

Mass hierarchies from residual modular symmetries

in collaboration with S.T. Petcov, P.P. Novichkov JHEP 04 (2021) 206 [2102.07488]

João Penedo (CFTP, Lisbon)

Corfu Workshop on the SM and Beyond

2 September 2021

Modular flavour symmetries

Why?

How?

What?

The flavour puzzle

adapted from R. Toorop's PhD thesis

The flavour puzzle

3v flavour paradigm

Masses: ordering

Mixing: parameterisation

3v flavour paradigm (cont.)

from Capozzi et al. 1804.09678, see also 1811.05487, **2003.08511**

3v flavour paradigm (cont.)

from Capozzi et al. 1804.09678, see also 1811.05487, **2003.08511**

Is there an organizing principle behind this?

Is there an organizing principle behind this?

Flavour symmetries

For reviews, see: Altarelli and Feruglio (2010), Ishimori et al. (2010), King and Luhn (2013), Petcov (2017), Feruglio and Romanino (2019)

Problems with the usual approach

Non-Abelian discrete flavour symmetries

model-independent approaches relying on residual symmetries constrain mixing and the Dirac phase

Problems with the usual approach

Modular symmetry to the rescue!

Feruglio, 1706.08749 can constrain all: neutrino masses, mixing, Dirac and Majorana phases **SUSY** (holomorphicity) required for predictivity

see also 2010.07952

Modular symmetry to the rescue!

Modular symmetry to the rescue!

How?

The modulus

r may describe a torus compactification

In the **bottom-up** modular approach τ is a dimensionless **spurion**

The modulus

The modulus

The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{\mathcal{L}} \mathbf{\mathcal{L}} = SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

Presentation in terms of generators S, T, R:

$$S^2 = R, \quad (ST)^3 = R^2 = \mathbb{1}, \quad RT = TR$$

The modular group

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\mathbf{G} \Gamma \mathbf{b} \equiv SL(2, \mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$\tau \to -1/\tau$$

inverSion
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix};$$

$$\tau \to \tau + 1$$

Translation
$$R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix};$$

$$\tau \to \tau$$

Redundant

The modular group

$$\langle \tau \rangle \not\rightarrow \frac{a\tau + b}{c\tau + d}$$

$$\sum SL(2,\mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \det \gamma = 1 \right\}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} :$$

$$\tau \to -1/\tau$$

inverSion

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}:$$

 $\tau \to \tau + 1$

Translation

 $R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} :$ $\tau \to \tau$ Redundant

but can affect fields...

 $\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$

 $\psi \to \left(c\tau + d\right)^{-k} \rho(\gamma) \psi$

Weight $k \in \mathbb{Z}$

$$\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$$

Weight $k\in\mathbb{Z}$

"Almost trivial" representation of the modular group

$$\begin{split} \rho\Big(\Gamma(N)\Big) &= \mathbb{1} \\ \rho\Big(T\,\Gamma(N)\Big) &= \rho(T) \\ \rho\Big(S\,\Gamma(N)\Big) &= \rho(S) \\ \cdots \\ & \text{Feruglio, 1706.08749} \end{split}$$

N N A 4

$$\psi \to \left(c\tau + d\right)^{-k} \rho(\gamma) \psi$$

Weight $k \in \mathbb{Z}$

"Almost trivial" representation of the modular group

$$\rho \Big(\Gamma(N) \Big) = \mathbb{1}$$
$$\rho \Big(T \, \Gamma(N) \Big) = \rho(T)$$
$$\rho \Big(S \, \Gamma(N) \Big) = \rho(S)$$

. . .

Feruglio, 1706.08749

 $\mathcal{O}(\gamma)$ is effectively a representation of $\ \Gamma'_N\equiv\Gamma/\Gamma(N)$

$$\Gamma(N) \subset \mathbf{G} \Gamma \mathbf{b}$$

Principal congruence subgroup of level N

$$\Gamma(N) \equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

The finite modular groups

-	Γ'_N :	$\equiv \Gamma/\Gamma(N)$	behave like flavo	ur groups	
N	2	3	4	5	
Γ_N	S_3	A_4	S_4	A_5	- drop the R
Γ'_N	S_3	$A_4' \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A_5' \equiv SL(2,\mathbb{Z}_5)$	generator

The finite modular groups

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(\psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

Modular Forms,

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

 $\psi \to (c\tau + d)^{-k} \rho(\gamma) \psi$ $Y(\tau) \rightarrow (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau)$

Need modular forms

 $\psi \sim (\mathbf{r}, k)$

 $W \sim g(Y(\tau) \psi_1 \dots \psi_n)_1$

$$\psi \rightarrow \underbrace{(c\tau+d)^{-k} \rho(\gamma) \psi}_{Y(\tau)} \rightarrow \underbrace{(c\tau+d)^{k_Y} \rho_Y(\gamma) Y(\tau)}_{\begin{cases} k_Y = k_1 + \ldots + k_n \\ \rho_Y \otimes \rho_1 \otimes \ldots \otimes \rho_n \supset 1 \end{cases}}$$

N 2		3 4		5		Not so many available!		ble!
$egin{array}{ccc} \Gamma_N & S_3 \ \Gamma'_N & S_3 \end{array}$		$\begin{array}{c} A_4 \\ A_4' \equiv T' \end{array}$	$A_4 = C_4 = S_4$ $A_4' \equiv T' S_4' \equiv SL(2, \mathbb{Z}_4)$		$\begin{array}{c} A_5\\ A_5'\equiv SL(2,\mathbb{Z}_5) \end{array}$		A finite set of	
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k + 1		functions for each ky		(Y
Lowest-weight modular forms for each group:			$\Gamma_N^{(\prime)}$	$Y_{\mathbf{r}}^{(k)}$	Γ_2	$\simeq S_3$	$Y^{(2)}_{2}$	
		Γ_{z}^{\prime}	$A_3' \simeq A_4'$	$Y^{(1)}_{oldsymbol{\hat{2}}}$	Γ_3	$\simeq A_4$	$Y_{\bf 3}^{(2)}$	
		Γ_{2}^{\prime}	$S_4' \simeq S_4'$	$Y^{(1)}_{\mathbf{\hat{3}}}$	Γ_4	$\simeq S_4$	$Y^{(2)}_{\bf 2}, Y^{(2)}_{{\bf 3}'}$	
			$_5' \simeq A_5'$	$Y^{(1)}_{\mathbf{\hat{6}}}$	Γ_5	$\simeq A_5$	$\begin{array}{c} Y^{(2)}_{\bf 3},Y^{(2)}_{\bf 3'},\\ Y^{(2)}_{\bf 5} \end{array}$	

The modular forms

 $W \supset NN$

Let's build a modular-invariant term!

 $W \supset NN$

Let's build a modular-invariant term!

$$\Gamma_3 \simeq A_4$$

 $N \sim (\mathbf{3}, 1)$

Let's build a modular-invariant term!

 $W \supset NN$

Let's build a modular-invariant term!

 $W \supset NN$

$$M_N = \Lambda \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

so now we can build models...
Novichkov, JP, Petcov, Titov, 1811.04933

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

Novichkov, JP, Petcov, Titov, 1811.04933

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}} ,$$

<u>Procedure</u>: Fit couplings and *t* If

 $\min \chi^2(\tau, \, g'/g, \, g^2/\Lambda, \, \alpha, \beta, \gamma)$

Novichkov, JP, Petcov, Titov, 1811.04933

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$\begin{split} W &= \alpha \left(E_1^c L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_d + \beta \left(E_2^c L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_d + \gamma \left(E_3^c L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_d \\ &+ g \left(N^c L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_u + g \left(N^c L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_u + \Lambda \left(N^c N^c \right)_{\mathbf{1}} , \\ &\in \mathbb{C} \quad \text{only physical phase} \end{split}$$

<u>Procedure</u>: Fit couplings and *t*

 $\min \chi^2(\tau,\,g'/g,\,g^2/\Lambda,\,\alpha,\beta,\gamma)$

Novichkov, JP, Petcov, Titov, 1811.04933

Ingredients: Choose group, field content

 $\psi \sim (\mathbf{r}, k)$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}} ,$$

<u>Procedure</u>: Fit couplings and **7**

 $\min \chi^2(\tau, g'/g, g^2/\Lambda, \alpha, \beta, \gamma)$

$$gCP \Rightarrow g' \in \mathbb{R}$$

Novichkov, JP, Petcov, Titov, 1905.11970

 τ can be the only source of CPV

Example: an S4 lepton model (results)

Novichkov, JP, Petcov, Titov, 1811.04933

 $\sin^2 \theta_{23} \sim 0.49$ $\delta \sim 1.6\pi$ $\alpha_{21} \sim 0.3\pi$ $\alpha_{31} \sim 1.3\pi$ $|\langle m \rangle|_{\beta\beta} \sim 12 \text{ meV}$ $\sum_i m_i \sim 0.08 \text{ eV}$

7 (4) parameters vs. 12 (9) observables

What's new?

Mass hierarchies from modular symmetry?

• Usually fermion mass hierarchies are put in **by hand**: hierarchies (or cancellations) between superpotential parameters

e.g. in the previous model, ~ $\gamma \ll \alpha \ll \beta$

Mass hierarchies from modular symmetry?

• Usually fermion mass hierarchies are put in **by hand**: hierarchies (or cancellations) between superpotential parameters

e.g. in the previous model, $\gamma \ll lpha \ll eta$

• Existing approaches - new (weighted) scalars which enter the mass matrices a la Froggatt-Nielsen. Weights are analogous to FN charges Criado, Feruglio, King, 1908.11867

King, King, 1908.11867 King, King, 2002.00969

• **Our approach** - No new scalars, mechanism uses **only** *t*, common weights across generations (unlike FN charges)

Residual modular symmetries

- The **fundamental domain** is enough
- Any *t* breaks the modular symmetry

Residual modular symmetries

- The **fundamental domain** is enough
- Any **r** breaks the modular symmetry
- At special values of *t*, some residual symmetry remains

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\rm sym}$$

$$M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\text{sym}} \qquad \epsilon = |\tau - \tau_{\text{sym}}| > 0$$

$$M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \rightarrow \qquad M \sim \begin{pmatrix} 1 & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \end{pmatrix}$$

In the vicinity of the sym. $\mathcal{O}(\epsilon^l)$

Key idea:

some couplings vanish as we approach a symmetric point

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l
i	\mathbb{Z}_2	l = 0, 1
ω	\mathbb{Z}_3	l=0,1,2
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l	
i	\mathbb{Z}_2	l=0,1	— Feruglio, Gherardi,
ω	\mathbb{Z}_3	l = 0, 1, 2	2101.08718
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$	(for A4, me=0)

 $\begin{array}{ccc} \psi & \leadsto & \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \\ \psi^c & \leadsto & \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \end{array}$ $\psi^{c} M \psi$

In general, depend on weights **Determined for all** $N \leq 5$

Example: hierarchical mass matrix (A5)

$$\begin{array}{l} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

 $\tau_{\text{sym}} = i\infty$ $\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$ $\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$

Example: hierarchical mass matrix (A5)

$$\begin{array}{l} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

 $\tau_{\text{sym}} = i\infty$ $\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$ $\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$

For $\psi^c \, M \, \psi$, we expect:

$$M \sim \begin{pmatrix} 1 & \epsilon^4 & \epsilon \\ \epsilon^3 & \epsilon^2 & \epsilon^4 \\ \epsilon^2 & \epsilon & \epsilon^3 \end{pmatrix}$$

with $\epsilon = e^{-2\pi \operatorname{Im} \tau/5}$

fermion spectrum

 \Rightarrow

 $\sim (1, \epsilon, \epsilon^4)$

Indeed the case, provided enough modular forms contribute to *M* (otherwise, me = 0)

Scan of possible mass patterns

Performed for 3 generations, for all $N \leq 5$

e.g. fermion spectra for multiplets of modular A	r A5
--	------

r	\mathbf{r}^{c}		- arian		
		$k+k^c\equiv 0$	$k+k^c\equiv 1$	$k+k^c\equiv 2$	$T \cong i\infty$
3	3	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	3 '	(1,1,1)	(1,1,1)	(1,1,1)	$(1,\epsilon,\epsilon^4)$
3 '	3 '	(1,1,1)	(1,1,1)	(1,1,1)	(1,1,1)
3	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^4)$
3 '	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon^2,\epsilon^3)$
$1\oplus1\oplus1$	$1\oplus1\oplus1$	(1,1,1)	$(\epsilon^2,\epsilon^2,\epsilon^2)$	$(\epsilon,\epsilon,\epsilon)$	(1, 1, 1)

Scan of possible mass patterns

Performed for 3 generations, for all $N \leq 5$

e.g. fermion spectra for multiplets of modular A5

	\mathbf{r}^{c}				
Г		$k+k^c\equiv 0$	$k+k^c\equiv 1$	$k+k^c\equiv 2$	$\tau \simeq i\infty$
3	3	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	3 '	(1,1,1)	(1,1,1)	(1,1,1)	$(1,\epsilon,\epsilon^4)$
3 '	3 '	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^4)$
3 '	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon^2,\epsilon^3)$
$1\oplus1\oplus1$	$1\oplus1\oplus1$	(1, 1, 1)	$(\epsilon^2,\epsilon^2,\epsilon^2)$	$(\epsilon,\epsilon,\epsilon)$	(1, 1, 1)

Promising hierarchical patterns

N	Γ'_N	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq \omega$	
3	A'_4	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	
			$\tau \simeq i\infty$	
4	CI.	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	
4	S_4	$(1,\epsilon,\epsilon^3)$	$\tau\simeq i\infty$	
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	

Promising hierarchical patterns

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[2\oplus1^{(\prime)}]\otimes[1\oplus1^{(\prime)}\oplus1^{\prime}]$
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} & [1_a \oplus 1_a] \otimes [1_b \oplus 1_b \oplus 1_b''] \ & [1_a \oplus 1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] ext{ with } 1_a eq (1_b)^* \end{aligned}$
4	S'_4	$(1,\epsilon,\epsilon^2)$ $(1,\epsilon,\epsilon^3)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} &[3_a, \mathrm{or} \; 2 \oplus 1^{(\prime)}, \mathrm{or} \; \mathbf{\hat{2}} \oplus \mathbf{\hat{1}}^{(\prime)}] \otimes [1_b \oplus 1_b \oplus 1_b'] \ &3 \otimes [2 \oplus 1, \mathrm{or} \; 1 \oplus 1 \oplus 1^{\prime}], 3^\prime \otimes [2 \oplus 1^\prime, \mathrm{or} \; 1 \oplus 1^\prime \oplus 1^\prime], \ &\mathbf{\hat{3}}^\prime \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}, \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}^\prime], \mathbf{\hat{3}} \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}^\prime, \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}^\prime \oplus \mathbf{\hat{1}}^\prime] \end{aligned}$
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau \simeq i\infty$	${f 3}\otimes {f 3}'$

Promising hierarchical patterns (try leptons)

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	
3	A'_4	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	
4	S'_4	$(1,\epsilon,\epsilon^2)$ $(1,\epsilon,\epsilon^3)$	$ au \simeq \omega$ $ au \simeq i\infty$	$L \sim (\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}, 2), E^c \sim (\mathbf{\hat{3}}', 2), N^c \sim (3, 1)$
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau \simeq i\infty$	$\begin{array}{c} 3 \otimes (2 \oplus 1) \\ \hline 3 \otimes 3' \end{array}$
Fits are fine-tuned :(Wrong PMNS in the symmetric limit			: (symmetric lim	$L\sim ({f 3},3),~E^c\sim ({f 3}',1),~N^c\sim ({f \hat 2},2)$ 8 parameters

parameters are driven into cancellations

How to avoid fine-tuning (in the lepton sector)

How to avoid fine-tuning (in the lepton sector)

Reyimuaji, Romanino, 1801.10530

1.
$$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$$
2.
$$\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$$
3.
$$m_e = m_\mu = m_\tau = 0$$
4.
$$m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$$

for mixing near symmetric points, see also Okada, Tanimoto, 2009.14242

Promising hierarchical patterns (leptons)

N	Γ'_N	Pattern	Sym. point	Viable $\mathbf{r}_{E^c} \otimes \mathbf{r}_L$	Case
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[2\oplus1^{(\prime)}]\otimes[1\oplus1^{(\prime)}\oplus1^{\prime}]$	1 or 4
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} & [1_a \oplus 1_a] \otimes [1_b \oplus 1_b \oplus 1_b''] \ & [1 \oplus 1 \oplus 1'] \otimes [1'' \oplus 1'' \oplus 1'], \ & [1 \oplus 1 \oplus 1''] \otimes [1' \oplus 1' \oplus 1''] \end{aligned}$	2 2
4	S_4'	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[3_a,\mathrm{or}2\oplus1^{(\prime)},\mathrm{or}\mathbf{\hat{2}}\oplus\mathbf{\hat{1}}^{(\prime)}]\otimes[1_b\oplus1_b\oplus1_b']$	1 or 4
5	A_5'	-			

1.
$$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$$
2.
$$\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$$
3.
$$m_e = m_\mu = m_\tau = 0$$
4.
$$m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$$

Promising hierarchical patterns (leptons)

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r}_{E^c}\otimes\mathbf{r}_L$	Case
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$		1 or 4
			$\tau\simeq\omega$		2
3	A'_4	$(1,\epsilon,\epsilon^2)$	$\tau\simeq i\infty$	AT DE	2
4	S_4'	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[3_a, \mathrm{or}$] \otimes $[1_b \oplus 1_b \oplus 1_b']$	1 or 4
5	A_5'	—	-	<u> </u>	—

Example: lepton model close to $\boldsymbol{\omega}$

Only model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

 $L \sim (\hat{\mathbf{1}} \oplus \hat{\mathbf{1}} \oplus \hat{\mathbf{1}}', 2), E^c \sim (\hat{\mathbf{3}}, 4), N^c \sim (\mathbf{3}', 1)$

Example: lepton model close to $\boldsymbol{\omega}$

Only model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} \qquad \epsilon \sim \left|\tau - e^{2\pi i/3}\right|$$

$$M_{\nu} \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}}b \end{pmatrix}$$

Example: lepton model close to $\boldsymbol{\omega}$

Only model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_{e} \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^{2} & (\frac{5}{2}\alpha - \beta)\epsilon^{2} & -\frac{5}{\sqrt{3}}i\gamma\epsilon^{2} \end{pmatrix} \qquad \epsilon \sim \left|\tau - e^{2\pi i/3}\right|$$
$$M_{\nu} \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}b} \end{pmatrix} \qquad \qquad \epsilon \simeq 0.02 \qquad \alpha = 2.45 \pm 0.44 \\ a = 1.5 \pm 0.15 \qquad \beta = 2.14 \pm 0.32 \\ b = 2.22 \pm 0.17 \qquad \gamma = 0.91 \pm 0.05 \end{pmatrix}$$

Example: lepton model close to ω

 $\epsilon\,{\simeq}\,0.02$

$$m_e = \mathcal{O}(\epsilon^2)$$
$$m_\mu = \mathcal{O}(\epsilon)$$
$$m_\tau = \mathcal{O}(1)$$

NO,
$$m_{\nu_1} = 0$$

 $\delta = \pi + \mathcal{O}(10^{-6})$
 $m_{\beta\beta} = (1.44 \pm 0.33) \text{ meV}$

Naturally allows for **hierarchies**, **large mixing**, and some **predictivity**

Summary

Summary

- Modular symmetry may strongly constrain masses and mixing.
- Fields carrying a non-trivial modular weight transform with a scale factor in addition to the usual unitary rotation.
- To build invariants one needs modular forms, which are functions of a **single complex parameter** *T*.
- Fermion **mass hierarchies** can naturally arise if *t* is in the vicinity of a point of residual symmetry.

$$au_{
m sym} = i, \ i\infty, \ \omega$$

Σας ευχαριστώ!

Backup slides

Modular-invariant SUSY actions Ferra

Ferrara et al, '89

$$W(\psi;\tau) = \sum_{n} \sum_{\{i_1,\dots,i_n\}} \sum_{s} g_{i_1\dots i_n,s} (Y_{i_1\dots i_n,s}(\tau)\psi_{i_1}\dots\psi_{i_n})_{1,s}$$

$$\mathcal{S} = \int d^4x \, d^2\theta \, d^2\overline{\theta} \, K(\psi, \overline{\psi}; \tau, \overline{\tau}) + \int d^4x \, d^2\theta \, W(\psi; \tau) + \text{h.c.}$$

t is a dimensionless spurion: once its value is fixed, it **parameterises all** modular sym. breaking

One may argue that Y's play the role of flavons, but structures are **completely fixed** given the modulus VEV

Modular-invariant SUSY actions

$$W(\psi;\tau) = \sum_{n} \sum_{\{i_1,\dots,i_n\}} \sum_{s} g_{i_1\dots i_n,s} (Y_{i_1\dots i_n,s}(\tau)\psi_{i_1}\dots\psi_{i_n})_{1,s}$$

$$\begin{cases} \tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d} & \text{weights} \\ \psi_i \to (c\tau + d)^{-k_i} \rho_i(\gamma) \psi_i & \text{with } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ Y(\tau) \to Y(\gamma \tau) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau) & \begin{array}{c} k_{\gamma} \text{positive } \& \\ \text{even, for} \\ \text{PSL(2,Z)} \end{cases}$$

Y(7) are modular forms obeying $\begin{cases} k_Y = k_{i_1} + \ldots + k_{i_n} \\ \rho_Y \otimes \rho_{i_1} \otimes \ldots \otimes \rho_{i_1} \supset 1 \end{cases}$ Live in linear spaces of finite dimension

Combining modular and CP symmetries

SUSY breaking effects?

- **RGEs & threshold corrections** need to be considered, depend on tan β and unknown SUSY spectrum
- **SUSY-breaking** corrections can be made negligible via separation of scales (power counting argument)
- Under reasonable conditions, predictions may be unaffected

Feruglio and Criado, 1807.01125

Constraints on the Kähler potential?

- Kähler not constrained by the symmetry.
- Under a modular transformation, invariant up to: $K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) \rightarrow K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) + f(\chi_i; \tau) + f(\overline{\chi}_i; \overline{\tau})$
- Minimal choice:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) = -h \Lambda_0^2 \log(-i(\tau - \overline{\tau})) + \sum_i \frac{|\chi_i|^2}{(-i(\tau - \overline{\tau}))^{k_i}}$$

should be justified from the top-down

Chen, Ramos-Sánchez and Ratz, 1909.06910

• Further constraints may arise from combining modular group + traditional finite flavour symmetry

Nilles, Ramos-Sanchez, Vaudrevange, 2004.05200

Correlations between parameters in the first S4 example model

see Novichkov, JP, Petcov, Titov, 1811.04933

Decompositions under residual groups: A5'

r	$\mathbb{Z}_4^S \left(\tau = i \right)$	$\mathbb{Z}_3^{ST}\times\mathbb{Z}_2^R(\tau=\omega)$	$\mathbb{Z}_5^T\times\mathbb{Z}_2^R(\tau=i\infty)$
1	1_k	1_k^{\pm}	1_0^{\pm}
$\hat{2}$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_{2}^{\mp} \oplus 1_{3}^{\mp}$
$\hat{2}'$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_4^{\mp}$
3	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_1^\pm\oplus 1_4^\pm$
3 '	$1_{k} \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm\oplus 1_2^\pm\oplus 1_3^\pm$
4	$1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_1^\pm\oplus1_2^\pm\oplus1_3^\pm\oplus1_4^\pm$
Â	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp} \oplus 1_4^{\mp}$
5	$1_k \oplus 1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_{k}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+1}^{\pm} \oplus 1_{k+2}^{\pm} \oplus 1_{k+2}^{\pm}$	$1_0^\pm \oplus 1_1^\pm \oplus 1_2^\pm \oplus 1_3^\pm \oplus 1_4^\pm$
Ĝ	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_{0}^{\mp} \oplus 1_{0}^{\mp} \oplus 1_{1}^{\mp} \oplus 1_{2}^{\mp} \oplus 1_{3}^{\mp} \oplus 1_{4}^{\mp}$

More stabilizers?

- Despite working with representations of the quotients, our theories are **fully modular invariant**
- To have canonical kinetic terms,

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad \Rightarrow \quad g_i \to (c\tau + d)^{-k_{Y_i}} g_i$$

• e.g. in a particular model,

$$\left(\frac{a\tau+b}{c\tau+d}, (c\tau+d)^{-2} \beta/\alpha, (c\tau+d)^{-2} \gamma/\alpha, g'/g, \dots, \Lambda'/\Lambda, \dots\right)$$

these different parameter sets lead to the same observables

see section 4 of Novichkov, JP, Petcov, Titov, 1811.04933