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Motivation for Precision Physics

Motivation for Precision Physics

Although many cosmological (and not only) results indicate the need of BSM physics:

Dark Matter and Dark Energy
Neutrino Oscillations
Matter - Antimatter asymmetry
Quantum Gravity incorporation

there is no striking manifestation of New Physics beyond the SM at the LHC, as this
can be found by the comparison of the measurements with the theoretical predictions!

The upgrade of LHC and the establishment of future experiments will result to more
accurate measurements and will require even more accurate theoretical predictions →
Perturbative QCD! Current frontier:

NNLO for 2→ 3 processes
N3LO for 2→ 2 processes
N4LO for 2→ 1 processes
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Part A: Progress on Amplitudes

Cross sections
• The cross section for the collision of 2 initial hadrons (h1, h2) to some final state X is

dσh1h2→X =
∑

a,b=q,q̄,g

∫ 1

x1,min

dx1

∫ 1

x2,min

dx2 Fa/h1 (x1, µ
2)Fb/h2 (x2, µ

2) σ̂ab→X (µ2)

where Fa/h1 and Fb/h2 are the Parton Distribution Functions, σ̂ab→X is the hard-part
cross section, and µ2 is the factorization scale.

• σ̂ab→X at NNLO receives contributions from three different sources (virtual, mixed
real-virtual, and doubly-real corrections)

dσ̂NNLO
ab→X ∼ |Mtree |2 + αS

(
2 Re

[
MtreeM∗loop

]
+ |M+1up |2

)
+ α2

S
(
|Mloop |2 + 2 Re

[
MtreeM∗2loops

]
+ |M+2up |2 + 2 Re

[
M+1up+loopM∗+1up

])
Each of these contributions is individually divergent, and the divergences cancel in the
sum (after renormalization for the UV and IR divergences) leaving behind the finite
result for the cross section.

A lot of effort is needed in all the steps for the calculation of the cross section. Nonethe-
less, from the above expression the most difficult part to be calculated has been proved
to be the 2− loop amplitude, M2loops !
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Recent Results for 2-loop 2 → 3 Amplitudes

Recent Results for 2-loop 2 → 3 Amplitudes
• Leading color: gg/qq̄ → ggg , qq̄ → qq̄g/γγγ, ud̄ → bb̄W +, gg/qq̄/bb̄ → bb̄H.

• Full color: gg → ggg (all-plus helicities) and qq̄ → gγγ, gg → ggγ.

Some benchmark references:
- S. Badger, H. B. Hartanto, J. Kryś and S. Zoia, [arXiv:2107.14733 [hep-ph]].
- S. Badger et al, [arXiv:2106.08664 [hep-ph]].
- S. Badger, H. B. Hartanto and S. Zoia, Phys. Rev. Lett. 127 (2021) [arXiv:2102.02516 [hep-ph]].
- B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, arXiv:2105.04585 [hep-ph].
- B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, JHEP 2104 (2021) 201.
- H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, [arXiv:2105.06940 [hep-ph]].
- H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, arXiv:2103.04319 [hep-ph].
- H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, arXiv:2012.13553 [hep-ph].
- H. A. Chawdhry, M. A. Lim and A. Mitov, Phys. Rev. D 99 (2019) no.7, 076011.
- S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, arXiv:2102.13609 [hep-ph].
- S. Abreu, B. Page, E. Pascual and V. Sotnikov, JHEP 2101 (2021) 078.
- S. Abreu et al, arXiv:2009.11957 [hep-ph].
- S. Badger, H. B. Hartanto, C. Brønnum-Hansen and T. Peraro, JHEP 1909 (2019) 119.
- S. Badger et al, Phys. Rev. Lett. 123 (2019) no.7, 071601.
- S. Badger, C. Brønnum-Hansen, H. B. Hartanto and T. Peraro, JHEP 01 (2019), 186.
- T. Gehrmann, J. M. Henn and N. A. Lo Presti, Phys. Rev. Lett. 116 (2016) no.6, 062001.
- T. Peraro, JHEP 12 (2016), 030.
- G. De Laurentis and D. Mâıtre, JHEP 02 (2021), 016.

Amplitude Reduction using Numerical Unitarity, Projectors etc.
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Part A: Progress on Amplitudes

Structure of an (2-loop) Amplitude

Structure of an (2-loop) Amplitude

The construction and calculation of a (2-loop) Amplitude, A, contains the following
steps

1 Use of SM Feynman rules to generate the Feynman graphs contributing to the
process at hand.

2 Collect all the above contributions and create the Amplitude.
3 Integrand/Integral reduce the Amplitude in to a set of Master (Feynman)

integrals, determining their coefficients.
4 Calculate analytically or numerically the Master Integrals.

The final result is of the form

A =
∑

i

ci (s, ε)Fi (s, ε) (2.1)

where cI are rational/algebraic coefficients obtained by the Amplitude reduction and
they depend by the process at hand, Fi can be Master Integrals or special functions
(Multiple Polylogarithms1, Pentagon Functions2, Elliptic Integrals, etc) that depend
from the kinematics and are process-independent, and s are the Mandlestam variables.

1A. B. Goncharov, Math. Res. Lett. 5 (1998), 497-516
2D. Chicherin and V. Sotnikov, JHEP 12 (2020), 167
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Part A: Progress on Amplitudes

Quick Review of HELAC-1LOOP

Quick Review of HELAC-1LOOP
Any 1−loop n−particle (color-stripped) amplitude can be written in the form

A =
∫

dd k A =
∑

I⊂{1, ..., n}

∫
µ(4−d)

(2π)d
NI (k, p1, ..., pn−1, γµ, εµ)∏

i∈I Di

where NI is the numerator and Di = (k + pi )2 + m2
i the propagators. The loop

momentum ”lives” in d dimensions and can be decomposed as

k = k̄ + k∗ with k̄ : 4− dimensional and k∗ : ε− dimensional .

In order to compute A we need to cast it in to the following well-known form at d → 4

A =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei + (R1) + R2

where Box, ...,Tadpole refer to the one-loop Feynman integrals with 4, ..., 1 external
leg, (R1 is the rational part originating from the reduction process of a 4−dimensional
numerator in the OPP method3) and R2 is the rational part originating by the explicit
dependence of the numerator on the ε−dimension and can be reproduced by tree-like
Feynman rules involving up to 4 particles4.

3G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763 (2007), 147-169
4G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP 05 (2008), 004
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Part A: Progress on Amplitudes

Quick Review of HELAC-1LOOP

In HELAC-1LOOP5 the OPP method (integrand level) is used for the amplitude reduction.
The main idea is that for any numerator its 4−dimensional part can be written as

N̄(k̄) =
I∑

i0<i1<i2<i3

[
d(i0, i1, i2, i3) + d̃(k̄, i0, i1, i2, i3)

] I∏
i 6=i0,i1,i2,i3

D̄i

+
I∑

i0<i1<i2

[
c(i0, i1, i2) + c̃(k̄, i0, i1, i2)

] I∏
i 6=i0,i1,i2

D̄i

+
I∑

i0<i1

[
b(i0, i1) + b̃(k̄, i0, i1)

] I∏
i 6=i0,i1

D̄i

+
I∑
i0

[
a(i0) + ã(k̄, i0)

] I∏
i 6=i0

D̄i

where di = d(i0, i1, i2, i3), ci = c(i0, i1, i2), bi = b(i0, i1), ai = a(i0), and d̃ , c̃, b̃, ã inte-
grate to zero (spurious terms). The coefficients are determined by solving (iteratively)
systems of equations by evaluating N̄(k̄) for values of k̄, that are solutions of

D̄i (k̄) = 0, for i = 0, ...,M − 1, and M = 1, ..., 4.
5G. Bevilacqua, M. Czakon, M. V. Garzelli, A. van Hameren, A. Kardos, C. G. Papadopoulos, R. Pittau and

M. Worek, Comput. Phys. Commun. 184 (2013), 986-997
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Part A: Progress on Amplitudes

Quick Review of HELAC-1LOOP

N̄(k̄) is numerically calculated by HELAC6, which calculates tree-level amplitudes check-
ing for all possible flavor, spin and color configurations using SM couplings and the
color-connection representation!

In this set-up, a binary representation is used for the external particles (lv1 blobs) and
a generation of all topologically inequivalent partitions of n, n − 1, n − 2, ..., 1 blobs
attached to the loop is done. For example, for n = 6 we could have
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Each numerator contribution is calculated (by HELAC) by cutting the propagator-line
connecting the first and the last blob and calculating the resulted n + 2 tree-level
amplitude without using denominators for the internal loop propagators

1
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16

32

4 8

16
2

1 32
64128

f
f f̄

HELAC-1LOOP: Completely automated framework for the calculation of 1−loop ampli-
tudes for n−particle processes!!!

6A. Kanaki and C. G. Papadopoulos, Comput. Phys. Commun. 132 (2000), 306-315
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HELAC-2LOOP on the making

HELAC-2LOOP on the making

Construction of HELAC-2LOOP: Reuse as much as more from HELAC-1LOOP + new con-
cepts for the amplitude reduction at 2−loops!

For the 2−loop Amplitude at the integrand level, we expect for d → 4

A ≡
∑
I⊆T

NI (k1, k2, p1, ..., pn, γµ, εµ)∏
{i1,i2,i3}∈I Di1 (k1)Di2 (k2)Di3 (k1, k2)

=
∑

i

ci (s)Fi +
∑

j

c̃j (s)Sj + R1 + R2

where T is the set containing the 2−loop graph topologies of the corresponding process,
Fi are the master integrands that will integrate to master integrals, Sj are the spurious
terms that will integrate to zero, and {R1,R2} are the 2 − loop generalization of the
1−loop rational terms7.

Calculation of N̄I : Generation of the 2-loop amplitude graphs in the ”blob”-binary rep-
resentation is needed (used internally by HELAC)→ Creation of a generator for two-loop
graph topologies with massless particles running within the loop in a list representation!

7The 2−loop R2 terms have been computed in J. N. Lang, S. Pozzorini, H. Zhang and M. F. Zoller, JHEP 10
(2020), 016 and S. Pozzorini, H. Zhang and M. F. Zoller, JHEP 05 (2020), 077.
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HELAC-2LOOP on the making

There exist three graph topologies for 2-loop amplitudes:

1) Theta−topologies:

k1
k3 k2

A

B

≡ {{k1}, {k2}, {k3}, {A}, {B}}

2) Infinity−topologies:

k1
k2 ≡ {{k1}, {k2}}

3) Dumbbell−topologies:

k1 k2

B A

C

≡ {{k1}, {k2}, {C}, {A}, {B}}
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Part A: Progress on Amplitudes

HELAC-2LOOP on the making

We have created two generators, one implemented in Mathematica (BlobMod) and one
implemented in Fortran (GENTOOLS), using two different approaches in the generation:

• BlobMod starts by creating all the possible sets of putting the external particles
in the sublists. Then in order to create the sub-topologies8 if there exist lists with
Length[sublist] ≥ 2 takes for every list all the possible combinations of summing at
most 2 neighboring elements of the same sublist9. After the generation of all the
topologies, graph-symmetries are applied in order to remove identical lists.
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{{8, 4, 2}, {}, {}, {1}, {16}} → {{8, 6}, {}, {}, {1}, {16}} + {{12, 2}, {}, {}, {1}, {16}} → {{14}, {}, {}, {1}, {16}}

• GENTOOLS generates the topologies exactly in the opposite way! Starts by taking all
the possible sets of putting the higher level blobs in the sublists (lower-topologies) and
creates the higher topologies by taking all the possible splittings of the blobs. In order
to remove the identical lists graph-symmetries are applied also in this case.

Perfect agreement found between the results of the two generators and q-graf (P. Nogueira,
J. Comput. Phys. 105 (1993)). For n ≥ 6 GENTOOLS is a lot faster from BlobMod!!!

8Meaning topologies where more than one particles shrink into a vertex, lvl2, ..., lvln blobs.
9The elements of {A} and {B} are always summed from the beginning.
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Part A: Progress on Amplitudes

HELAC-2LOOP on the making

Graph symmetries
The graphs are symmetric on (combined or individual) mirror transformations on the
vertical and the horizontal axis (swap of the three loop lines). For example
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All the symmetries of the graphs can be expressed in symmetries of the lists using one
or both of the following 2 actions:

• Swap: corresponds to the swap of two sublists. E.g. {{k1}, {k2}} → {{k2}, {k1}}.

• Reversion: corresponds to the reversion of the elements of a sublist. E.g. {1, 2, 4} →
{4, 2, 1}.
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Part B: Progress on Feynman Integrals

Introduction to the Differential Equations method for the computation of Feynman Integrals

Introduction to the Differential Equations method for computing FIs
• For the calculation of the scalar FIs we define families of integrals for specific kinematic
process. For an L−loop (ki ) FI with E + 1 external legs (pi ) we have

Fα1,...,αN =
∫ ( L∏

i=1

dd ki

iπd/2

)
1

Dα1
1 ...DαN

N

with αi arbitrary integers, N = L(L+1)/2+LE the number of linear scalar independent
propagators Da = (ki + pj )2 + m2

a of the family.

• The fact that the total derivatives vanish in Dimensional Regularization (d = 4− 2ε)
give rise to the Integration by Parts Relations10 (IBPs)11∫ L∏

i=1

dd ki

iπd/2
∂

∂ki

(
lj

Dα1
1 ...DαN

N

)
= 0 with lj = kj or pj .

which imply the existence of a finite basis12, master integrals (MI), in terms of which
can be written any FI of the family, with some algebraic coefficients of sij = (pi + pj )2

and d . There is a freedom in the choice of this basis!
10K.G. Chetyrkin and F.V. Tkachov, Nucl.Phys. B192 (1981) 159
11The reduction to MI using the IBP’s is implemented in many programs some of whom are Kira, FIRE.
12A. V. Smirnov and A. V. Petukhov, Lett.Math.Phys. 97 (2011) 37-44
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Part B: Progress on Feynman Integrals

Introduction to the Differential Equations method for the computation of Feynman Integrals

• FI are functions of external momenta and internal masses and fulfil differential equa-
tions (DE) in the kinematic invariants13, Sk

∂

∂Sk
Gi (ε, {Sk}) =

I∑
j=1

Bk
ij (ε, {Sk})Gj (ε, {Sk})⇒ ∂k ~G = Bk ~G

where I is the number of MI, and for us to solve this DE we need boundary conditions.
In practise we want to solve the above DE in a Laurent expansion around ε = 0.

• Canonical DE14: Making a change of the basis ~G → U~G, Bk changes as Bk →
UBk U−1 + U∂k U−1. For a suitable choice of U we can obtain

∂

∂Sk
~G ′(ε, {Sk}) = ε

∑
i

Mki
Sk − li

~G ′(ε, {Sk})

which is ε-factorized, Fuchsian and Mki are purely numerical. To obtain such a DE the
chosen basis should be UT (functions with uniform degree of transcendentality).

Until now there does not exist an algorithmic way to find the UT Basis or to prove its
existence!

13A.V.Kotikov, Phys.Lett. B254 (1991) 158
14J. Henn, Phys.Rev.Lett. 110 (2013) 251601
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Quick review of SDE

Quick Review of Simplified Differential Equations approach
1) Parametrize the external momenta in terms of an dimensionless parameter, x , in
such a way that captures the off-shellness of an external leg15.

2) Take derivatives of the MIs with respect to x and create, using IBPs, a system of
DE in one independent variable

∂x G({sij}, x , ε) = H({sij}, x , ε)G({sij}, x , ε)

3) Find boundary conditions at x → 0 and solve the differential equation:
Use boundaries for already known integrals in closed form.
Comparing the asymptotic regions obtained for the MIs from expansion-by-regions
(asy16) with the ones obtained by the DE, using the resummation matrix at x = 0

M0 = S0D0S−1
0 −→ R0 = S0eεD0 log(x)S−1

0 −→ Fx→0 = T−1R0gbound .

obtain relations between different boundaries of the family.
In the end there are left some asymptotic regions to be calculated, which is done us-
ing the standard expansion-by-region approach (integrate in Feynman-parameters).

4) Take the x → 1 limit to obtain also for free the solution for the same family with
one external massive leg less.

15C. G. Papadopoulos, JHEP 07 (2014), 088
16B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72 (2012), 2139
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Recent Computed families @ 2- and 3-loops

Recent Computed families @ 2/3-loops
i) The planar families of two-loop massless Penta-box families with one off-shell leg

The P1 (74 MI), P2 (75 MI) and P3 (86 MI) families. All external momenta are incoming.

Topology: 8 propagators + 3 numerators (ISPs).

Kinematics: {s12, s23, s34, s45, s15,m2} with sij = (qi + qj )2, q2
1 = m2 and else q2

j = 0.

SDE: q1 → p123−xp12, q2 → p4, q3 → −p1234 , q4 → xp1, with p2
i = 0 for i = 1, ..., 517.

Independent Variables: {s12, s23, s34, s45, s15,m2} → {S12, S23, S34,S45, S15, x}.

Canonical Basis: Obtained from S. Abreu et al, JHEP 11 (2020) 117.

Analytic results18 for the Euclidean region in terms of Goncharov Polylogarithms (GPLs)!
17pi...l = pi + ... + pl , and Sij = (pi + pj )2
18DC, C.G. Papadopoulos and N. Syrrakos, JHEP 01 (2021) 199.
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Recent Computed families @ 2- and 3-loops

ii) The three-loop massless Ladder-box family with one off-shell leg.
q2q4

q1 q3

The Ladder-box family (83 MI). All external momenta are incoming.

Topology: 10 propagators + 5 numerators (ISPs).

Kinematics: {s, t,m2} with s = (q2 + q3)2, t = (q1 + q3)2, q2
4 = m2 and else q2

j = 0.

SDE: q1 → xp1, q2 → p3, q3 → −p123 , q4 → p12 − xp1, with p2
i = 0 for i = 1, ..., 4.

Independent Variables: {s, t,m2} → {S12,S23, x}.

Canonical Basis: Obtained from S. Di Vita et al, JHEP 09 (2014) 148.

Analytic results19 for the Euclidean region in terms of GPLs!

19DC and N. Syrrakos, JHEP 02 (2021) 080.
18 / 23



Progress on Multi-Loop Calculations
Conclusion

Conclusion: Ongoing Work
Amplitudes:

• Currently working on the upgrade of HELAC code such that to be able to numerically
compute the 4−dimensional part of the numerator from the tree-level n + 4 amplitude.

• Next step: creation of a general {master integrand + spurious terms} basis, and
calculation of the 2−loop R1 rational terms.

Feynman Integrals:

q2 q1

q3 q4

q1 q4

q2 q3

From left to right and from up to down, N1 (86 MI), N2 (86 MI), N3 (135 MI), F2 (117 MI) and
F3 (166 MI). All external momenta are incoming.
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Color connection representation
• In the color connection representation, the gluons are represented by a pair of color/anti-
color indices (i , j) and the quarks (anti-quarks) by a single color (i , 0) (anti-color (0, j))
index, with i ,j ∈ (1, ...,NC ). All the other particles that do not carry color have (0, 0).

• The amplitude takes the following form

Mi1,i2,...,ik
j1,j2,...,jk

=
∑
σ

δiσ1 ,j1δiσ2 ,j2 ...δiσk ,jk Aσ

with k = ng + nq and the sum is running over all the permutations (equal to k!).
The color-stripped amplitudes, Aσ , are calculated using properly defined Feynman rules
[A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun. 180 (2009), 1941-1955].

• The total color factor is a product of δ’s, and thus the color summed squared amplitude
takes the form ∑

{i},{j}

∣∣Mi1,i2,...,ik
j1,j2,...,jk

∣∣2 =
∑
σ,σ′

A∗σ′Cσ′,σAσ

where the color matrix Cσ′,σ is given by

Cσ′,σ =
∑
{i},{j}

δiσ′
1
,j1δiσ′

2
,j2 ...δiσ′

k
,jk δiσ1 ,j1δiσ2 ,j2 ...δiσk ,jk = Nm(σ′,σ)

C

with m(σ′, σ) counting the number of common cycles of the 2 permutations.
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Example of Pure and Impure relations

1) We call pure the relations that contain only boundaries of UT basis elements. As an
illustrated example we consider the master integral F71, from the Ladder-box family:

i) Expansion-by-regions method yields for x → 0 : x−1−3ε.

ii) The resummation matrix has produced two additional regions: x−1−2ε and x−1.

iii) We proceed by setting the extra regions to zero since they are not predicted by asy.

From the second one, we obtain a relation which connects the boundary condition of
g71 with the boundary condition of lower sector basis elements:

gb71 = (−12gb2 + 4gb13 + 32gb16 + 48gb41 + 36gb42 − 45gb43) /30 .

2) We call impure the relations between boundaries and asymptotic limits, which are
obtained by equating the result of the asy with that of the resummation matrix. E.g.

gb41 = F soft
41 s12ε

5 + gb2/9− gb13/12− 2gb16/3 .

where F soft
41 is the x−3ε region of F41.

As expected, in the pure relations between the boundaries the prefactors are just num-
bers −→ Working perfectly even when a full analytic reduction is a bottleneck!!!
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Procedure for taking the x → 1
Briefly the procedure for taking the x → 1 limit is:

1) Rewrite the solution as an expansion in log(1− x):

g =
∑
n≥0

εn
n∑

i=0

1
i!

c(n)
i logi (1− x)

2) Define the regular part of g at x = 1 and from it the truncated part:

greg =
∑

εnc(n)
0 and gtrunc = greg

∣∣
x=1

3) Define the resummation matrix R1 and from it the purely numerical matrix R10:

R1 = eεM1 log(1−x) = S1eεD1 log(1−x)S−1
1 and R1

(1−x)ai ε→0
−−−−−−−−→ R10

4) Find the x → 1 limit by acting R10 to gtrunc :

gx→1 = R10gtrunc

5) Reduce the number of the basis elements to the number of the MI of the massless
problem using the property R2

10 = R10 ⇒ R10gx→1 = gx→1 and/or IBPs.
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