
Mainly based on work with Keith Dienes arXiv:2106.04622 and related to …  

•w/ Dienes+Mavroudi Phys.Rev. D 91, (2015) 126014, arXiv:1502.03087  

•SAA JHEP 1611 (2016) 085, arXiv:1609.01311  

•Aaronson, SAA, Mavroudi, Phys. Rev. D 95, (2016) 106001, arXiv:1612.05742  

•w/ Stewart, Phys.Rev.D 96 (2017) 10, 106013 arXiv:1701.06629 

•w/ Dienes+Mavroudi Phys.Rev.D 97 (2018) 12, 126017 arXiv: 1712.06894

Understanding the Higgs mass in 
string theory
Steve Abel (IPPP), Corfu 08/21

http://arxiv.org/abs/arXiv:2106.04622
http://arxiv.org/abs/arXiv:1502.03087
http://arxiv.org/abs/arXiv:1609.01311
http://arxiv.org/abs/arXiv:1612.05742
http://arxiv.org/abs/arXiv:1701.06629
https://arxiv.org/abs/1712.06894


Motivation: key questions for the UV completion
Effective field theories leave many unsolved problems for scalars like the Higgs: 
e.g. hierarchy problem (essentially the statement that the EFT is very badly behaved)

Coleman-Weinberg effective potential:

where masses M(z) are themselves functions of the field z  and the 
cut off            is …???


The Higgs is maximally sensitive to both UV and IR: think of it less 
as a problem and more as a “canary in the coal mine”
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Q: “Suppose nature is a closed string theory. It is finite entirely because of its special symmetries 
(modular invariance) and that would be true even today. What does it tell us about the Higgs?”

Motivation: key questions for the UV completion

• In most “string phenomenology” you start supersymmetric then jump to the EFT, and “abandon the 

beauties of number theory”, which is what makes it all finite (NOT SUSY!!). 

• But the world today cannot be blind to the beauties of number theory because it IS finite! 

• String theory is UV/IR mixed so we will need to figure out how an EFT emerges from the string theory? 

• Unless we missed it, no one ever wrote down the string equivalent of the CW effective potential!  

• Warning: in this talk (much as in CW) I do not favour any particular model. I will just draw general 

conclusions about the properties the Higgs mass must have (even today) due to the theory’s finiteness. 

What would we need to do to answer this question?



• Background - the effective potential in a stringy way 


• Modular invariance — the ultimate UV/IR mixer


• The Higgs mass and renormalisation

Layout



Let’s look at the one-loop cosmological constant (a.k.a. effective potential). Simplest way to derive it 

is as a trivial loop of massive propagators of mass M(z) as follows:

1. Background: the effective potential in a stringy way

For our discussion this can be written in a “stringy way” using a Schwinger worldline parameter, t : 
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Performing the integral of g indeed gives the effective potential:
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From which we can infer the running Higgs mass-squared from the double derivative:



Let’s understand how string theory does this but at the same time gets to be “finite”: 

Revisit the cosmological constant but now in string theory

2. Modular invariance

Closed string theory instead maps out a torus:

Or: the ultimate UV/IR mixer
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The full action therefore combines the bosonic and supersymmetric actions. In the conformal and

light-cone gauges

SLC = ⌧
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where J = 1 . . .16 counts the complex right-moving fermions, and j = 1 . . .8 counts the left-moving
transverse degrees of freedom. It is not hard to see that the appropriate constraint equations Tab =
Ga = 0 must be the sum of the bosonic contribution from the right movers and the supersymmetric
contribution from the left movers.

The technique of constructing the string models with all the additional degrees of freedom

expressed as world-sheet fermions is known as the fermionic formulation. It was developed in

refs.[7, 8, 9]. In this discussion I shall use the notation of ref.[8]. It is important to realize that the

consistent models in 10-D are of course independent of the formalism (i.e. fermionic or bosonic)

used to derive them. The fermionic formulation can also be used to develop 4-D models and this

in fact was the point of the original papers. There it gives a slightly unusual viewpoint for model

building; it disgards the geometrical interpretation of the 4-D models as compactified 10-D models,

and regards the world-sheet fermions simply as extra degrees of freedom thrown in to cancel the

conformal anomaly. Later I shall return to the 4-D models in this formalism, but for the moment

let us concentrate on our task of finding the consistent models in 10 dimensions.

6.1 Modular Invariance - the tool to tell us which models are consistent

We now turn to the question that I alluded to at the end of the previous section, namely how

to determine the consistent models. The trick is to start doing some perturbation theory. If we go

to complicated enough diagrams, some putative model will give inconsistent answers (for example

more than one answer for the same physical amplitude) whereupon it can be discarded. In fact

we only need to go as far as vacuum � vacuum amplitudes (one loop partition functions) with no
vertex operators to determine all the consistent 10 dimensional models. The relevant diagram are

shown below.

Z0= trivial Z1 Constrains model Z2..Minor additional constraints

r

r

1

2

The reason that the one loop diagram is so constraining is that it must be modular invariant.

Consider the one loop diagram for a particular shape (i.e. given by the length of the two cycles)

of torus. First recall that going to the conformal gauge (γab = eφηab) leaves a Weyl invariance in
the metric (since there is no φ dependence). This allows one by a suitable rescaling to go to a flat

metric. Now consider the integration region itself: this is now planar, so the world sheet integral is

over the region shown in the diagram

29
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The torus is defined by two complex parameters

z = z + τ1n + τ2m (6.4)

where n,m are integers. Lines with strokes are identified. But we can still use the Weyl invariance
to get rid of one of the parameters. i.e. z � λ z is still a symmetry of the 2D theory and we can

reduce it to

z = z + 2πn + 2πmτ (6.5)

so that any point is defined by the coordinates σ1 ,σ2 � (0,2π] where z = σ1 + τσ2. The param-

eter τ defining the torus is called the Teichmüller parameter: it should not be confused with the

world-sheet coordinate τ . There is an additional invariance under large reparameterizations. Any

reparameterization that describes the same torus has to be moded out to avoid over-counting.

τ � τ + 1 redefines torus :

τ

0 1

τ+1

τ � ⌧1 /τ swops σ1 and σ2 and just reorients torus

These two transformation generate the modular group, PSL(2,Z)

τ �
aτ + b
cτ + d

a,b, c,d � Z ; ad ⌧ bc = 1 (6.6)

For a particular value of τ we get a corresponding Z1(τ ). The total one loop partition function
then requires us to integrate over all independent values of this parameter

Z1 =
�

C

d2τ

Im(τ )2
Z1(τ ) (6.7)

where C is the fundamental region (i.e. the region of τ left after moding out the modular transfor-

mations). The measure of the integration renders the integration modular invariant, and so in order

to make sense our integrand should itself be modular invariant.

Exercise: using the transformations above show that dτdτ / Im(τ )2 is modular invariant.

30

Let’s understand how string theory does this but at the same time gets to be finite: 

Revisit the cosmological constant but now in string theory

Closed string theory instead maps out a torus:

can be mapped to parallelogram in complex plane, 

with single parameter        , but theory invariant 

under modular transformations:
⌧
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model inD dimensions with partition function Z(⌧), the correspondingD-dimensional one-loop vacuum energy density
may be evaluated as

⇤(D)
⌘ �

1
2 M

D

Z

F

d2⌧

⌧22
Z(⌧) (2.8)

where D is the number of uncompactified spacetime dimensions, where M is the reduced string scale defined above,
and where

F ⌘ {⌧ : |Re ⌧ |  1
2 , Im ⌧ > 0, |⌧ | � 1} (2.9)

is the fundamental domain of the modular group. In general, it is convenient to regard the fundamental domain F as
being composed of two separate regions, an “upper” region with ⌧2 � 1 and a “lower” region with ⌧2 < 1. The upper
region extends across the full width �1/2  ⌧1  +1/2; in this region, the ⌧1-integration then guarantees that only
the states with m = n survive as contributors to ⇤. However, even the unphysical states with m � n 2 ZZ 6= 0 will
make contributions to ⇤ through integration over the lower region within F . Thus, all states — both physical and
unphysical — are relevant in calculations of ⇤.

In the following we shall usually disregard the prefactor 1
2M

D in Eq. (2.8) and regard ⇤ as a pure number, but
we note that a proper definition does indeed require it. We shall, however, retain the minus sign in Eq. (2.9) in all
discussions below. Furthermore, we observe that if a D-dimensional string with partition function Z(D) is compactified
on a d-dimensional volume Vd, resulting in a (D� d)-dimensional string with partition function Z(D�d), then ⇤(D�d)

will typically diverge as Vd ! 1. In such cases, we can alternatively define ⇤̃(D�d)
⌘ ⇤(D�d)/Vd; note that ⇤̃(D�d)

continues to describe the (D�d)-dimensional theory but now has the mass dimensions appropriate for aD-dimensional
[rather than (D � 1)-dimensional] vacuum energy density. Substituting the result in Eq. (2.3), we then find that

⇤(D) = lim
Vd!1

⇤̃(D�d) . (2.10)

The same relations also hold in the Vd ! 0 limit, provided we replace Vd with the appropriate T-dual volume Ṽd.
It will be important for later purposes to have some sense of the relative sizes of the contributions to the cosmological

constant (2.8) that come from individual (m,n) string states. In general, a given state with (ER, EL) = (m,n)
contributes a term qmqn to the partition function, thus making a contribution proportional to

I(D)
m,n ⌘

Z

F

d2⌧

⌧22
⌧1�D/2
2 qmqn (2.11)

to the cosmological constant. Note that modular invariance requires that m�n 2 ZZ. Note that for unphysical states
(i.e., states with m 6= n), the modular integral in Eq. (2.11) vanishes in the rectangular upper (⌧2 � 1) portion of the
fundamental domain F but nevertheless receives contributions from the curved lower (⌧2 < 1) portion.

It is a common supposition that massless physical states (i.e., states with m = n = 0) make the dominant
contributions to vacuum amplitudes. Indeed, it is easy to verify that Inn ⇠ e�4⇡n for large n, confirming the
trend that the contributions from heavy physical states are exponentially suppressed relative to those from lighter
states. [As we shall discuss, the numbers of states at each mass level actually grow as a function of the mass, like
exp(c

p
n). Ultimately this is not su�cient to overcome the mass-suppression factor exp(�4⇡n), which is why the

sum over contributions from increasingly massive states is ultimately convergent.] One can also demonstrate that
the contributions from states with m 6= n are generally suppressed relative to those with m = n, even for fixed total
energy/mass m+ n.

However, for relatively light states, we find:

m n I(10)m,n I(4)m,n

0 �1 �14.258 �12.192

1 �1 0.014 0.010

1/2 �1/2 �0.038 �0.032

0 0 0.257 0.549

2 �1 �2.569⇥ 10�5
�1.803⇥ 10�5

3/2 �1/2 4.682⇥ 10�5 3.456⇥ 10�5

1 0 �1.029⇥ 10�4
�8.463⇥ 10�5

1/2 1/2 3.021⇥ 10�4 3.304⇥ 10�4

(2.12)

= �1

2
MD

Z

F

d2⌧

⌧
D
2 +1
2

X

m,n

amnq
mqn

⇡ �1

2
MD

Z µ�2
IR

⇤�2
UV

d⌧2

⌧
D
2 +1
2

X

n

anne
�2⇡⌧2m

2
n

Counts physical (level matched) states weighted 

by statistics at each level  

q = e2⇡i⌧

M�2
UV

e�⇡⌧2↵
0M2

n

So	then	we	have	to	integrate	over	all	inequivalent	tori,	i.e.	over	⌧

F



Due to modular invariance: there’s an important way to rewrite this as a supertrace over the 
infinite tower of physical states. Much more natural and general for what we want to do. 
Superficially even looks similar to the field theory:

8

However it is ultimately and very generally related to worldsheet modular-invariance. In particular we do not need to
determine the precise shift in the metric induced by a Higgsing in order to evaluate the effect on the mass-squared.
Moreover this also implies that effect persists regardless of the IR physics. Typically a string construction will invoke
both perturbative and non-perturbative mechanisms in order to achieve various outcomes at low-energy, such as the
stabilisation of compact dimensions, or the Standard Model content. There is other known non-perturbative physics
that occurs at low energies, such as QCD confinement. While these processes may change the vacuum energy, and
even the most appropriate effective field theory description, they cannot change the modular anomaly, which is always
cancelled by gravitational degrees of freedom. Thus Eq.(2.30) always holds, even today, provided all contributions to
the cosmological constant (even nonperturbative ones) are generated within a framework where the UV completion
looks like (2.2).

This has interesting implications if the cosmological constant is dominated by its one-loop contributions. For
example as we shall see the leading contributions to the remaining terms are discrete (being dominated by charges
and group-theoretical Casimir traces). To avoid large instabilities one might suppose that the leading contribution
must be zero or positive for all scalars in a stable (or possibly long-lived metastable) vacuum. Therefore, if modular
invariance is responsible for maintaining UV finiteness, the present day cosmological constant is a lower bound on the
mass-squared of any such Higgs scalars in the theory. (Of course axions behave differently because they are protected
by shift-symmetries and do not give mass to any states).

III. SUPERTRACE RELATIONS FOR THE C.C. AND HIGGS POTENTIAL

Now let us extend the result above to develop a complete expression for the rest of the scalar mass-squared terms.
We begin with a well-known but remarkable supertrace formula for closed strings, namely that in a theory with
modular invariance in 4 large space time dimensions, the one-loop cosmological constant in (2.4) can be written as
supertrace over the entire tower of physical string states of mass M :

⇤(1) =
1

24
M

2STrM2 . (3.1)

The supertrace on the right-hand side of this expression is over all the “physical” states in the entire theory. Eq.(3.1)
is exactly equivalent to (2.4) for any modular invariant theory that is unitary and has no tachyons. As we shall see,
it can also be a parametrically good approximation in theories such as the heterotic theory that contain unphysical
tachyons.

Let us first discuss the meaning of (3.1), and how it comes about. At first sight, given its obvious similarity to the
usual quadratic divergence one finds in the Coleman-Weinberg potential of field theory, one might find it unsurprising.
However it is this very similarity that makes (3.1) remarkable, because the nature of the supertrace is very different
from the one that appears in the effective field theory: what is surprising is that eq.(3.1) sums over the “physical” states
of the entire infinite spectrum of the UV complete theory. A second reason to find eq.(3.1) surprising is that it involves
a trace over the physical states only, so it is not obvious that it corresponds to (2.4), or in fact that it corresponds
to a modular invariant integral at all. Indeed in the textbook calculation of the one-loop cosmological constant,
the integration over the canonical fundamental domain F gets contributions from both physical and unphysical (i.e.
non-level matched) states (due to the curved boundary of F). Nevertheless (3.1) says that the end result can be
expressed in terms of just the physical spectrum.

There are various ways to derive (3.1). It was originally deduced in [14] from [10]. However for a number of
reasons it is useful to include a derivation of it in this paper. This is partly because the original work only obliquely
treated issues to do with the regularisation and convergence of the supertrace. The discussion of modular integrals
has been improved in this context in recent years, especially in refs.[11]. It will also be useful for the mass-squareds,
which unlike the cosmological constant are subject to renormalisation. This will follow almost immediately. For the
derivation we will need the result of Rankin-Selberg (RS) (see [12, 34–36, 93] for a comprehensive discussion). The
details of the derivation are included in Appendix A, and we will now apply this result directly to ⇤(1) to prove (3.1).

The RS result can be expressed as follows. We are interested in a integrals of modular invariant functions F (⌧)
over the fundamental domain of the modular group:

I =

Z

F
dµF (⌧) . (3.2)

The function F need not be holomorphic (as of course our functions will not be), but it should decay sufficiently
rapidly as ⌧ ! i1. The “physical” level-matched terms in F correspond to the constant piece in its ⌧1-Fourier
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FIG. 3: Degeneracies of physical states for the interpolating model in Eq. (3.17) with a = 1 (upper left), a = 0.3 (upper
right), a = 0.25 (lower left), a = 0.125 (lower right). Within each plot, data points are connected in order of increasing
worldsheet energy n. In all cases we see that surpluses of bosonic states alternate with surpluses of fermionic states as
we proceed upwards in n; this behavior is the signal of an underlying “misaligned supersymmetry” which exists within all
modular-invariant non-supersymmetric tachyon-free string theories and which is ultimately responsible for the finiteness of
closed strings — even in the absence of spacetime supersymmetry. For R =

√
α′ (or a = 1), we see that this oscillation between

bosonic and fermionic surpluses occurs within the exponentially growing envelope function |ann| ∼ ec
√

n associated with a
Hagedorn transition. However, as the compactification radius increases (or equivalently as a → 0), we see that a hierarchy
begins to emerge between the oscillator states and their KK excitations; the oscillator states continue to experience densities
of states which are exponentially growing as functions of n, but their corresponding KK excitations are densely packed within
each interval (n, n + 1) and, as expected, exhibit constant state degeneracies.

A. Leading terms

First, since we are assuming that SUSY is restored in the R → ∞ limit, we know that Z(2) = −Z(1) at the level
of their q-expansions. Since our main interest here is in the numerical behavior of Λ, we are only concerned with the
q-expansions that these functions have, and consequently we shall take Z(2) = −Z(1) without further comment. As a
result, our general partition in Eq. (3.6) takes the form

Zstring(R) = Z(1) [E0(R) − E1/2(R)] + Z(3) O0(R) + Z(4) O1/2(R) . (4.1)

Next, we observe that for large R (or small a), all states within the O0 and O1/2 sectors are extremely heavy as
a result of non-vanishing winding modes n $= 0. In general, the contributions from heavy states to the cosmological
constant are exponentially suppressed. As a result, contributions from such sectors will not generally yield the leading
behavior for Λ, and we will need not consider such sectors further. This then leaves the contributions from the E0,1/2

sectors:

Zstring(R) = Z(1) [E0(R) − E1/2(R)] + ... (4.2)

As a result, we see that the leading behavior generally depends on the q-expansion of Z(1) alone, and does not depend
on Z(3) or Z(4).

Let us assume that massless states make the dominant contributions to Λ in theories that are devoid of physical
tachyons. This is the implicit assumption made by Itoyama and Taylor, and also by Antoniadis, when they derive
their results for Λ, as is clear from the fact that their leading results depend on the numbers of massless bosons and
fermions. Therefore, we shall restrict our attention to the leading contributions to Λ which come from the massless
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must be zero or positive for all scalars in a stable (or possibly long-lived metastable) vacuum. Therefore, if modular
invariance is responsible for maintaining UV finiteness, the present day cosmological constant is a lower bound on the
mass-squared of any such Higgs scalars in the theory. (Of course axions behave differently because they are protected
by shift-symmetries and do not give mass to any states).

III. SUPERTRACE RELATIONS FOR THE C.C. AND HIGGS POTENTIAL

Now let us extend the result above to develop a complete expression for the rest of the scalar mass-squared terms.
We begin with a well-known but remarkable supertrace formula for closed strings, namely that in a theory with
modular invariance in 4 large space time dimensions, the one-loop cosmological constant in (2.4) can be written as
supertrace over the entire tower of physical string states of mass M :

⇤(1) =
1

24
M

2STrM2 . (3.1)

The supertrace on the right-hand side of this expression is over all the “physical” states in the entire theory. Eq.(3.1)
is exactly equivalent to (2.4) for any modular invariant theory that is unitary and has no tachyons. As we shall see,
it can also be a parametrically good approximation in theories such as the heterotic theory that contain unphysical
tachyons.

Let us first discuss the meaning of (3.1), and how it comes about. At first sight, given its obvious similarity to the
usual quadratic divergence one finds in the Coleman-Weinberg potential of field theory, one might find it unsurprising.
However it is this very similarity that makes (3.1) remarkable, because the nature of the supertrace is very different
from the one that appears in the effective field theory: what is surprising is that eq.(3.1) sums over the “physical” states
of the entire infinite spectrum of the UV complete theory. A second reason to find eq.(3.1) surprising is that it involves
a trace over the physical states only, so it is not obvious that it corresponds to (2.4), or in fact that it corresponds
to a modular invariant integral at all. Indeed in the textbook calculation of the one-loop cosmological constant,
the integration over the canonical fundamental domain F gets contributions from both physical and unphysical (i.e.
non-level matched) states (due to the curved boundary of F). Nevertheless (3.1) says that the end result can be
expressed in terms of just the physical spectrum.

There are various ways to derive (3.1). It was originally deduced in [14] from [10]. However for a number of
reasons it is useful to include a derivation of it in this paper. This is partly because the original work only obliquely
treated issues to do with the regularisation and convergence of the supertrace. The discussion of modular integrals
has been improved in this context in recent years, especially in refs.[11]. It will also be useful for the mass-squareds,
which unlike the cosmological constant are subject to renormalisation. This will follow almost immediately. For the
derivation we will need the result of Rankin-Selberg (RS) (see [12, 34–36, 93] for a comprehensive discussion). The
details of the derivation are included in Appendix A, and we will now apply this result directly to ⇤(1) to prove (3.1).

The RS result can be expressed as follows. We are interested in a integrals of modular invariant functions F (⌧)
over the fundamental domain of the modular group:

I =

Z

F
dµF (⌧) . (3.2)

The function F need not be holomorphic (as of course our functions will not be), but it should decay sufficiently
rapidly as ⌧ ! i1. The “physical” level-matched terms in F correspond to the constant piece in its ⌧1-Fourier

• This	crazy	spectrum	has	finite															!!	!													



How	does	this	iden,ty	emerge?:	We	claim	this	supertrace	is	equal	to:
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However it is ultimately and very generally related to worldsheet modular-invariance. In particular we do not need to
determine the precise shift in the metric induced by a Higgsing in order to evaluate the effect on the mass-squared.
Moreover this also implies that effect persists regardless of the IR physics. Typically a string construction will invoke
both perturbative and non-perturbative mechanisms in order to achieve various outcomes at low-energy, such as the
stabilisation of compact dimensions, or the Standard Model content. There is other known non-perturbative physics
that occurs at low energies, such as QCD confinement. While these processes may change the vacuum energy, and
even the most appropriate effective field theory description, they cannot change the modular anomaly, which is always
cancelled by gravitational degrees of freedom. Thus Eq.(2.30) always holds, even today, provided all contributions to
the cosmological constant (even nonperturbative ones) are generated within a framework where the UV completion
looks like (2.2).

This has interesting implications if the cosmological constant is dominated by its one-loop contributions. For
example as we shall see the leading contributions to the remaining terms are discrete (being dominated by charges
and group-theoretical Casimir traces). To avoid large instabilities one might suppose that the leading contribution
must be zero or positive for all scalars in a stable (or possibly long-lived metastable) vacuum. Therefore, if modular
invariance is responsible for maintaining UV finiteness, the present day cosmological constant is a lower bound on the
mass-squared of any such Higgs scalars in the theory. (Of course axions behave differently because they are protected
by shift-symmetries and do not give mass to any states).

III. TALK STUFF

The RS result can be expressed as follows. We are interested in a integrals of modular invariant functions Z(⌧)
over the fundamental domain of the modular group:

⇤(1) = �
M

4

2

Z

F
dµZ(⌧) . (3.1)

The function F need not be holomorphic (as of course our functions will not be), but it should decay sufficiently
rapidly as ⌧ ! i1. The “physical” level-matched terms in F correspond to the constant piece in its ⌧1-Fourier
expansion. This can be evaluated with a ⌧1 integral:

dphys(⌧2) =

Z 1
2

� 1
2

d⌧1 Z(⌧) . (3.2)

To write I in terms of these level-matched terms, we first construct the Rankin-Selberg transform,

R
?(F, s) =

Z 1

0

d⌧2
⌧2�s
2

⇡�s�(s) ⇣(2s) dphys(⌧2) , (3.3)

Then the RS result in Appendix A says that the integral I is related to the residue of R? at s = 1 as

I = 2Ress=1(R
?(F, s)) . (3.4)

Applying this to ⇤(1), we put F (⌧) = �
M4

2 Z(⌧) which gives

g(⌧2) = �
M

4

2
⌧1�D/2
2 STr e�⇡⌧2↵

0M2

. (3.5)

Inserting this into (4.4) we find

R
?(F, s) = �

M
4

2⇡2
�(s)�(s� 2) ⇣(2s) STr (⇡2↵0M2)2�s , (3.6)

and then extracting twice the residue at s = 1, as in (4.6), gives I in the desired form of a sum over physical states,
namely eq.(4.1).

But	the	Str	expression	is	in	terms	of	physical	(level-matched)	states,	i.e.	the	par*cle	parRRon	funcRon	which	is	
just	what	we	are	leS	with	aSer	doing	the	tau	1	integral:

d2⌧

⌧22

g(⌧2) = �M4

2

Z 1
2

� 1
2

d⌧1Z(⌧)

= �M4

2
⌧�1
2 Stre�⇡⌧2↵

0M2

In	other	words	the	whole	integral	must	have	been	recast	as	the	integral	of	a	related	funcRon	over	the	“criRcal	strip”	
(by	various	number	theory	tricks:	unfolding,	Rankin-Selberg	method	(1940)	etc)



The	incredible	fact	that	this	infinite	supertrace	is	finite	can	then	be	put	down	to	the	fact	that	the	parRcle	parRRon	
funcRon	…		

In	other	words	Str(1)=0.	In	other	words	the	ne[	spectrum	“behaves”	like	a	2	dimensional	theory	in	the	UV.	Unlike	
supersymmetry	however	there	is	no	level	by	level	cancellaRon	and	the	ne[	(Boson-Fermion)	numbers	of	states	in	
each	level	are	completely	crazy!

…	behaves	as	follows	in	the	UV	(i.e.	as																		):

g(⌧2) ⇠ ⌧�1
2 Str (e�⌧2M

2

) �! c0



Note the important difference from the string-theory-textbook picture. There is not really a 
single “IR cusp”. All cusps contribute equally to the integral: 

All	cusps	are	equivalent	under	modular	transformaRons.	In	a	modular	invariant	integral	there	is	only	IR:	
there	is	no	“ultra	UV”	anywhere.



3. The Higgs mass 
First assume that the partition function is a function of the higgs. Then begin with the naive expression: 

So double-differentiating the Z that is in K by z, the relevant integral is (almost) given by just inserting the M 

Almost but not quite: the shifts in Z induced by the Higgs correspond to coordinate shifts of the modular forms 
(actually the Higgs is a linear combination of these coordinates). For the Higgs double-derivative to be modular 
covariant we require a modular completion which is found to be universal:

Note that this is cosmological constant contribution due to the modular anomaly of the original naive X. This 
universal term would in most practical cases be identified as a Higgs dependent shift in the volume modulus of 
the compactification space (e.g. 10D —> 4D compactification) with p being the quadratic Casimir (e.g. Cardoso, 
Lust, Mohaupt; Antoniadis, Taylor).

X �! X +
⇠

4⇡2M2 ⇠ = �Tr(T21T12)



So. Putting this into the integral we get … ta da !                                                

m2
� STrM=0(@�M

2)2 ⇥1+ STrM>0(@�M
2)2 ⇥ 0

What? Wait! Of course the integral must still be logarithmically divergent for massless states! 



Regularisation and renormalisation

The quartic terms are precisely those terms that should be logarithmically dependent on RG scale. But 
we didn’t yet put in any physical RG scale! So at the moment the integral returns infinity if the state is 
massless (or zero if it is massive).

Generally need to find a way to regulate the theory at some IR scale n to extract a physical “running” 



To do this, as I said at the start, traditionally, we would think of stringy “threshold corrections” and 
match them to an effective field theory (EFT) whose contributions would then be subtracted from the 
string integral as if they were exactly massless (Zagier 1981). But that traditional approach …


• could never yield a fully modular invariant answer as the EFT is by definition not modular invariant

• could not give “Wilsonian renormalisation” (i.e. address the question of how small and large energy 

scales get separated): my choice of if the neutrino is light enough to be called “massless” and be in 
the effective theory is completely arbitrary and will always break modular invariance

F

IR

UV

⌧
Fundamental domain F

Integrand suppressed in a modular invariant way here 

Instead we must abandon the idea of selecting an EFT by hand, and introduce a modular 
invariant RG cut-off procedure instead:  

bI(µ) =
Z

F
dµG(µ, ⌧, ⌧)F (⌧, ⌧)bd2⌧

⌧22



bI(µ) =
Z

F
dµG(µ, ⌧, ⌧)F (⌧, ⌧)Required properties of “Wilsonian” regulator, G :

• a) Is itself a modular function

• b) Should look roughly like this ….  
 G

⌧2
⌧⇤2 = 1/(↵0µ2)

G = 1

• c) As our goal is to write everything as a supertrace which ultimately means an integral over the 
critical strip …This only makes sense if actually all the cusps are crushed                                                  
equally. In other words: all the cusps are equivalent IR cusps, implying…


⌧⇤2 ⌘ 1/⌧⇤2 =) G(µ, ⌧, ⌧) = G(M2
s /µ, ⌧, ⌧)

b

b
b

b b

d2⌧

⌧22
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We can adapt a (geometrically derived) modular invariant regulator that already 
exists:  (Kiritsis, Kounnas, Petropoulos, Rizos)

• Take the circle partition function with radius defined by parameter                               :                             


• Then a suitable cut-off function that obeys all these properties is …


bG(a, ⌧) = 2a2

1 + 2a2
@

@a
(Zcirc(2a, ⌧)� Zcirc(a, ⌧))

=) ⌧⇤2 = 1/2a2µ2(a) =
2a2

↵0



The result is a smooth modular invariant running answer: 

Complicated infinite sum of Bessel functions, but it has the following magical behaviour … 


bm2
� =

⇠

4⇡2

b⇤(µ)
M2

+ @2
�
b⇤(µ)

This is a fully UV complete effective potential which holds for any modular invariant theory.

Below the mass of all states (that couple to the Higgs) they do not contribute to the running.

At some intermediate energy scale the result is a sum over all states as if they had all logarithmically 
run up from their mass. 

It is by construction symmetric around the string scale.
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This is a fully UV complete effective potential which holds for any modular invariant theory.

Below the mass of all states (that couple to the Higgs) they do not contribute to the running.

At intermediate energy scales the result is a sum over all lighter states as if they had all logarithmically 
run up from their mass. 

It is by construction symmetric around the string scale.

 




loglightest

EFT approx.

Log or power law running

5. Conclusions

• We have developed a general supertrace formula for the Higgs, that plays the role for all generic 
modular invariant theories that the effective potential plays in field theory.


• A modular invariant regulator provides a natural “Wilsonian energy cut-off” and a definition of RG 
scale. Gives meaning where the EFT fails, and retains the predictivity of the UV complete theory.


• The stringy CW potential is the sum of an infinite tower of particle potentials.


• Operators such as the Higgs mass can be thought of as “running” to its predetermined IR value: this 
is actually both a UV and IR asymptote as it should be.    


• The Weak/Planck and cosmological constant hierarchy problems are connected in this one operator.


• Relevant for many old and new pheno ideas: e.g. a stringy naturalness (Veltman) condition:

Str @2
�M
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