Top quark physics in ATLAS & CMS

James Keaveney

Corfu Workshop on the Standard Model and Beyond

m_t = 172 GeV

'bare' quark

decays before hadronisation
window into quark properties
spin info. preserved

SM parameters

- Rates & kinematics sensitive to m_t, α_S and PDFs
- precision probes higher-order SM calculations, e.g. NNLO+a³_{EW}

new physics

top likely plays a role in m_H stabilisation

new states in production, decay

new physics @ large scale Λ – described in $\ensuremath{\text{EFT}}$

the top quark

– experimental programme

cross sections

- inclusive and (multi)-differential
- tt, single top
- boosted regime

rare production & decay modes

- ††+Ζ,W, γ
- tZq production
- FCNC decays
- ++++
- Modelling
 - b-fragmentation
 - tuning of underlying event
 - parton shower, hadronisation

mass + properties

- mass, width, charge, W-helicity

2.5 Gev

- Lepton universality
- charge asymmetries
- reinterpretations
 - m_t (pole), m_t , PDF and α_s
 - EFT constraints

focusing on **recent** results

tttt production

evidence for tttt production

arXiv:2106.11683 submitted to JHEP

- tttt cross section ~12 fb in SM
 - enhanced in BSM scenarios
 - sensitive to top Yukawa coupling
- search using single lepton, opposite sign dilepton + jets and b-jets channels
- obs (exp) sig of 1.9 (1.0) sigma over the background-only hypothesis
- combination with previous more sensitive multilepton search yields excess of obs. (exp) significance of 4.7 (2.6) sigma

evidence for tttt production

arXiv:2106.11683 submitted to JHEP

- tttt cross section ~12 fb in SM
 - enhanced in BSM scenarios
 - sensitive to top Yukawa coupling
- search using single lepton, opposite sign dilepton + jets and b-jets channels
- obs (exp) sig of 1.9 (1.0) sigma over the background-only hypothesis
- combination with previous more sensitive multilepton search yields excess of obs. (exp) significance of 4.7 (2.6) sigma

similar results also from CMS

ttZ production

 σ_{ttZ} (inclusive & differential)

Eur. Phys. J. C 81 (2021) 737

JHEP 03 (2020) 056

- Combination of 3 and 4 lepton channels
- Inclusive cross sections
 - **ATLAS**: $\sigma_{ttz} = 0.99 \pm 0.05$ (stat) ± 0.08 (syst) pb
 - **CMS**: $\sigma_{ttz} = 0.95 \pm 0.05$ (stat) ± 0.06 (syst) pb
 - Both agree with SM
- Differential cross sections
 - Measured for a range of observables
 - Abs. and Norm. @ particle & parton levels
 - Agrees with SM
- Strongly statistically limited
 - Leading systematic from fake lepton bkg.

For details on recent CMS ttZ/tZ result, see SM+EW Talk from K.Kordas this (Tue.) morning

single top production

top quark polarisation in single top production ATLAS-CONF-2021-027

- First measurement of the full polarisation vectors of the top quark and antiquark polarisation in t-channel single-top-quark production
- 1 lepton, 2 jets (1 b-tagged), large missing ET
- Polarisation extracted from distributions of cosines of the charged lepton momentum in the top-quark rest frame
- Results interpreted as EFT constraints
 - c_{tw} sensitive to CP violating effects

tt production

σ_{tt} (boosted, differential)

ATLAS-CONF-2021-031

- Lepton + jets channel
 - p_T (had. Top) > 355 GeV
 - JES unc. reduced with in-situ correction
- Fiducial cross section
 - $\sigma = 1.267 \pm 0.005$ (stat.) ± 0.053 (syst.) pb
 - Agrees with SM
- Differential cross sections
 - Measured for a range of observables in fiducial region including separate N_{jet} bins
 @ particle level
 - Agreement with SM
 - NLO MC reweighted to NNLO
- Strongly systematically limited
 - Leading systematic from tt modelling

σ_{tt} (boosted, differential)

- Lepton + jets channel
 - p_T (had. Top) > 355 GeV
 - JES unc. reduced with in-situ correction
- Fiducial cross section
 - $\sigma = 1.267 \pm 0.005$ (stat.) ± 0.053 (syst.) pb
 - Agreement with SM
 - NLO MC reweighted to NNLO
- Differential cross sections
 - Measured for a range of observables in fiducial region including sperate N_{jet} bins @ particle level
- 2-coefficient fit demonstrates sensitivity to EFT

ATLAS-CONF-2021-031

σ_{tt} (boosted & resolved, differential)

TOP-20-001 Submitted to Phys. Rev. D

- Lepton + jets channel
 - combines low p_T (resolved) and high p_T (boosted) regimes
 - measured @ parton & particle levels
- Inclusive cross section
 - $\sigma_{tt} = 791 \pm 25 \text{ pb}$
- Differential cross sections
 - Agreement with SM
 - NLO MC reweighted to NNLO
- Strongly systematically limited
 - Leading systematic from b-tagging

Table of z-values for large number of observables in backup

N_{b-tag}

ATLAS-CONF-2021-003

Uses 257 pb⁻¹ of 5 TeV data collected in 2017

Inclusive $\sigma_{\text{H}} \otimes 5 \text{ TeV}$

- Events selected with opposite-charge ٠ pair of leptons and b-tagged jets
- Cross section extracted by maximising likelihood based on yields in N_{btaa} regions
- Sensitivity to high-x gluon pdf due to low centre of mass energy

- Inclusive cross section
 - $\sigma_{tt} = 66.0 \pm 4.5 \text{ (stat.)} \pm 1.6 \text{ (syst.)} \pm 1.2 \text{ (lumi.)} \pm 0.2 \text{ (beam energy) pb}$
 - Agrees with SM
 - Strongly statistically limited

Inclusive σ_{tt} @ 5 TeV Atlas-Conf-2021-003

- Uses 257 pb-1 of 5 TeV data collected in 2017
- Events selected with opposite-charge pair of leptons and b-tagged jets
- Cross section extracted by maximising likelihood based on yields in N_{btag} regions
- Sensitivity to high-x gluon pdf due to low centre of mass energy

- Inclusive cross section
 - $\sigma_{tt} = 66.0 \pm 4.5$ (stat.) ± 1.6 (syst.) ± 1.2 (lumi.) ± 0.2 (beam energy) pb
 - Agrees with SM
 - Strongly statistically limited

Inclusive σ_{tt} @ 5 TeV

ATLAS-CONF-2021-003

- Uses 257 pb-1 of 5 TeV data collected in 2017
- Events selected with opposite-charge pair of leptons and b-tagged jets
- Cross section extracted by maximising likelihood based on yields in N_{btag} regions
- Sensitivity to high-x gluon pdf due to low centre of mass energy

- Inclusive cross section
 - σ_{tt} = 66.0 ± 4.5 (stat.) ± 1.6 (syst.) ± 1.2 (lumi.) ± 0.2 (beam energy) pb
 - Agrees with SM
 - Strongly statistically limited

b-fragmentation in tt production ATLAS-CONF-2020-050

- B-fragmentation large source of uncertainty in top modelling, e.g, top mass measurements
- observables sensitive to b- fragmentation measured with 36 fb⁻¹ @ 13 TeV
- Events selected with opposite-charge pair of leptons and b-tagged jets
- Selection of tracks associated with b-hadron allows:
 - high-res. observables related to b-hadron momentum
- Distributions unfolding to particle level using max. like. unfolding
- Largely in agreement with generator predictions

b-fragmentation in tt production CMS-PAS-TOP-18-012

- B-fragmentation large source of uncertainty in top modelling, e.g, top mass measurements
- observables sensitive to b- fragmentation measured with 36 fb⁻¹ @ 13 TeV
- Events selected with opposite-charge pair of leptons and b-tagged jets
- D0 and J/ ψ mesons are reconstructed from the decays D0 \rightarrow K[±] π [∓] and J/ ψ \rightarrow μ ⁺ μ ⁻ using charged particle track information.
- fragmentation function shape parameter, rb extracted from fit

top interactions

search for CLFV in top production & decay CMS-PAS-TOP-19-006

- charged lepton flavour violation = evidence for BSM physics
- CLFV signal modelled in EFT
 - qg -> † + (||') **production**
 - t-> q (II') **decay**
 - $q = \{u,c\}, | = \{e, \mu, \tau\} \text{ and } | \neq |'$
- OS lepton pair & b-jet events
- no sign of cLFV signal
- limits set on BR and EFT coefficients

search for CLFV in top production & decay

CMS-PAS-TOP-19-006

- charged lepton flavour violation = evidence for BSM physics
- CLFV signal modelled in EFT
 - qg -> † + (||') **production**
 - t-> q (II') decay
 - $q = \{u,c\}, I = \{e, \mu, \tau\} \text{ and } I \neq I'$
- OS lepton pair & b-jet events
- no sign of cLFV signal
- limits set on BR and EFT coefficients

universality of τ and μ couplings in W decays in tt Nat. Phys. (2021)

- $R(T/\mu) = B(W \rightarrow TV_T)/B(W \rightarrow \mu V_{\mu})$
 - Test of Lepton Flavour Universality
- LEP data showed discrepancy from SM
- eµ and µµ selections
- Vertex and pt info used to distinguish
 - $\bullet \quad W \to T V_{_T} \to \mu V_{\mu} V_{_T} V_{_T}$
 - $W \rightarrow \mu v_{\mu}$
- R(T/µ) = 0.992 ± 0.013 [±0.007 (stat) ± 0.011 (syst)]
 - In agreement with SM

search for FCNC in top-Higgs (H-> $\gamma\gamma$) interactions

CMS-PAS-TOP-20-007

- $t \rightarrow Hq$ FCNC decays suppressed in SM
 - clear sign of new physics
- diphoton selection
 - Lept. & had. selections for top decay
- $t \rightarrow Hq$ branching fractions extracted via fit to $m_{\gamma\gamma}$ distribution
- no sign of FCFC signal

search for FCNC in top-Higgs (H-> $\gamma\gamma$) interactions

CMS-PAS-TOP-20-007

- * $t \rightarrow Hq$ FCNC decays suppressed in SM
 - clear sign of new physics
- diphoton selection
 - Lept. & had. selections for top decay
- t \rightarrow Hq branching fractions extracted via fit to $m_{\gamma\gamma}$ distribution
- no sign of FCFC signal
- limits set on BR

search for FCNC in top-Higgs (H->bb) interactions CMS-PAS-TOP-19-002

- $t \rightarrow Hq$ FCNC decays suppressed in SM
 - clear sign of new physics
- Lepton + bjets selection
 - DNN to assign jets to partons
 - BDT for Sig vs Bkg
- $t \rightarrow Hq$ branching fractions extracted via fit to BDT distributions
- no sign of FCFC signal
- limits set on BR

search for FCNC in top-Higgs (H->bb) interactions CMS-PAS-TOP-19-002

- * $t \rightarrow Hq$ FCNC decays suppressed in SM
 - clear sign of new physics
- Lepton + bjets selection
 - DNN to assign jets to partons
 - BDT for Sig vs Bkg
- $t \rightarrow Hq$ branching fractions extracted via fit to BDT distributions
- no sign of FCFC signal
- limits set on BR

Summary & conclusions

- The top quark is involved in numerous BSM theories
- Top quark measurements also sensitive to SM parameters, eg, m_t, α_{S}
- Top data can also constrain EFT parameters and PDFs
- Unique observables to aid MC modelling, e.g, b-fragmentation

- With the full Run-II data, ATLAS & CMS are studying top quarks in all corners of the phase space and has numerous exciting recent results.
 - High energy boosted regimes
 - Polarisation in single top production
 - Multi-dimensional differential distributions
 - Rare production processes: tttt, ttZ (differential), tqH, CLFV

Many more results on the way!

FACTORY

σ_{tt} (boosted & resolved, differential)

TOP-20-001 Submitted to Phys. Rev. D

Chi-squared table details agreement for a large number of observables.

ð