbf{M}_{\mathrm{D}} & \mathbf{M}_{\mathrm{R}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right)
$$

Neutrino masses at tree level

Full diagonalization is cumbersome \rightarrow can use approximate diagonalization in the see-saw limit

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{M}_{v} & 0 \\
0 & \mathbf{M}_{N}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \mathbf{M}_{\mathrm{D}}^{T} \\
\mathbf{M}_{\mathrm{D}} & \mathbf{M}_{\mathrm{R}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
-\mathbf{M}_{\mathrm{D}}^{T} \mathbf{M}_{\mathrm{R}}^{-1} \mathbf{M}_{\mathrm{D}} & 0 \\
0 & \mathbf{M}_{\mathrm{R}}
\end{array}\right)
\end{aligned}
$$

Neutrino masses at tree level

Full diagonalization is cumbersome \rightarrow can use approximate diagonalization in the see-saw limit

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{M}_{v} & 0 \\
0 & \mathbf{M}_{N}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \mathbf{M}_{\mathrm{D}}^{T} \\
\mathbf{M}_{\mathrm{D}} & \mathbf{M}_{\mathrm{R}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
-\mathbf{M}_{\mathrm{D}}^{T} \mathbf{M}_{\mathrm{R}}^{-1} \mathbf{M}_{\mathrm{D}} & 0 \\
0 & \mathbf{M}_{\mathrm{R}}
\end{array}\right)
\end{aligned}
$$

$\mathbf{U}_{\mathrm{as}}=\mathbf{M}_{\mathrm{D}}^{\dagger} \mathbf{M}_{\mathrm{R}}^{-1}$ is the active-sterile mixing matrix

Neutrino masses at tree level

Full diagonalization is cumbersome \rightarrow can use approximate diagonalization in the see-saw limit

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{M}_{v} & 0 \\
0 & \mathbf{M}_{N}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
0 & \mathbf{M}_{\mathrm{D}}^{T} \\
\mathbf{M}_{\mathrm{D}} & \mathbf{M}_{\mathrm{R}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{1} & \mathbf{U}_{\mathrm{as}} \\
-\mathbf{U}_{\mathrm{as}}^{\dagger} & \mathbf{1}
\end{array}\right) \\
& \approx\left(\begin{array}{cc}
-\mathbf{M}_{\mathrm{D}}^{T} \mathbf{M}_{\mathrm{R}}^{-1} \mathbf{M}_{\mathrm{D}} & 0 \\
0 & \mathbf{M}_{\mathrm{R}}
\end{array}\right)
\end{aligned}
$$

$\mathbf{U}_{\mathrm{as}}=\mathbf{M}_{\mathrm{D}}^{\dagger} \mathbf{M}_{\mathrm{R}}^{-1}$ is the active-sterile mixing matrix
M_{N} is already diagonal, but M_{v} is not yet, can be diagonalized with U_{2} unitary matrix

$$
\mathbf{U}_{2}^{T} \mathbf{M}_{v} \mathbf{U}_{2}=\mathbf{M}_{v}^{\text {diag }}
$$

Neutrino mass matrix at one-loop order

We have experimental constraints on the upper limits the elements of M_{v} diag [Planck coll., arXiv:1807.06209; KATRIN coll, arXiv:1909.06048]

If at tree-level those are satistfied, loop corrections may upset those limits

Neutrino mass matrix at one-loop order

We have experimental constraints on the upper limits the elements of M_{v} diag [Planck coll., arXiv:1807.06209; KATRIN coll, arXiv:1909.06048]

If at tree-level those are satistfied, loop corrections may upset those limits

We are interested in the one-loop correction $\delta \mathrm{M}_{L}$ to the tree-level mass matrix of light neutrinos in

$$
\delta \mathbf{M}^{\prime}=\left(\begin{array}{ll}
\delta \mathbf{M}_{\mathbf{L}} & \delta \mathbf{M}_{\mathrm{D}}^{T} \\
\delta \mathbf{M}_{\mathrm{D}} & \delta \mathbf{M}_{\mathrm{R}}
\end{array}\right)=\mathbf{U}^{*} \delta \mathbf{M} \mathbf{U}^{\dagger}
$$

Neutrino mass matrix at one-loop order

We have experimental constraints on the upper limits the elements of M_{v} diag [Planck coll., arXiv:1807.06209; KATRIN coll, arXiv:1909.06048]

If at tree-level those are satistfied, loop corrections may upset those limits

We are interested in the one-loop correction $\delta \mathrm{M}_{L}$ to the tree-level mass matrix of light neutrinos in

$$
\delta \mathbf{M}^{\prime}=\left(\begin{array}{ll}
\delta \mathbf{M}_{\mathrm{L}} & \delta \mathbf{M}_{\mathrm{D}}^{T} \\
\delta \mathbf{M}_{\mathrm{D}} & \delta \mathbf{M}_{\mathrm{R}}
\end{array}\right)=\mathbf{U}^{*} \delta \mathbf{M} \mathbf{U}^{\dagger}
$$

where

$$
\delta \mathbf{M}=\operatorname{diag}\left(\delta m_{1}, \delta m_{2}, \delta m_{3}, \delta m_{4}, \delta m_{5}, \delta m_{6}\right)
$$

Neutrino mass matrix at one-loop order

We have experimental constraints on the upper limits the elements of M_{v} diag [Planck coll., arXiv:1807.06209; KATRIN coll, arXiv:1909.06048]

If at tree-level those are satistfied, loop corrections may upset those limits

We are interested in the one-loop correction $\delta \mathrm{M}_{L}$ to the tree-level mass matrix of light neutrinos in

$$
\delta \mathbf{M}^{\prime}=\left(\begin{array}{ll}
\delta \mathbf{M}_{\mathrm{L}} & \delta \mathbf{M}_{\mathrm{D}}^{T} \\
\delta \mathbf{M}_{\mathrm{D}} & \delta \mathbf{M}_{\mathrm{R}}
\end{array}\right)=\mathbf{U}^{*} \delta \mathbf{M} \mathbf{U}^{\dagger}
$$

where $\quad \delta \mathbf{M}=\operatorname{diag}\left(\delta m_{1}, \delta m_{2}, \delta m_{3}, \delta m_{4}, \delta m_{5}, \delta m_{6}\right)$
in detail: $\quad \delta \mathbf{M}_{\mathrm{L}}=\mathbf{U}_{\mathrm{L}}^{*} \delta \mathbf{M U}_{\mathrm{L}}^{\dagger}, \quad \delta \mathbf{M}_{\mathrm{D}}=\mathbf{U}_{\mathrm{R}} \delta \mathbf{M} \mathbf{U}_{\mathrm{L}}^{\dagger}, \quad \delta \mathbf{M}_{\mathrm{R}}=\mathbf{U}_{\mathrm{R}} \delta \mathbf{M} \mathbf{U}_{\mathrm{R}}^{T}$

Neutrino mass matrix at one-loop order

- Calculation is non-trivial, but the result is simple: [lwamoto et al, arXiv:2104.14571]
where

$$
\delta \mathbf{M}_{L}=\frac{1}{16 \pi^{2}} \sum_{k=1,2}\left[3\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 1}^{2} \frac{M_{V_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{V_{k}}^{2}\right)+\left(\mathbf{Z}_{\mathrm{S}}\right)_{k 1}^{2} \frac{M_{S_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{S_{k}}^{2}\right)\right]
$$

$$
\mathbf{F}_{i j}\left(M^{2}\right)=\sum_{a=1}^{6}\left(\mathbf{U}_{L}^{*}\right)_{i a}\left(\mathbf{U}_{L}^{\dagger}\right)_{a j} \frac{m_{a}^{3}}{M^{2}} \frac{\ln \frac{m_{a}^{2}}{M^{2}}}{\frac{m_{a}^{2}}{M^{2}}-1}
$$

Neutrino mass matrix at one-loop order

- Calculation is non-trivial, but the result is simple: [lwamoto et al, arXiv:2104.14571]
where

$$
\delta \mathbf{M}_{L}=\frac{1}{16 \pi^{2}} \sum_{k=1,2}\left[3\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 1}^{2} \frac{M_{V_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{V_{k}}^{2}\right)+\left(\mathbf{Z}_{\mathrm{S}}\right)_{k 1}^{2} \frac{M_{S_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{S_{k}}^{2}\right)\right]
$$

$$
\mathbf{F}_{i j}\left(M^{2}\right)=\sum_{a=1}^{6}\left(\mathbf{U}_{L}^{*}\right)_{i a}\left(\mathbf{U}_{L}^{\dagger}\right)_{a j} \frac{m_{a}^{3}}{M^{2}} \frac{\ln \frac{m_{a}^{2}}{M^{2}}}{\frac{m_{a}^{2}}{M^{2}}-1}
$$

is a matrix in flavour space and $\mathbb{Z}_{\mathrm{S}}, \mathbb{Z}_{G}$ are the scalar and Goldstone mixing matrices

Neutrino mass matrix at one-loop order

- Calculation is non-trivial, but the result is simple: [lwamoto et al, arXiv:2104.14571]
where

$$
\delta \mathbf{M}_{L}=\frac{1}{16 \pi^{2}} \sum_{k=1,2}\left[3\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 1}^{2} \frac{M_{V_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{V_{k}}^{2}\right)+\left(\mathbf{Z}_{\mathrm{S}}\right)_{k 1}^{2} \frac{M_{S_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{S_{k}}^{2}\right)\right]
$$

$$
\mathbf{F}_{i j}\left(M^{2}\right)=\sum_{a=1}^{6}\left(\mathbf{U}_{L}^{*}\right)_{i a}\left(\mathbf{U}_{L}^{\dagger}\right)_{a j} \frac{m_{a}^{3}}{M^{2}} \frac{\ln \frac{m_{a}^{2}}{M^{2}}}{\frac{m_{a}^{2}}{M^{2}}-1}
$$

is a matrix in flavour space and $\mathbb{Z}_{\mathrm{S}}, \mathbb{Z}_{\mathrm{G}}$ are the scalar and Goldstone mixing matrices
dependence on w appears implicitly in the masses of the bosons

Neutrino mass matrix at one-loop order

- Calculation is non-trivial, but the result is simple: [lwamoto et al, arXiv:2104.14571]
where

$$
\delta \mathbf{M}_{L}=\frac{1}{16 \pi^{2}} \sum_{k=1,2}\left[3\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 1}^{2} \frac{M_{V_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{V_{k}}^{2}\right)+\left(\mathbf{Z}_{\mathrm{S}}\right)_{k 1}^{2} \frac{M_{S_{k}}^{2}}{v^{2}} \mathbf{F}\left(M_{S_{k}}^{2}\right)\right]
$$

$$
\mathbf{F}_{i j}\left(M^{2}\right)=\sum_{a=1}^{6}\left(\mathbf{U}_{L}^{*}\right)_{i a}\left(\mathbf{U}_{L}^{\dagger}\right)_{a j} \frac{m_{a}^{3}}{M^{2}} \frac{\ln \frac{m_{a}^{2}}{M^{2}}}{\frac{m_{a}^{2}}{M^{2}}-1}
$$

is a matrix in flavour space and $\mathbb{Z}_{\mathrm{S}}, \mathbb{Z}_{\mathrm{G}}$ are the scalar and Goldstone mixing matrices
dependence on w appears implicitly in the masses of the bosons
result is gauge independent, finite, independent of the renormalization scale

The $\mathbf{F}_{i j}$ matrix

Range of the matrix elements $\mathbf{F}_{i j}$ represented by the blue band as a function of the mass $m_{\text {loop }}$ of the boson in the loop. Left: $m_{1}^{\text {tree }}=0.01 \mathrm{eV}, m_{4}^{\text {tree }}=30 \mathrm{keV}, m_{5}^{\text {tree }} \approx m_{6}^{\text {tree }}=2.5 \mathrm{GeV}$. Right: $m_{1}^{\text {tree }}=0.001 \mathrm{eV}, m_{4}^{\text {tree }}=7.1 \mathrm{keV}, m_{5}^{\text {tree }} \approx m_{6}^{\text {tree }}=3.0 \mathrm{GeV}$.

One-loop correction to the $\mathbf{M}_{v}{ }^{\text {diag }}$ matrix

coupling factors suppress $\mathbf{F}_{i j}$ significantly

One-loop correction to the $\mathbf{M}_{v}{ }^{\text {diag }}$ matrix

coupling factors suppress $\mathbf{F}_{i j}$ significantly e.g., assuming the active neutrino masses to be $\mathrm{O}\left(10^{-3}\right) \mathrm{eV}$:

$$
\left(\delta \mathbf{M}_{\mathrm{L}}\right)_{i j}<\mathrm{O}\left(10^{-7}\right) \mathrm{eV}+\mathrm{O}\left(10^{-21}\right) \times\left(\frac{M_{Z^{\prime}}}{100 \mathrm{MeV}}\right)^{2} \mathbf{F}_{i j}\left(M_{Z^{\prime}}^{2}\right)
$$

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal:

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal:
- vector boson: e.g. via kinetic mixing

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal:
- vector boson: e.g. via kinetic mixing
- Higgs: if the BEH field couples to DM

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal:
- vector boson: e.g. via kinetic mixing
- Higgs: if the BEH field couples to DM
- Neutrino: DM is a fermion (of dimension 3/2) coupled to the HL operator (of dimension $5 / 2$)

Dark matter candidate

- DM exists, but known evidence is based solely on the gravitational effect of the dark matter on the luminous astronomical objects and on the Hubble-expansion of the Universe
- Assume that the DM has particle origin
- Only chance to observe such a particle if it interacts with the SM particles, which needs a portal:
- vector boson: e.g. via kinetic mixing
- Higgs: if the BEH field couples to DM
- Neutrino: DM is a fermion (of dimension 3/2) coupled to the HL operator (of dimension $5 / 2$)
In the superweak model the vector boson portal Z^{\prime} with the lightest sterile neutrino v_{4} as dark matter candidate is a natural scenario

Relic abundance

- Can be computed using Boltzmann's equation
- Two possible mechanisms to freeze the abundance:

Relic abundance

- Can be computed using Boltzmann's equation
- Two possible mechanisms to freeze the abundance:
- Freeze-in:
- increases from vanishing initial abundance, but never reaches equilibrium
- requires very small couplings

Relic abundance

- Can be computed using Boltzmann's equation
- Two possible mechanisms to freeze the abundance:
- Freeze-in:
- increases from vanishing initial abundance, but never reaches equilibrium
- requires very small couplings
- Freeze-out:
- DM particle decouples from the other particles in the cosmic soup at some temperature $T_{\text {dec }}$
- DM particles of mass m are in equilibrium with others before decoupling (T $>T_{\text {dec }} \sim m / 10$)
- Decoupling is a result of scattering processes becoming slow compared to Hubble expansion, so the estimation of the rate of possible scattering processes is needed

Relic abundance

- Can be computed using Boltzmann's equation
- Two possible mechanisms to freeze the abundance:
- Freeze-in:
- increases from vanishing initial abundance, but never reaches equilibrium
- requires very small couplings
- Freeze-out:
- DM particle decouples from the other particles in the cosmic soup at some temperature $T_{\text {dec }}$
- DM particles of mass m are in equilibrium with others before decoupling (T $>T_{\text {dec }} \sim m / 10$)
- Decoupling is a result of scattering processes becoming slow compared to Hubble expansion, so the estimation of the rate of possible scattering processes is needed
In the superweak model the vector boson portal Z^{\prime} with the lightest sterile neutrino v_{4} as dark matter candidate is a natural scenario

Freeze-out

Current exclusion limits on Z^{\prime} vector boson portal leave room for $M_{Z^{\prime}}>\sim 20 \mathrm{MeV}$

Freeze-out

- Current exclusion limits on Z' vector boson portal leave room for $M_{Z}>\sim 20 \mathrm{MeV}$
- But a sufficiently heavy Z ' can change Big-Bang Nucleosynthesis (BBN) dramatically through the production of SM particles, so we focus on the mass window with upper end below the muon pair production threshold, M_{Z}, < ~200 MeV

Freeze-out

- Current exclusion limits on Z' vector boson portal leave room for $M_{Z}>\sim 20 \mathrm{MeV}$
- But a sufficiently heavy Z ' can change Big-Bang Nucleosynthesis (BBN) dramatically through the production of SM particles, so we focus on the mass window with upper end below the muon pair production threshold, M_{Z}. < ~200 MeV
- DM particles are produced by the decay of Z^{\prime}, so we consider m_{4} in $[10,50] \mathrm{MeV}$, hence $T_{\text {dec }}$ is $\mathrm{O}(1 \mathrm{MeV})$
- electrons and active neutrinos are abundant in the cosmic soup, heavier fermions are negligible.

Evolution of comoving number density

- Comoving number density of DM particle a is determined by $\frac{\mathrm{d} \mathscr{Y}_{a}}{\mathrm{dz} z} \propto \sum_{\text {particles }}[($ rate of creation processes of particle $a)$ - (rate of processes annihilating particle a)]
where $z=\Lambda / T$ is inverse temperature

Evolution of comoving number density

- Comoving number density of DM particle a is determined by $\frac{\mathrm{d} \mathscr{Y}_{a}}{\mathrm{~d} z} \propto \sum_{\text {particles }}[($ rate of creation processes of particle $a)$ - (rate of processes annihilating particle a)
where $z=\Lambda / T$ is inverse temperature
rate $=($ cross section or decay rate $) \times($ available initia
$\left\langle\sigma v_{\mathrm{M} \phi 1}\right\rangle \propto \int_{4 \mu^{2}}^{\infty} \mathrm{d} s \sigma(s)\left(s-4 m_{\mathrm{in}}^{2}\right) \sqrt{s} K_{1}\left(\frac{\sqrt{s}}{T}\right) \quad\langle\Gamma\rangle=\Gamma \frac{K_{1}(z)}{K_{2}(z)}$.
K_{i} Bessel function of the 2 nd kind

Freeze-out

Example solution to the Boltzmann equation in the freeze-out case. The horizontal line indicates the relic density corresponding to
$\Omega_{\mathrm{DM}}=0.265, M_{Z^{\prime}}=30 \mathrm{MeV}, M_{1}=10 \mathrm{MeV}, g_{z}=1.06 \cdot 10^{-3}$.

Freeze-out

Example solution to the Boltzmann equation in the freeze-out case. The horizontal line
$\Omega_{\mathrm{DM}}=0.265, M_{Z^{\prime}}=30 \mathrm{MeV}, M_{1}=10 \mathrm{MeV}, g_{z}=1.06 \cdot 10^{-3}$

Resonant enhancement

- in freeze-out mechanism decreasing the coupling, hence the interaction rate increases the relic density

Resonant enhancement

- in freeze-out mechanism decreasing the coupling, hence the interaction rate increases the relic density
- s-channel resonance in $\sigma(s)$ dominates the integral in

$$
\left\langle\sigma v_{\mathrm{M}(\mathrm{sl}}\right\rangle \propto \int_{4 \mu^{2}}^{\infty} \mathrm{d} s \sigma(s)\left(s-4 m_{\mathrm{in}}^{2}\right) \sqrt{s} K_{1}\left(\frac{\sqrt{s}}{T}\right)
$$

if $m_{4} \sim M_{Z} / 2$, which maintains the same interaction rate at smaller coupling

Resonant enhancement

- in freeze-out mechanism decreasing the coupling, hence the interaction rate increases the relic density
- s-channel resonance in $\sigma(s)$ dominates the integral in

$$
\left\langle\sigma v_{\mathrm{Mal}}\right\rangle \propto \int_{4 \mu^{2}}^{\infty} \mathrm{d} s \sigma(s)\left(s-4 m_{\mathrm{in}}^{2}\right) \sqrt{s} K_{1}\left(\frac{\sqrt{s}}{T}\right)
$$

if $m_{4} \sim M_{Z} / 2$, which maintains the same interaction rate at smaller coupling

It is essential for the superweak model DM candidate that the resonance can dominate the integral in the rate

Resonant enhancement

Parameter space for the freeze-out scenario of dark matter production in the supeweak model

Benchmark points

- Using the Casas-Ibarra parametrization the active-sterile mixing matrix $\mathbf{U}_{\mathrm{as}}=\mathbf{M}_{\mathrm{D}}^{\dagger} \mathbf{M}_{\mathrm{R}}^{-1}$ can be written as

$$
\mathbf{U}_{\mathrm{as}}=\mathbf{U}_{\mathrm{PMNS}} \sqrt{\mathbf{M}_{v}^{\mathrm{diag}}}\left(\mathbf{i R}^{\dagger}\right) \mathbf{M}_{\mathrm{R}}^{-1 / 2}
$$

where R is an orthogonal matrix
[better: see talk by Pereira]

Benchmark points

- Using the Casas-Ibarra parametrization the active-sterile mixing matrix $\mathbf{U}_{\text {as }}=\mathbf{M}_{\mathrm{D}}^{\dagger} \mathbf{M}_{\mathrm{R}}^{-1}$ can be written as

$$
\mathbf{U}_{\mathrm{as}}=\mathbf{U}_{\mathrm{PMNS}} \sqrt{\mathbf{M}_{v}^{\mathrm{diag}}}\left(\mathbf{i R}^{\dagger}\right) \mathbf{M}_{\mathrm{R}}^{-1 / 2}
$$

where R is an orthogonal matrix
[better: see talk by Pereira]
knowing the PMNS matrix experimentally and assuming values for the masses of the neutrinos, we have to scan over the full parameter space of the \mathbf{R} matrix to find the possible $\mathbf{U}_{\text {as }}$ matrix elements.

Benchmark points

Constraints in logarithmic ($\left.U_{X}^{2}=\sum_{i=4}^{6}\left|U_{X i}\right|^{2}, m_{j}\right)$ plane $(j=5,6)$ from above are given by several experiments (shaded area). Experimental sensitivities of future experiments are given by colored lines. Left plot: $X=e$. Right plot: $X=\mu$

Summary

- Established observations require physics beyond SM, but do not suggest rich BSM physics

Summary

- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $\mathrm{U}(1)_{z}$ extension has the potential of explaining all known results beyond the SM

Summary

- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $\mathrm{U}(1)_{z}$ extension has the potential of explaining all known results beyond the SM
- Anomaly cancellation and neutrino mass generation mechanism are used to fix the Z-charges up to reasonable assumptions

Summary

- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $\mathrm{U}(1)_{z}$ extension has the potential of explaining all known results beyond the SM
- Anomaly cancellation and neutrino mass generation mechanism are used to fix the Z-charges up to reasonable assumptions
- Neutrino masses are generated by SSB at tree level

Summary

- Established observations require physics beyond SM, but do not suggest rich BSM physics
- $\mathrm{U}(1)_{z}$ extension has the potential of explaining all known results beyond the SM
- Anomaly cancellation and neutrino mass generation mechanism are used to fix the Z-charges up to reasonable assumptions
- Neutrino masses are generated by SSB at tree level
- One-loop corrections to the tree-level neutrino mass matrix computed and found to be small (below 1\%o) in the parameter space relevant in the super-weak model

Outlook

- Lightest sterile neutrino is a candidate DM particle in the

Outlook

- Lightest sterile neutrino is a candidate DM particle in the
- $[10,50] \mathrm{MeV}$ mass range for freeze-out mechanism with resonant enhancement \rightarrow predicts mass relation between vector boson and lightest sterile neutrino

Outlook

- Lightest sterile neutrino is a candidate DM particle in the
- $[10,50] \mathrm{MeV}$ mass range for freeze-out mechanism with resonant enhancement \rightarrow predicts mass relation between vector boson and lightest sterile neutrino
- (in the keV range for freeze-in)

Outlook

- Lightest sterile neutrino is a candidate DM particle in the
- $[10,50] \mathrm{MeV}$ mass range for freeze-out mechanism with resonant enhancement \rightarrow predicts mass relation between vector boson and lightest sterile neutrino
- (in the keV range for freeze-in)
- Valid benchmark points are found that will be testable in SHIP and MATHUSLA experiments: motivation for systematic exploration of the parameter space

Outlook

- Lightest sterile neutrino is a candidate DM particle in the
- $[10,50] \mathrm{MeV}$ mass range for freeze-out mechanism with resonant enhancement \rightarrow predicts mass relation between vector boson and lightest sterile neutrino
- (in the keV range for freeze-in)
- Valid benchmark points are found that will be testable in SHIP and MATHUSLA experiments: motivation for systematic exploration of the parameter space
- Cosmological and particle physics consequences of the scalar sector is to be explored [Péli et al, arXiv:1911.07082]
the end

Appendix

Kinetic mixing

- New fields: 3 right-handed neutrinos $v_{R}{ }^{f}$, a new scalar χ, and new $\mathrm{U}(1)_{z}$ gauge boson B^{\prime}
- kinetic mixing: $\mathcal{L} \supset-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{4} F^{\prime \mu \nu} F_{\mu \nu}^{\prime}-\frac{\epsilon}{2} F^{\mu \nu} F_{\mu \nu}^{\prime}$
- covariant derivative: $\mathcal{D}_{\mu}^{\mathrm{U}(1)}=-\mathrm{i}\left(y g_{y} B_{\mu}+z g_{z} B_{\mu}^{\prime}\right)$
- or equivalently can choose basis s. t.: $\quad D_{\mu}^{\mathrm{U}(1)}=-\mathrm{i}\left(\begin{array}{ll}y & z\end{array}\right)\left(\begin{array}{ll}\hat{g}_{y y} & \hat{g}_{y z} \\ \hat{g}_{z y} & \hat{g}_{z z}\end{array}\right)\binom{\hat{B}_{\mu}}{\hat{B}_{\mu}^{\prime}}$ and can parametrize the coupling matrix s.t.:

$$
\hat{\mathrm{g}}=\left(\begin{array}{ll}
\hat{g}_{y y} & \hat{g}_{y z} \\
\hat{g}_{z y} & \hat{g}_{z z}
\end{array}\right)=\left(\begin{array}{cc}
g_{y} & -\eta g_{z}^{\prime} \\
0 & g_{z}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\cos \epsilon^{\prime} & \sin \epsilon^{\prime} \\
-\sin \epsilon^{\prime} & \cos \epsilon^{\prime}
\end{array}\right) \text { with } \begin{aligned}
& g_{z}^{\prime}=g_{z} / \sqrt{1-\epsilon^{2}} \\
& \eta=\epsilon g_{y} / g_{z} .
\end{aligned}
$$

Mixing in the neutral gauge sector

$$
\left(\begin{array}{c}
\hat{B}^{\mu} \\
W^{3 \mu} \\
\hat{B}^{\prime \mu}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{\mathrm{W}} & -\cos \theta_{Z} \sin \theta_{\mathrm{W}} & -\sin \theta_{Z} \sin \theta_{\mathrm{W}} \\
\sin \theta_{\mathrm{W}} & \cos \theta_{Z} \cos \theta_{\mathrm{W}} & \cos \theta_{\mathrm{W}} \sin \theta_{Z} \\
0 & -\sin \theta_{Z} & \cos \theta_{Z}
\end{array}\right)\left(\begin{array}{c}
A^{\mu} \\
Z^{\mu} \\
Z^{\prime \mu}
\end{array}\right)
$$

where θ_{W} is the Weinberg angle \& θ_{z} is the $Z-Z^{\prime}$ mixing, implicitly: $\tan \left(2 \theta_{Z}\right)=2 \kappa /\left(1-\kappa^{2}-\tau^{2}\right)$, with

$$
\begin{array}{cc}
\kappa=\cos \theta_{\mathrm{W}}\left(\gamma_{y}^{\prime}-2 \gamma_{z}^{\prime}\right) & \tau=2 \cos \theta_{\mathrm{W}} \gamma_{z}^{\prime} \tan \beta \\
\gamma_{y}^{\prime}=\left(\epsilon / \sqrt{1-\epsilon^{2}}\right)\left(g_{y} / g_{\mathrm{L}}\right) \quad \gamma_{z}^{\prime}=g_{z}^{\prime} / g_{\mathrm{L}} & \tan \beta=w / v \\
\left(\sin \theta_{z}=\operatorname{sgn}(\kappa)\left[\frac{1}{2}\left(1-\frac{1-\kappa^{2}-\tau^{2}}{\sqrt{\left(1+\kappa^{2}+\tau^{2}\right)^{2}-4 \tau^{2}}}\right)\right]^{1 / 2},\right. & \left.\cos \theta_{z}=\left[\frac{1}{2}\left(1+\frac{1-\kappa^{2}-\tau^{2}}{\sqrt{\left(1+\kappa^{2}+\tau^{2}\right)^{2}-4 \tau^{2}}}\right)\right]^{1 / 2}\right)
\end{array}
$$

Masses of the neutral gauge bosons

$$
\begin{aligned}
M_{Z}^{2} & =\left(\frac{M_{W}}{\cos \theta_{\mathrm{W}}}\right)^{2}\left[\left(\cos \theta_{Z}-\kappa \sin \theta_{Z}\right)^{2}+\left(\tau \sin \theta_{Z}\right)^{2}\right] \\
M_{Z^{\prime}}^{2} & =\left(\frac{M_{W}}{\cos \theta_{\mathrm{W}}}\right)^{2}\left[\left(\sin \theta_{Z}+\kappa \cos \theta_{Z}\right)^{2}+\left(\tau \cos \theta_{Z}\right)^{2}\right]
\end{aligned}
$$

obeying

$$
\left(Z \rightarrow Z^{\prime}\right) \Rightarrow\left(\cos \theta_{Z}, \sin \theta_{Z}\right) \rightarrow\left(\sin \theta_{Z},-\cos \theta_{Z}\right)
$$

Scalar and Goldstone mixing

$$
\binom{h}{s}=\mathbf{Z}_{S}\binom{h^{\prime}}{s^{\prime}} \equiv\left(\begin{array}{cc}
\cos \theta_{S} & -\sin \theta_{S} \\
\sin \theta_{S} & \cos \theta_{S}
\end{array}\right)\binom{h^{\prime}}{s^{\prime}} \quad\binom{\sigma_{Z}}{\sigma_{Z^{\prime}}}=\mathbf{Z}_{\mathrm{G}}\binom{\sigma_{\phi}}{\sigma_{\chi}}
$$

- where the scalar mixing angle is related to the potential parameters:

$$
\tan \left(2 \theta_{S}\right)=-\frac{\lambda v w}{\lambda_{\phi} v^{2}-\lambda_{\chi} w^{2}}
$$

- and for the Goldstone mixing angle is related to the neutral gauge boson mixing angle:

$$
\tan \theta_{\mathrm{G}}=\tan \theta_{Z} \frac{M_{Z^{\prime}}}{M_{Z}}
$$

Neutral current couplings

$$
\Gamma_{V \bar{f} f}^{\mu}=-\mathrm{i} e \gamma^{\mu}\left(C_{V \bar{f} f}^{R} P_{R}+C_{V \bar{f} f}^{L} P_{L}\right)
$$

for neutrinos

$$
\begin{array}{ll}
e C_{Z \nu \nu}^{L}=\frac{g_{\mathrm{L}}}{2 \cos \theta_{\mathrm{W}}}\left[\cos \theta_{Z}-\left(\gamma_{y}^{\prime}-\gamma_{z}^{\prime}\right) \sin \theta_{Z} \cos \theta_{\mathrm{W}}\right], & e C_{Z \nu \nu}^{R}=-\frac{g_{\mathrm{L}}}{2} \gamma_{z}^{\prime} \sin \theta_{Z} \\
e C_{Z^{\prime} \nu \nu}^{L}=\frac{g_{\mathrm{L}}}{2 \cos \theta_{\mathrm{W}}}\left[\sin \theta_{Z}+\left(\gamma_{y}^{\prime}-\gamma_{z}^{\prime}\right) \cos \theta_{Z} \cos \theta_{\mathrm{W}}\right], & e C_{Z^{\prime} \nu \nu}^{R}=\frac{g_{\mathrm{L}}}{2} \gamma_{z}^{\prime} \cos \theta_{Z}
\end{array}
$$

obeying $\quad\left(Z \rightarrow Z^{\prime}\right) \Rightarrow\left(\cos \theta_{Z}, \sin \theta_{Z}\right) \rightarrow\left(\sin \theta_{Z},-\cos \theta_{Z}\right)$

Masses of the neutral gauge bosons again

can also be expressed with chiral couplings:

$$
\begin{aligned}
& M_{Z}^{2}=\frac{v^{2} e^{2}}{\cos ^{2} \theta_{\mathrm{G}}}\left(C_{Z \nu \nu}^{L}-C_{Z \nu \nu}^{R}\right)^{2} \\
& M_{Z^{\prime}}^{2}=\frac{v^{2} e^{2}}{\sin ^{2} \theta_{\mathrm{G}}}\left(C_{Z^{\prime} \nu \nu}^{L}-C_{Z^{\prime} \nu \nu}^{R}\right)^{2}
\end{aligned}
$$

which are crucial for checking gauge independence

Neutral current couplings on mass basis

recall: $\quad \Gamma_{V f f}^{\mu}=-\mathrm{ie} \gamma^{\mu}\left(C_{V I f}^{R} P_{R}+C_{V f f}^{L} P_{L}\right)$
which reads on the basis of propagating mass eigenstates as

$$
\Gamma_{V \nu_{i} \nu_{j}}^{\mu}=-\mathrm{i} e \gamma^{\mu}\left(\Gamma_{V \nu \nu}^{L} P_{L}+\boldsymbol{\Gamma}_{V \nu \nu}^{R} P_{R}\right)
$$

where

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{V \nu \nu}^{L}=C_{V \nu \nu}^{L} \mathbf{U}_{L}^{\dagger} \mathbf{U}_{L}-C_{V \nu \nu}^{R} \mathbf{U}_{R}^{T} \mathbf{U}_{R}^{*} \\
& \boldsymbol{\Gamma}_{V \nu \nu}^{R}=-C_{V \nu \nu}^{L} \mathbf{U}_{L}^{T} \mathbf{U}_{L}^{*}+C_{V \nu \nu}^{R} \mathbf{U}_{R}^{\dagger} \mathbf{U}_{R}=-\left(\boldsymbol{\Gamma}_{V \nu \nu}^{L}\right)^{*}
\end{aligned}
$$

and also: $\quad \boldsymbol{\Gamma}_{S_{k} / \sigma_{k} \nu_{i} \nu_{j}}=\left(\boldsymbol{\Gamma}_{S_{k} / \sigma_{k} \nu \nu}^{L} P_{L}+\boldsymbol{\Gamma}_{S_{k} / \sigma_{k} \nu \nu}^{R} P_{R}\right)_{i j}$

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{S_{k} \nu \nu}^{L}=-\mathrm{i}\left[\left(\mathbf{M} \mathbf{U}_{L}^{\dagger} \mathbf{U}_{L}+\mathbf{U}_{L}^{T} \mathbf{U}_{L}^{*} \mathbf{M}\right) \frac{\left(\mathbf{Z}_{S}\right)_{k 1}}{v}+\mathbf{U}_{R}^{\dagger} \mathbf{M}_{N} \mathbf{U}_{R}^{*} \frac{\left(\mathbf{Z}_{S}\right)_{k 2}}{w}\right] \\
& \boldsymbol{\Gamma}_{\sigma_{k} \nu \nu}^{L}=-\left[\left(\mathbf{M} \mathbf{U}_{L}^{\dagger} \mathbf{U}_{L}+\mathbf{U}_{L}^{T} \mathbf{U}_{L}^{*} \mathbf{M}\right) \frac{\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 1}}{v}+\mathbf{U}_{R}^{\dagger} \mathbf{M}_{N} \mathbf{U}_{R}^{*} \frac{\left(\mathbf{Z}_{\mathrm{G}}\right)_{k 2}}{w}\right]
\end{aligned}
$$

Neutrino mass matrix at one-loop order
calculation is simple conceptually self energy can be decomposed as

$$
\mathrm{i} \boldsymbol{\Sigma}(p)=\mathbf{A}_{L}\left(p^{2}\right) \not p P_{L}+\mathbf{A}_{R}\left(p^{2}\right) \not p P_{R}+\mathbf{B}_{L}\left(p^{2}\right) P_{L}+\mathbf{B}_{R}\left(p^{2}\right) P_{R}
$$

and

$$
\delta \mathbf{M}_{L}=\mathbf{U}_{L}^{*} \mathbf{B}_{L}(0) \mathbf{U}_{L}^{\dagger}
$$

takes contributions from

with Feynman rules given in the Appendix

Neutrino mass matrix at one-loop order

calculation involves "miracles" technically

 neutral vectors - with notation $\mathbf{m}_{l}^{(n)}=\operatorname{diag}\left(\frac{m_{1}^{n}}{R^{2}-m_{1}^{2}}, \ldots, \frac{m_{6}^{n}}{R^{2}-m_{c}^{2}}\right)$:$$
\delta \mathbf{M}_{L}^{V}=\mathrm{i} e^{2}\left(C_{V \nu \nu}^{L}-C_{V \nu \nu}^{R}\right)^{2} \int \frac{\mathrm{~d}^{d} \ell}{(2 \pi)^{d}} \mathbf{U}_{L}^{*}\left[\frac{d \mathbf{m}_{\ell}^{(1)}}{\ell^{2}-M_{V}^{2}}+\frac{\mathbf{m}_{\ell}^{(3)}}{M_{V}^{2}}\left(\frac{1}{\ell^{2}-\xi_{V} M_{V}^{2}}-\frac{1}{\ell^{2}-M_{V}^{2}}\right)\right] \mathbf{U}_{L}^{\dagger}
$$

scalars:

$$
\delta \mathbf{M}_{L}^{S_{k}}=\mathrm{i} \int \frac{\mathrm{~d}^{d} \ell}{(2 \pi)^{d}} \mathbf{U}_{L}^{*} \mathbf{M m}_{\ell}^{(1)} \mathbf{M} \mathbf{U}_{L}^{\dagger}\left(\frac{\left(\mathbf{Z}_{S}\right)_{k 1}}{v}\right)^{2} \frac{1}{\ell^{2}-M_{S_{k}}^{2}}
$$

Goldstones:

$$
\delta \mathbf{M}_{L}^{\sigma_{V}}=-\mathrm{i} e^{2}\left(C_{V \nu \nu}^{L}-C_{V \nu \nu}^{R}\right)^{2} \int \frac{\mathrm{~d}^{d} \ell}{(2 \pi)^{d}} \mathbf{U}_{L}^{*} \frac{\mathbf{m}_{\ell}^{(3)}}{M_{V}^{2}} \mathbf{U}_{L}^{\dagger} \frac{1}{\ell^{2}-\xi_{V} M_{V}^{2}}
$$

gauge terms cancel

Numerical estimates

Eigenvalues of the matrix F as a function of the mass of the boson in the loop $m_{\text {loop, }}$, assuming m_{1} tree $=$ $0.01 \mathrm{eV}, \mathrm{m}_{4}$ tree $=30 \mathrm{keV}, \mathrm{m}_{5}$ tree $\approx \mathrm{m}_{6}$ tree $=2.5 \mathrm{GeV}$, and normal neutrino mass hierarchy
eigenvalues can be large, but coupling suppression tames the relative correction to the tree-level mass below percent level

Numerical estimates for the mass of Z^{\prime} boson in logarithmic ($g y^{\prime}, g z^{\prime}$) plane

- assume large mixing in the scalar sector $\sin \theta_{S}=\mathrm{O}(0.1)$
- Z^{\prime} mass and Goldstone mixing are fixed by the gauge couplings $g_{y}{ }^{\prime}=\gamma_{y}{ }^{\prime} g_{\mathrm{L}}$ and $g_{z}{ }^{\prime}$ and ratio of VEVs, $\tan \beta \equiv \omega / v$
- $M z^{\prime} \in[20,200] \mathrm{MeV}$, relevant mass region for the super-weak model to reproduce the dark matter relic density [Seller et al: arXiv:2104.11248]

Numerical estimates

$\left|\sin \theta_{G}\right|$ in logarithmic $\left(g y^{\prime}, g z^{\prime}\right)$ plane

- hence a conservative upper limit: $\left|\sin \theta_{G}\right|<10^{-6}$
- then

$$
\begin{aligned}
& e^{2}\left(C_{Z \nu \nu}^{L}-C_{Z \nu \nu}^{R}\right)^{2}=\cos ^{2} \theta_{G} \frac{M_{Z}^{2}}{v^{2}} \sim \mathrm{O}\left(10^{-1}\right) \\
& e^{2}\left(C_{Z^{\prime} \nu \nu}^{L}-C_{Z^{\prime} \nu \nu}^{R}\right)^{2}=\sin ^{2} \theta_{G} \frac{M_{Z^{\prime}}^{2}}{v^{2}} \sim \mathrm{O}\left(10^{-19}\right) \times\left(\frac{M_{Z^{\prime}}}{100 \mathrm{MeV}}\right)^{2}
\end{aligned}
$$

Numerical estimates

$$
\left(\delta \mathbf{M}_{L}\right)_{i j}<\mathrm{O}\left(10^{-7}\right) \mathrm{eV}+\mathrm{O}\left(10^{-21}\right) \times\left(\frac{M_{Z^{\prime}}}{100 \mathrm{MeV}}\right)^{2} \mathbf{F}_{i j}\left(M_{Z^{\prime}}^{2}\right)
$$

Matrix elements F_{ij} as a function of the mass $\mathrm{m}_{\text {loop }}$ of the boson in the loop are confined to the blue band, assuming normal neutrino mass hierarchy, with vertical bands showing the relevant mass regions where the masses of the bosons in the loop lie. $144<m_{s} / G e V<558$, requiring stability of the vacuum. m_{1} tree $=0.01 \mathrm{eV}$, $m_{4}{ }^{\text {tree }}=30 \mathrm{keV}, \mathrm{m}_{5}$ tree $\approx \mathrm{m}_{6}{ }^{\text {tree }}=2.5 \mathrm{GeV}$

