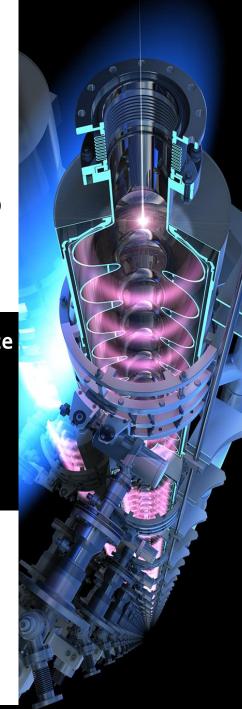
#### LINEAR e<sup>+</sup>e<sup>-</sup> COLLIDERS – FUTURE HIGGS FACTORIES



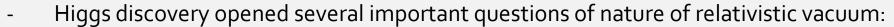

Ivanka Bozovic

VINCA Institute of Nuclear Sciences, University of Belgrade

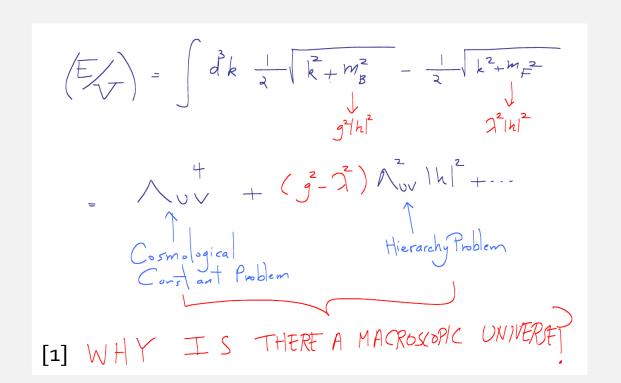
**Corfu Summer Institute** 

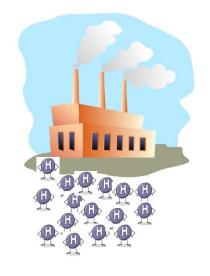
Workshop on the Standard Model and Beyond

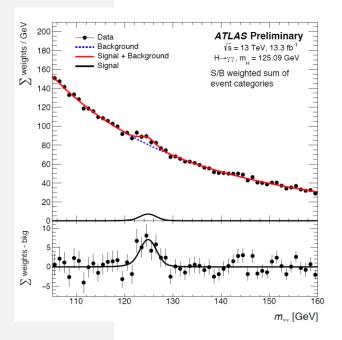
29.08.-08.09. 2021




#### **OVERVIEW**


- WHY HIGGS FACTORIES?
- LINEAR COLLIDERS
- DETECTOR CONCEPTS & TECHNOLOGIES
- HIGGS PHYSICS AT LINEAR COLLIDERS
- OUTLOOK


### WHY HIGGS FACTORIES?


- Higgs discovery ended era of reductionism and symmetries in particle physics [1]
- Never seen before fundamental scalar is discovered, unique (with exception of gravity) in its self-coupling

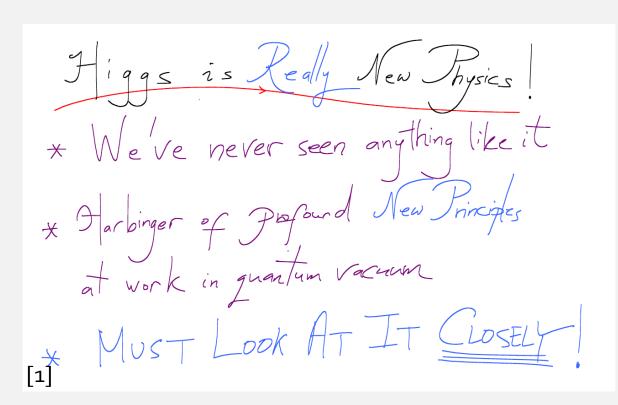


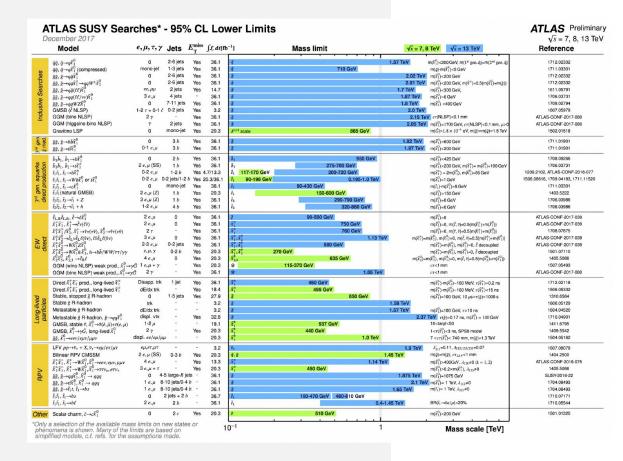
- How can we accommodate it in energy density of the Universe?
- Why the Higgs is not enormously massive (even Planckian)?





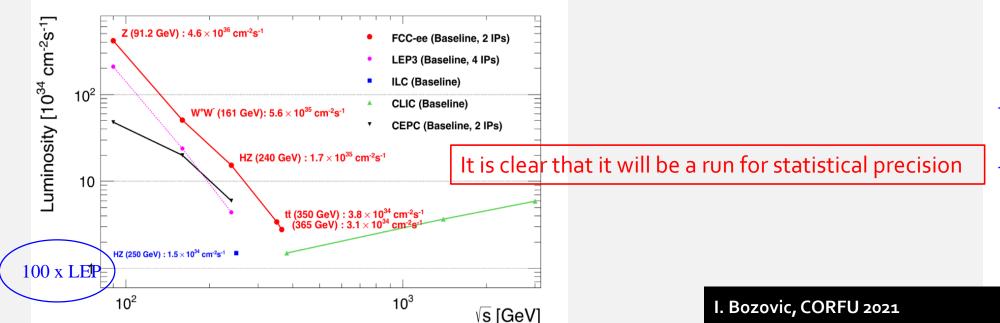



# LIMITS, LIMITS,...


No New Physics discovery at LHC

- With the LHC resolution to probe Higgs compositeness, the Higgs could be as elementary as pion.

So, how pointlike is it?

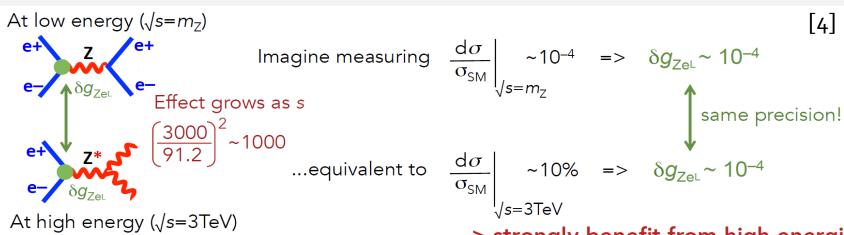

-  $\lambda$  can be significantly enhanced in EW bariogenesis models. HL-LHC will probe  $\lambda$  with 50% uncertainty [2]

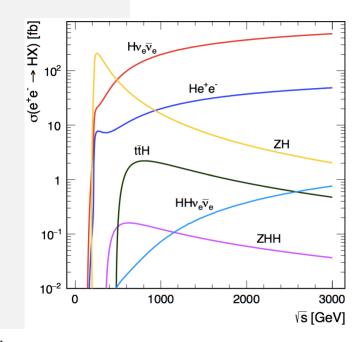


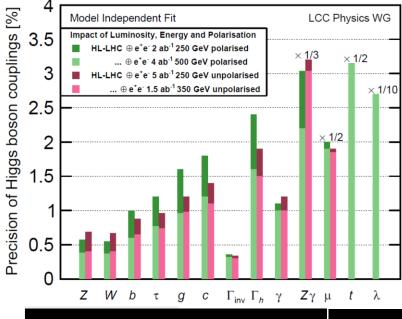


#### WHAT BRINGS US TO THE HIGGS FACTORIES

- In the European PP Strategy Update 2020, Higgs factories are the highest priority future initiatives [3]
- Several projects on the market ( $\sim 10^6$  Higgs bosons)
- All electron-positron colliders
  - Initial state well-defined
  - High (TeV) center-of-mass energies LCs
  - Clean environment
  - → High-precision measurements (dominated by statistical uncertainty)
- Linear (ILC, CLIC) vs. circular (CEPC, FCCee)



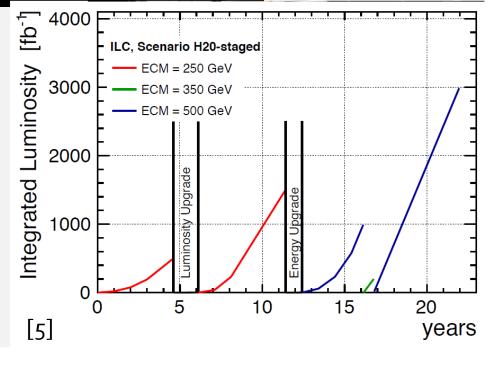


But, other aspects are also important:

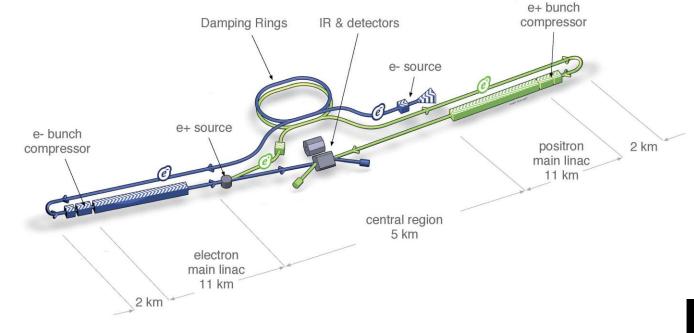

- Extensibility of the physics span flexibility to accommodate other options (pp, hh, ep, gamma gamma, plasma....)
- Flexibility to accommodate changes in scenario (i.e. unexpected **HL-LHC** discovery)
- Technological feasibility and cost
- **Politics** (it's a game of supremacy, unfortunately)

### **LINEAR COLLIDERS**

- Comes as mature technological options developed for decade(s) 'ready to take'
- Staged, upgradable machines
  - Various Higgs production mechanisms accessible over the energy scale span
  - Less precise determination of an observable at high energy leads to the same precision on coupling as at low energy
- Beam polarization
  - Chiral nature of charge currents results in significant sensitivity of WW-fusion cross-section on polarization scheme ( $\sim 2 \cdot \mathcal{L}$ )
  - Provides new observables sensitive to New Physics
  - Helps characterization of newly discovered particles
- A few technical benefits
  - Triggerless
  - Power-pulsing





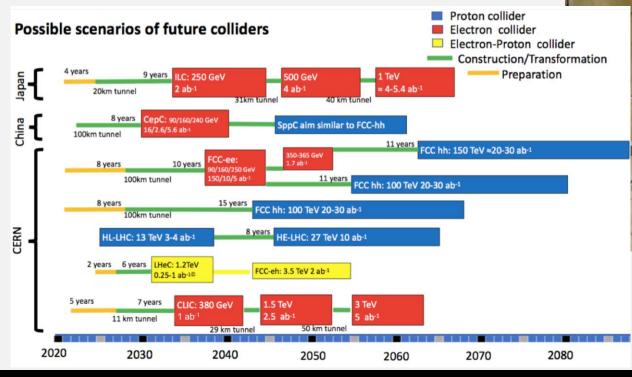




RFU 2021



- e<sup>+</sup>e<sup>-</sup> centre-of-mass energy
  - first stage: 250 GeV
  - tunable
  - upgrades: 500 GeV, 1 TeV
  - further options:
     running at Z pole & WW threshold
- · luminosity at 250 GeV:
  - $1.35 \times 10^{34} / \text{cm}^2 / \text{s}$
  - upgrade 2.7 x 10<sup>34</sup> /cm<sup>2</sup> /s (cheap)
  - upgrade 5.4 x 10<sup>34</sup> /cm<sup>2</sup> /s (expensive)
- beam polarisation
  - $P(e^{-}) \ge \pm 80\%$
  - P(e<sup>+</sup>) = ±30%,
     at 500 GeV upgradable to 60%
- total length (250 GeV): 20.5 km



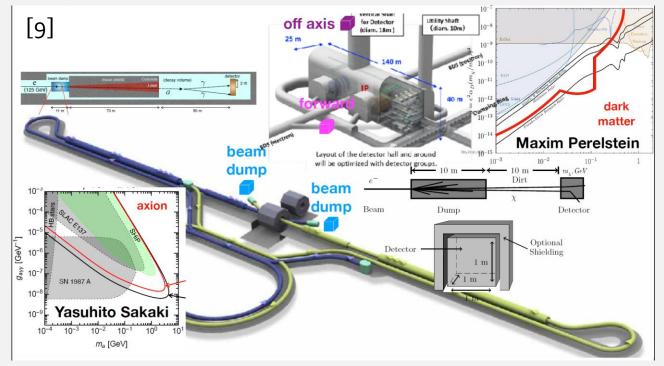





#### Timeline:

- Around 2000's TESLA, NLC, JLC
- (2004) ILC based on 'cold' TESLA technology
- (2013) Technical Design Report [6]
- (2020) International Development Team (IDT)
- (?) Preparatory lab in Japan
- (2035) First collisions [7]

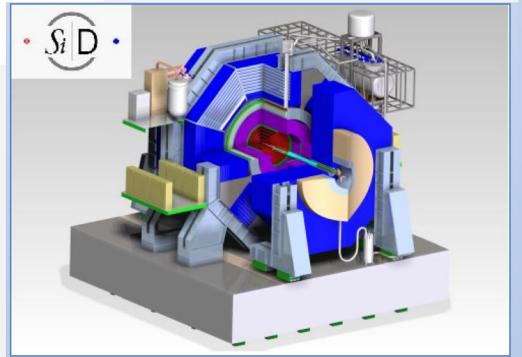
- Largest ever accelerator prototype (operating now as E-XFEL)
- Full industrialization of RF cavity production

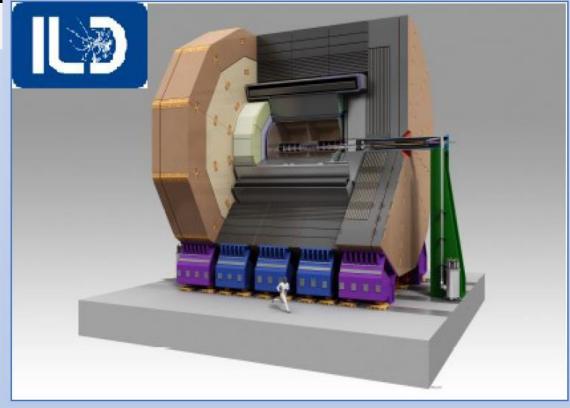







#### ILC comes with the collider program and rich auxiliary experiments


- At the LHC, experiments search for dark particles produced by pp collisions are placed in existing tunnels and caverns at CERN (FASER @ATLAS, MilliQan @CMS)
- Dark sector (ILC-BDX), fixed-target and beam dump experiments (ILCX)




#### Potential ILC site in Kitakami









#### **SiD Detector**

- 5 T field
- More compact
- All Si

Track momentum resolution:  $\sigma_{1/p} < 5 \cdot 10^{-5} \; {
m GeV}^{-1}$ 

CMS/40

Impact parameter resolution:  $\sigma_d < 5 \mu m \oplus 10 \mu m \, \frac{1 \, {
m GeV}}{n \, \sin^{3/2} \Theta}$ 

Particle flow calorimetry

Si/gaseous tracking

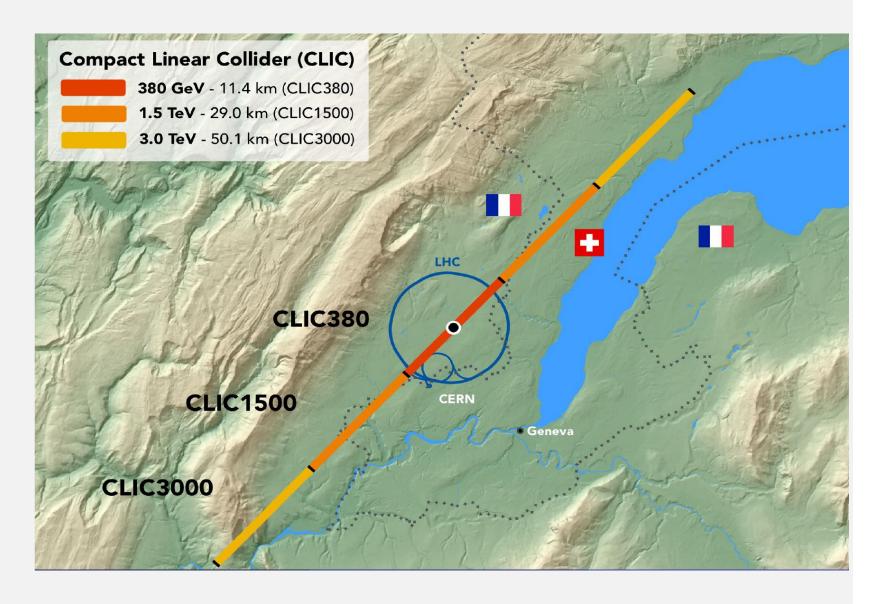
Mature design and available technologies

Optimized for CM energies 90 GeV - 1 TeV

ATLAS/2

**ILD Detector** 

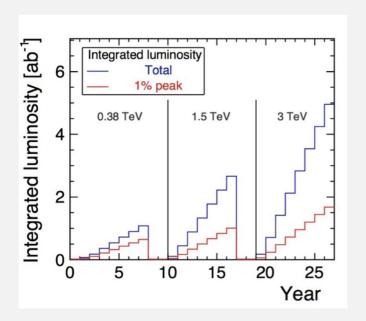
3.5 T field

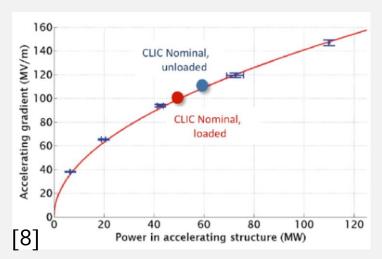

Jet energy resolution:  $\sigma_E/E = 3 - 4\%$  (for highest jet energies)

Hermecity:  $\Theta_{min} = 5$  mrad

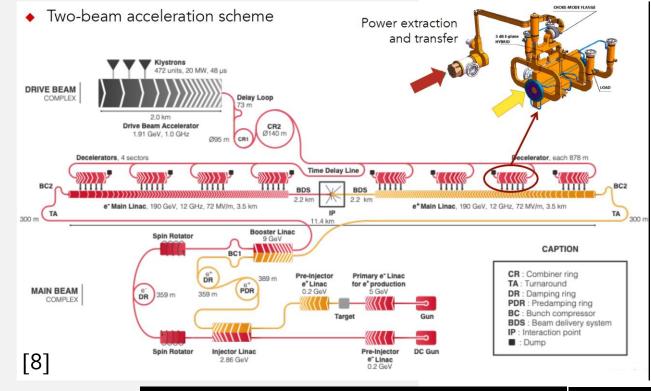
ATLAS/3

I. Bozovic, CORFU 2021



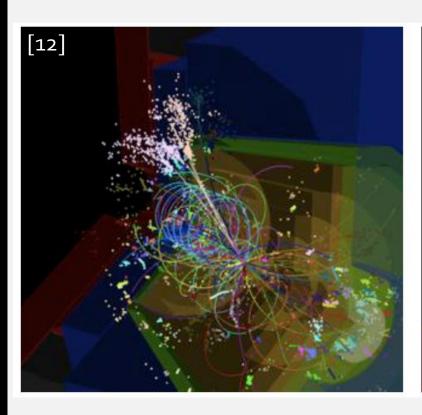



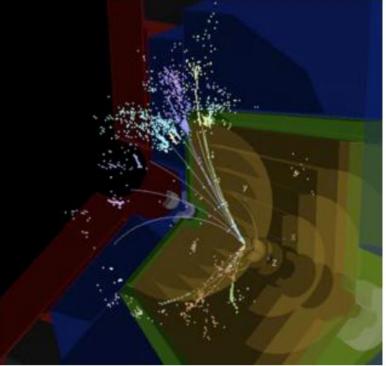


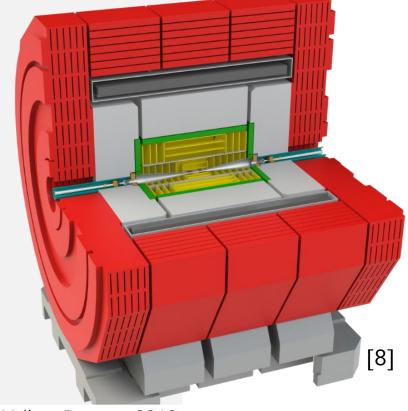


#### The only LC to go above 1 TeV

- CLIC Test Facility, CTF<sub>3</sub>, at CERN now the 'CERN Linear Electron Accelerator for Research' facility, CLEAR
- Normal conductive high-current drive beam
- 380 GeV and 1.5 TeV one drive-beam
- 3 TeV two drive-beam complexes
- 100 MV/m gradient in the main-beam cavities






#### **CLIC** det

- 4T field
- Ultra low-mass VTX
- All Si tracking
- Particle flow calorimetry
- Time-stamped readout (10 ns) due to pronounced Beamstrahlung background at higher energies





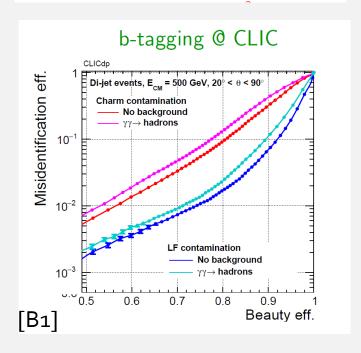


• 4 Yellow Reports 2018

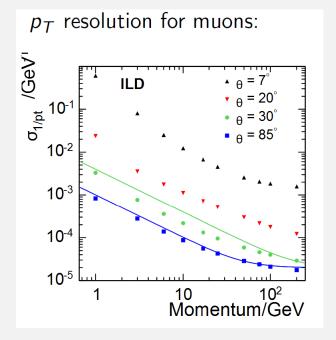






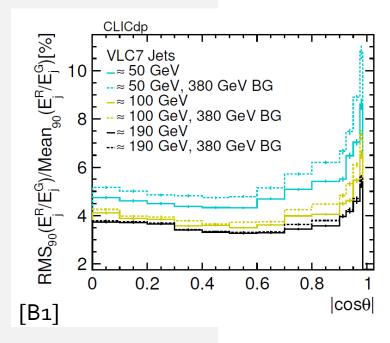



Project Implementation


Detector **Technologies** 

## SIMILAR PERFORMANCE OF LC DETECTORS

c/b-tagging, Higgs branching ratios




Higgs recoil mass, smuon endpoint, Higgs coupling to muons

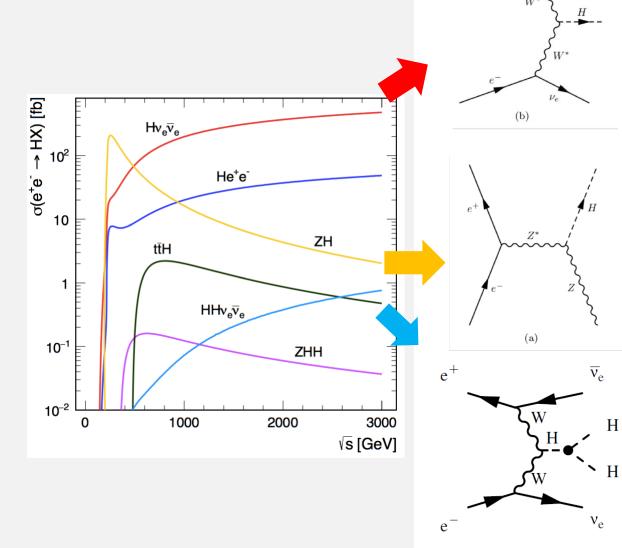


#### Separation of W/Z/H di-jets

3%–4% jet energy resolution gives  $\sim 2.6-2.3\sigma$  W/Z separation



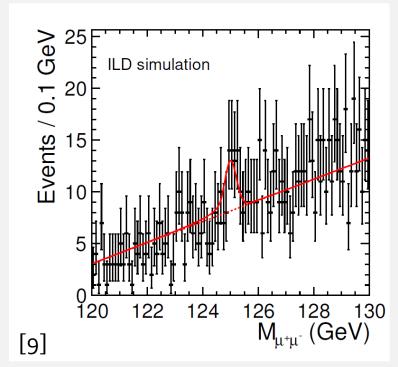
Particle Flow is the 'key word'. Only neutral particles ID ( $\gamma$  (30%), neutral hadrons (10%)) are left to calorimeters.

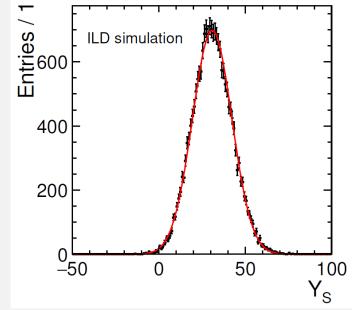

## PHYSICS PROGRAMME AT A LC

HIGGS COUPLINGS: model-independent measurements κ-framework **EFT** approach **HIGGS PHYSICS HIGGS SELF-COUPLING** High E HIGGS AS A PROBE TO DARK SECTOR AND BSM IN GENERAL CPV IN THE HIGGS SECTOR top-quark mass - t-PHYSICS electroweak couplings 95% CL scale limits on 4-fermion contact interactions Low E rare decays **European Strateg**  $\mathcal{O}_2 \mathbf{W} \qquad \mathcal{O}_2 \mathbf{B}$ top Yukawa coupling **HL-LHC** HE-LHC CP properties High E ILC 250 ILC 500 BSM constraints ILC 1000 CLIC 380 CLIC 1500 **BSM** direct searches **CLIC** 3000 **CEPC** models with weak FCC-ee 240 couplings or soft FCC-ee 365 High E FCC-hh signatures 110 120 130 indirect searches Scale / coupling [TeV] high sensitivity

Due to staged realization of LCs, these are ideal machines to explore large physics span, with indirect access to the ~ 100 TeV scale

## HIGGS PRODUCTION MECHANISMS AT LC


- Higgsstrahlung (ZH) is a unique feature of particleantiparticle collisions (i.e. e+e- colliders)
- It facilitates g<sub>HZZ</sub> measurement in a modelindependent way \* (ZH cross-section)
- Higgs invisible width can be determined from the recoil mass
- Most of the Higgs couplings can be determined with a better precision than at HL-LHC only from ZH
- Linear colliders foreseen as staged machines benefit from additional statistics from WW-fusion (clear example is CLIC with ~ 3M Higgs bosons at all stages)
- Double Higgs production at higher energies enables self-coupling measurement




<sup>\*</sup> Theory warning: level of accuracy <1% requires incorporation of loop-corrections → loss of strict model-independence

# High-energy benefits, polarization, combination → access to rare Higgs

- Clear advantage from rising cross-section for WW-fusion with energy
- ttH production, suitable i.e. for CPV study in the Higgs sector
- Multiple-Higgs production → self-coupling measurement
- Less precise determination of the observable at high energy leads to the same precision on coupling as at low energy





| Decay mode                     | Branching ratio |
|--------------------------------|-----------------|
| $H \rightarrow b\bar{b}$       | 56.1%           |
| $H \to WW^*$                   | 23.1%           |
| $H \rightarrow gg$             | 8.5%            |
| $H \to \tau^+ \tau^-$          | 6.2%            |
| $H \rightarrow c\bar{c}$       | 2.8%            |
| $H \rightarrow ZZ^*$           | 2.9%            |
| $H 	o \gamma \gamma$           | 0.23%           |
| $H \to Z\gamma$                | 0.16%           |
| $H \rightarrow \mu^{+}\mu^{-}$ | 0.021%          |
| Ги                             | 4.2 MeV         |

decays

| $\sqrt{s} = 250 \text{ GeV}$ | $q\overline{q}H$ | $\nu \overline{\nu} H$ | ILC250 | ILC250+500 |
|------------------------------|------------------|------------------------|--------|------------|
| L                            | 34%              | 113%                   | 23%    |            |
| R                            | 36%              | 111%                   | 23%    |            |
| $\sqrt{s} = 500 \text{ GeV}$ | $q\overline{q}H$ | $\nu \overline{\nu} H$ | ILC500 | 17%        |
| L                            | 43%              | 37%                    | 24%    |            |
| R                            | 48%              | 106%                   | 2470   |            |

## **HIGGS PHYSICS**

Situation at LHC (HL-LHC, and pp in general)

- No absolute measurement of the production cross-section (like ZH at e+e- colliders)
- Higgs couplings come in combination:

$$\sigma(H) \times \mathrm{BR}(H \to a + b) \sim \frac{\Gamma_{\mathrm{prod}} \Gamma_{\mathrm{decay}}}{\Gamma_{\mathrm{tot}}}$$

- Only ratio of couplings can be directly determined (i.e.  $g_{H\tau\tau}^2/g_{HWW}^2$ )

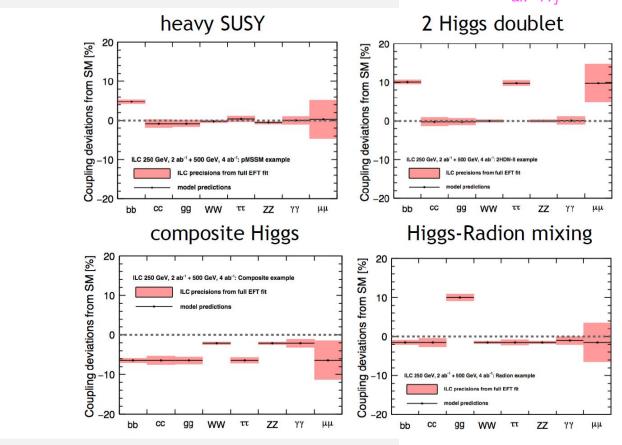
e+e- colliders

- Absolute measurement of the ZH cross-section
- Absolute measurement of the Higgs BRs
- Nearly model-independent determination of the Higgs total width and couplings
- High energy benefits of LCs:  $\lambda$ , CPV, BSM extensions of the Higgs sector

#### **HIGGS COUPLINGS**

#### How well do we need to know Higgs couplings?

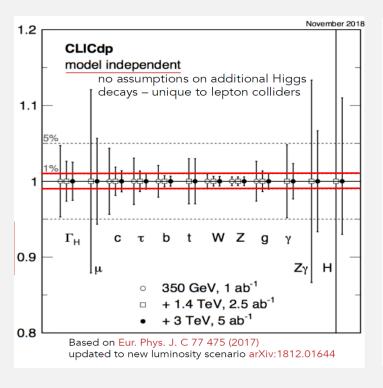
- In many BSM models one expects only % level deviations from the SM couplings for BSM particles in the TeV range
- Higgs to EW bosons couplings are particularly sensitive to BSM; λeven more
- Example, 2HDM-type model in decoupling limit [B2]

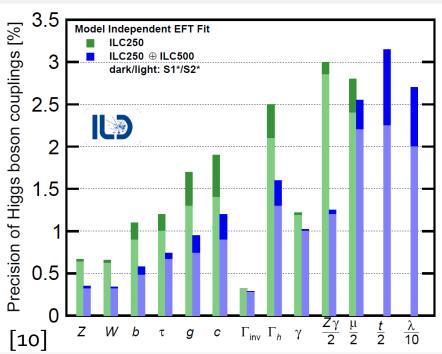

$$\frac{g_{hVV}}{g_{h_{\rm SM}VV}} \simeq 1 - 0.3\% \left(\frac{200 \text{ GeV}}{m_A}\right)^4$$

$$\frac{g_{htt}}{g_{h_{\rm SM}tt}} = \frac{g_{hcc}}{g_{h_{\rm SM}cc}} \simeq 1 - 1.7\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2$$

$$\frac{g_{hbb}}{g_{h_{\rm SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1 + 40\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2.$$

The models below are outside the HL-LHC reach


[T. Barklow et al. '17]




Percent order accuracy on Higgs couplings offers access to various BSM scenarios

#### HIGGS COUPLINGS

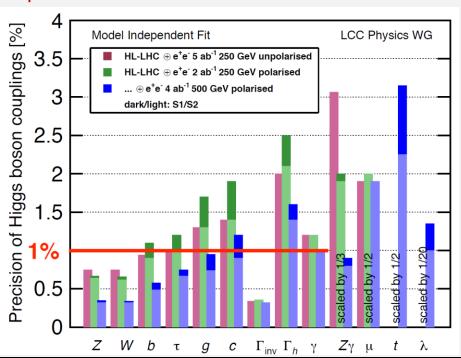
Model independent approach\*, precision better than 1% for most couplings





#### Similar at circular colliders...

| in %                                |      | +FCC-ee<br>365 GeV | +HL-<br>LHC |
|-------------------------------------|------|--------------------|-------------|
| δ <b>g</b> Hzz                      | 0.25 | 0.22               | 0.21        |
| δ <b>g</b> нww                      | 1.3  | 0.47               | 0.44        |
| $\delta$ <b>g</b> Hbb               | 1.4  | 0.68               | 0.58        |
| $\delta \mathbf{g}_{Hcc}$           | 1.8  | 1.23               | 1.20        |
| $\delta \mathbf{g}_{Hgg}$           | 1.7  | 1.03               | 0.83        |
| $\delta g_{H_{	au	au}}$             | 1.4  | 8.0                | 0.71        |
| δ <b>g</b> нμμ                      | 9.6  | 8.6                | 3.4         |
| $\delta \mathbf{g}_{H\gamma\gamma}$ | 4.7  | 3.8                | 1.3         |
| $\delta$ g $_{Htt}$                 |      |                    | 3.3         |
| $\delta \Gamma_{H}$                 | 2.8  | 1.56               | 1.3         |

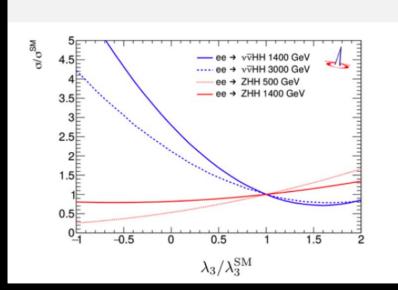

Statistical uncertainties are shown for 5 ab-1@240 GeV and 1.5 ab-1@365 GeV (from FCC-ee CDR)

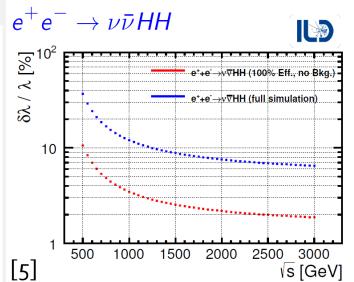
# **COMBINATION WITH HL-LHC**

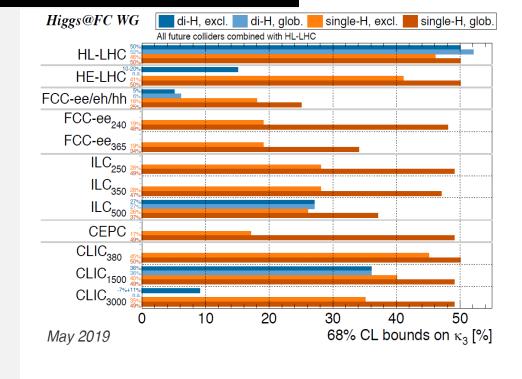
To what extent future e+e- experiments are synergistic with the HL- LHC?

#### **Evident synergy**

- An example: ILC250 with 250 fb<sup>-1</sup>
- Already the single measurement of the HZ cross section at ILC 250 yields a very large improvement of the HL-LHC accuracies





| [11]                                   |                     |        |                   |                       |        | _          |
|----------------------------------------|---------------------|--------|-------------------|-----------------------|--------|------------|
|                                        | Benchmark           | HL-LHC | HL-L              | HC + CLIC             | HL-LHO | C + FCC-ee |
|                                        |                     |        | $380 (4 ab^{-1})$ | $380 (1ab^{-1})$      | 240    | 365        |
|                                        |                     |        |                   | $+ 1500 (2.5ab^{-1})$ |        |            |
| $g_{HZZ}^{ m eff}[\%]$                 | SMEFT <sub>ND</sub> | 3.6    | 0.3               | 0.2                   | 0.5    | 0.3        |
| $g_{HWW}^{\mathrm{eff}}[\%]$           | SMEFT <sub>ND</sub> | 3.2    | 0.3               | 0.2                   | 0.5    | 0.3        |
| $g_{H\gamma\gamma}^{\rm eff}[\%]$      | SMEFT <sub>ND</sub> | 3.6    | 1.3               | 1.3                   | 1.3    | 1.2        |
| gHZy [%]                               | SMEFT <sub>ND</sub> | 11.    | 9.3               | 4.6                   | 9.8    | 9.3        |
| $g_{Hgg}^{cli}[\%]$                    | SMEFT <sub>ND</sub> | 2.3    | 0.9               | 1.0                   | 1.0    | 0.8        |
| 8Htt %                                 | SMEFT <sub>ND</sub> | 3.5    | 3.1               | 2.2                   | 3.1    | 3.1        |
| $g_{Hcc}^{ m eff}[\%]$                 | SMEFT <sub>ND</sub> | -      | 2.1               | 1.8                   | 1.4    | 1.2        |
| $g_{Hbb}^{ m eff}[\%]$                 | SMEFT <sub>ND</sub> | 5.3    | 0.6               | 0.4                   | 0.7    | 0.6        |
| $g_{H	au	au}^{ m eff}[\%]$             | SMEFT <sub>ND</sub> | 3.4    | 1.0               | 0.9                   | 0.7    | 0.6        |
| $g_{H\mu\mu}^{ m eff}[\%]$             | SMEFT <sub>ND</sub> | 5.5    | 4.3               | 4.1                   | 4.     | 3.8        |
| $\delta g_{1Z}[\times 10^2]$           | SMEFT <sub>ND</sub> | 0.66   | 0.027             | 0.013                 | 0.085  | 0.036      |
| $\delta \kappa_{\gamma} [\times 10^2]$ | SMEFT <sub>ND</sub> | 3.2    | 0.032             | 0.044                 | 0.086  | 0.049      |
| $\lambda_{\rm Z}[\times 10^2]$         | SMEFT <sub>ND</sub> | 3.2    | 0.022             | 0.005                 | 0.1    | 0.051      |
|                                        |                     |        |                   |                       |        |            |

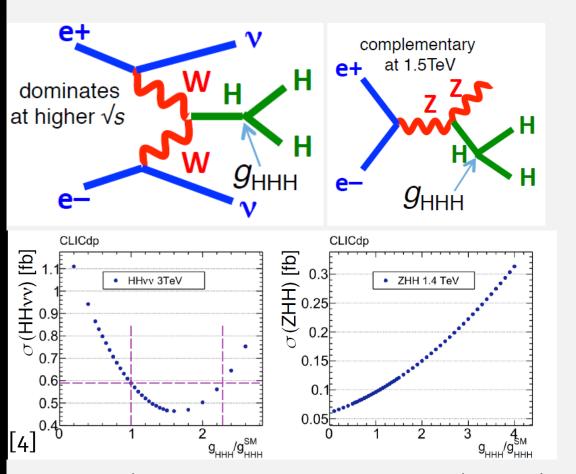

The same holds for CLIC (and FCCee, CEPC)

# HIGGS SELF-COUPLING

- High energy (>1 TeV) e+e- collider is superior in determination of the Higgs self-coupling
- High energy (double) Higgs production is the most sensitive to deviations of the Higgs self-coupling
- $\lambda$  is determined from the total rate of HH events (ILD) or template fit of m<sub>HH</sub> and BDT output (CLICdp)
- Polarization (i.e. -80%) almost doubles the HHvv rate

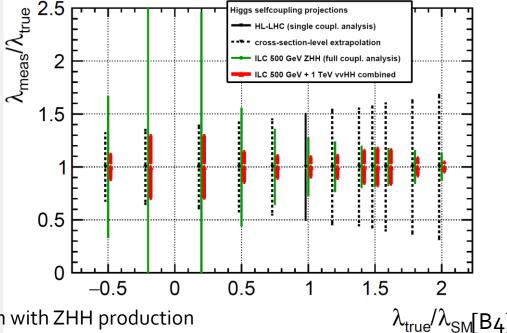







Low energy e+e- colliders (single Higgs production)

in combination with HL-LHC:


- ILC250 and FCCee365, ±35%
- Double-Higgs production:
  - HL-LHC: ~ ±50%
  - ILC500 ~ ± 27%
  - CLIC3000 ~ ± 9%
    - FCC-hh ~ ± 5%

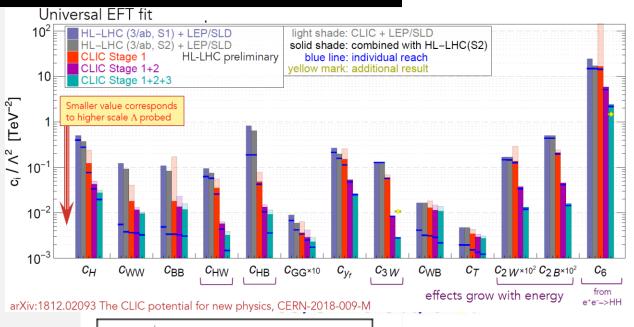
# LC BENEFITS: STAGING, COMBINATIONS...

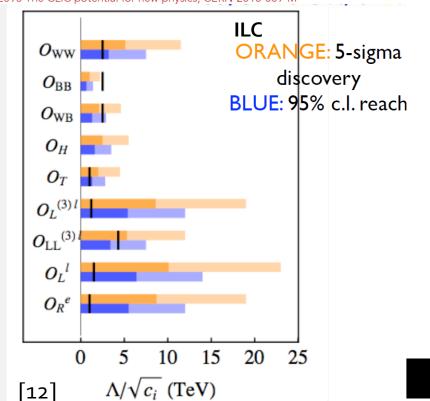


| [7]                            | $\Delta \lambda_{hhh}/\lambda_{hhh}$ |
|--------------------------------|--------------------------------------|
| 4 ab <sup>-1</sup> at ILC500   | 27%                                  |
| +8 ab <sup>-1</sup> at ILC1000 | 10%                                  |





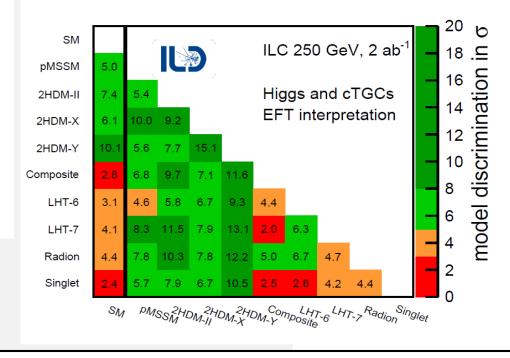

- Intermediate energy (1.4(5) TeV) at CLIC provides complementarity to 3 TeV option with ZHH production
- Different behavior of ZHH and double-Higgs production in WW-fusion, for non-SM values of triple Higgs couplings resolves ambiguity from interference
- Statistical uncertainty reduction in combination
- Clear gain from high center-of-mass energies

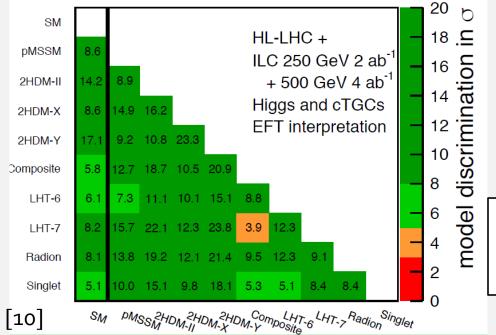

## **HIGGS AS A PROBE TO BSM**

$$\mathcal{L}_{\mathrm{pre-EWSB}} = \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$
 [12]  $\delta \sigma / \sigma = 0.5 \% / 0.1 \%$ 

- BSM physics can manifest itself in the Higgs sector in several ways:
  - Contribution from the higher order operators (EFT approach)
  - Higgs compositeness
  - Extended Higgs sector
  - DM portal
  - CPV

High energy Higgs production is the most sensitive to contributions from the 6D operators in the EFT approach and thus can probe the highest New Physics scale  $\Lambda$ 



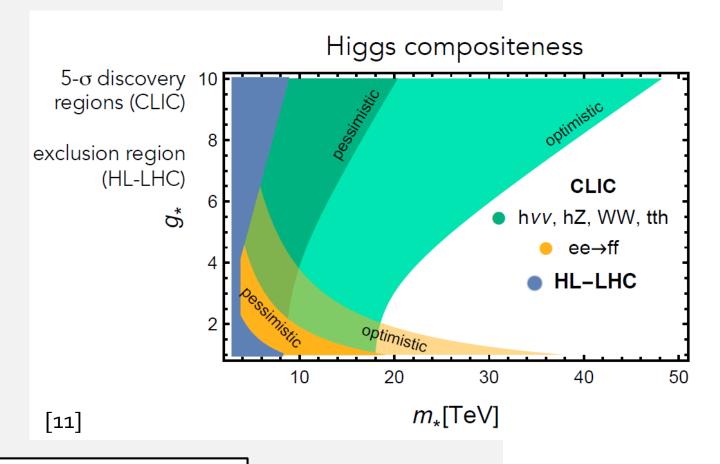




24

### HIGGS AS A PROBE TO BSM – EFT INTERPRETATIONS

|   | Model                         | $b\overline{b}$ | $c\overline{c}$ | gg    | WW   | au	au | ZZ   | $\gamma\gamma$ | $\mu\mu$ |
|---|-------------------------------|-----------------|-----------------|-------|------|-------|------|----------------|----------|
| 1 | MSSM [36]                     | +4.8            | -0.8            | - 0.8 | -0.2 | +0.4  | -0.5 | +0.1           | +0.3     |
| 2 | Type II 2HD [35]              | +10.1           | -0.2            | -0.2  | 0.0  | +9.8  | 0.0  | +0.1           | +9.8     |
| 3 | Type X 2HD [35]               | -0.2            | -0.2            | -0.2  | 0.0  | +7.8  | 0.0  | 0.0            | +7.8     |
| 4 | Type Y 2HD [35]               | +10.1           | -0.2            | -0.2  | 0.0  | -0.2  | 0.0  | 0.1            | -0.2     |
| 5 | Composite Higgs [37]          | -6.4            | -6.4            | -6.4  | -2.1 | -6.4  | -2.1 | -2.1           | -6.4     |
| 6 | Little Higgs w. T-parity [38] | 0.0             | 0.0             | -6.1  | -2.5 | 0.0   | -2.5 | -1.5           | 0.0      |
| 7 | Little Higgs w. T-parity [39] | -7.8            | -4.6            | -3.5  | -1.5 | -7.8  | -1.5 | -1.0           | -7.8     |
| 8 | Higgs-Radion [40]             | -1.5            | - 1.5           | +10.  | -1.5 | -1.5  | -1.5 | -1.0           | -1.5     |
| 9 | Higgs Singlet [41]            | -3.5            | -3.5            | -3.5  | -3.5 | -3.5  | -3.5 | -3.5           | -3.5     |

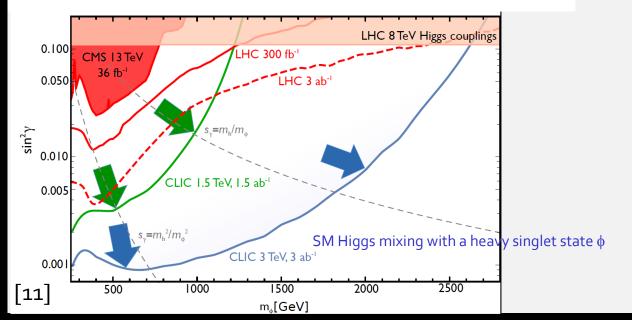




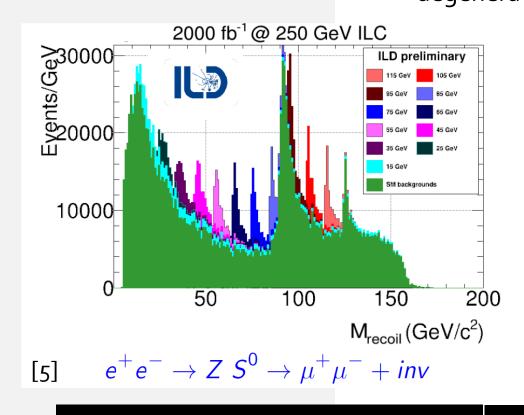

Above 50 model discrimination already with 250 Gev ILC

Substantial improvement at higher energies (linear e+e- colliders):
 @ILC a factor 2 in Higgs couplings precision with 500 GeV polarized beams
 Complementarity with HL-LHC

#### HIGGS AS A PROBE TO BSM


- BSM physics can manifest itself in the Higgs sector in several ways:
  - Contribution from the higher order operators (EFT approach)
  - <u>Higgs compositeness</u>
  - Extended Higgs sector
  - DM portal
  - CPV



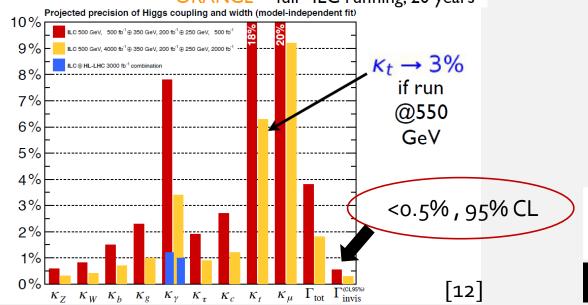

The scale of compositeness can be probed significantly higher from the highenergy collider kinematic limit

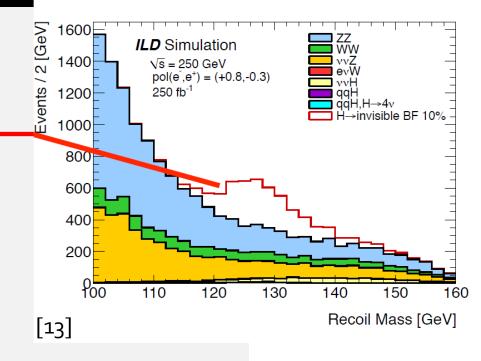
#### HIGGS AS A PROBE TO BSM

- BSM physics can manifest itself in the Higgs sector in several ways:
  - Contribution from the higher order operators (EFT approach)
  - Higgs compositeness
  - Extended Higgs sector
  - DM portal
  - CPV



- In majority of BSM models, SM Higgs comes with additional Higgses (2HDM, SUSY in general, compositeness,..etc.)
- Can be a lighter scalar than SM Higgs it is important to be capable of probing such states at future colliders
- If SM Higgs is the lightest, other states are nearly massdegenerated





# HIGGS TO INVISIBLE

- BSM physics can manifest itself in the Higgs sector in several ways:
  - Contribution from the higher order operators (EFT approach)
  - Higgs compositeness
  - Extended Higgs sector
  - <u>DM portal</u>

- CPV

RED - "initial" ILC running, 8 years
ORANGE - "full" ILC running, 20 years



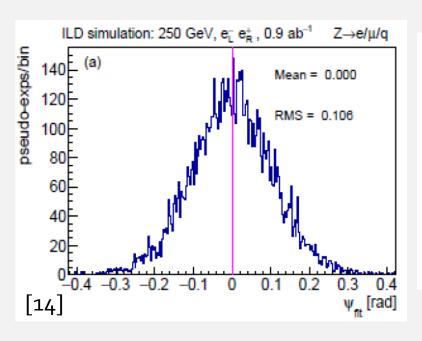


- Looking at the recoil mass under the condition that nothing observable is recoiling against the Z boson (only one Z per event)
- Access to DM connected to SM particles through a specific set of operators (portals)

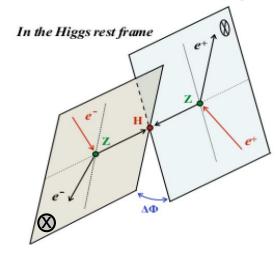
$$\frac{1}{2}\epsilon_Y F_{\mu\nu}^Y F'^{\mu\nu} \qquad \epsilon_H |H|^2 |\Phi|^2 \qquad \epsilon_a \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

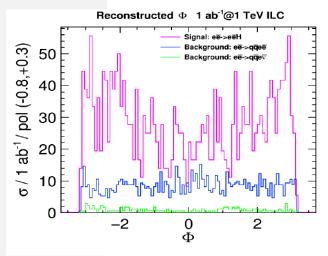
l. Bozovic, Lomonosov 2021

 $H \rightarrow inv$ .


#### **CPV IN THE HIGGS SECTOR**




 More difficult than just a spin/parity determination: Higgs can be a mixture of different CP eigenstates


$$h = H \cdot \cos \psi + A \cdot \sin \psi$$

- Can be measured in Hff and HVV vertices, both in Higgs production and decays
- Hff (HVV) sensitive to CPV contributions at the tree (loop) level
- Only lose bounds (at present) on a quantum superposition od different CP states, while experimentally disfavored hypothesis on purely CP odd state



| Collider              | $\psi_{\mathit{CP}}$ |
|-----------------------|----------------------|
| HL-LHC                | 8°                   |
| HE-LHC                | _                    |
| CEPC                  | _                    |
| FCC-ee <sub>240</sub> | 10°                  |
| ILC <sub>250</sub>    | <b>4</b> °           |





ILC250 – benefit from polarization & combination (H $\tau\tau$ ) 1 TeV – optimal for ZZ-fusion

### LINEAR VS. CIRCULAR

#### A word from theory

[B. Heinemann '19]

#### Theoretical Uncertainties: production

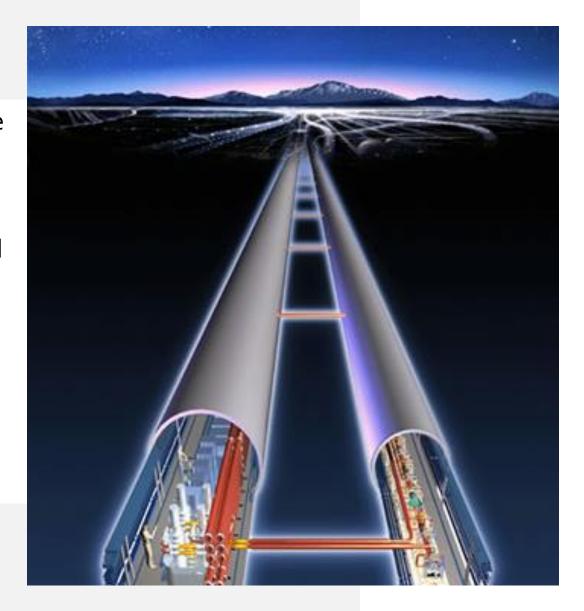
#### Production at hadron colliders

- For HL-LHC uncertainties expected to be improved by factor 2 w.r.t. current
- HE-LHC: another factor of 2
- FCC-hh: well below 1%

#### Requires e.g.

- Improved PDFs
- Higher precision calculations
- Improved non-perturbative aspects
- ۰ ...

Note: this is related to the fact that FCC-hh is assumed to be realised only far in the future!


- Precision vise, linear and circular colliders' precision is comparable when it comes to the Higgs couplings
- Due to high-energy access of high crosssection Higgs production mechanisms, LCs are superior in probing of the Higgs selfcoupling
- Extensibility of the physics span (pp collisions, 100 TeV center-of mass energy) is a great advantage of circular colliders
- But, + a 100 TeV hadron-collider, comes at the moment with quite a few open issues:
  - -Accelerator & detector technologies
  - Huge pile-up
  - -Systematics control and theoretical uncertainties

- Precision measurement of couplings at hadron colliders are limited by the systematic (theoretical) uncertainties
- This is also a reason for the fact that the Higgs coupling projections for HE-LHC show only relatively small improvements over HL-LHC
  - FCC-hh projections, in particular when taken separately, depend on a drastic reduction of theory uncertainties [B2].

#### **SUMMARY**

- All future e+e- projects bring significant added value to the projected HL-LHC sensitivities in the Higgs sector...
- ... enabling discrimination of BSM models inaccessible at HL-LHC
- Already lowest energy phases brings sensitivity far beyond the projected HL-LHC precision
- Higher center of mass energies significantly extends physics span of a LC (Higgs self-coupling, BSM scenarios)
  - upgrade is important genuine advantage of a LC
- Additional enhancement from polarization (precision, model discrimination)

**READY-TO-WEAR PROJECTS** 











# **THANK YOU**

Corfu Summer Institute
Workshop on the Standard
Model and Beyond

29.08.-08.09. 2021

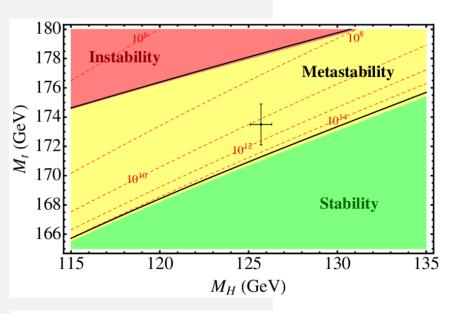
#### References:

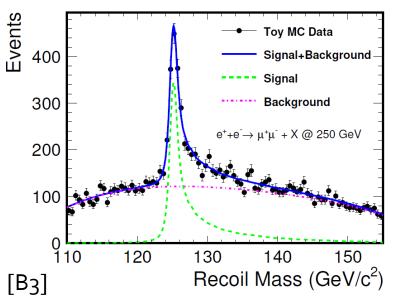
- 1. N. Arkani Hamed, CEPC WS, Beijing, 2019, <a href="https://indico.ihep.ac.cn/event/7389/session/o/contribution/18/material/slides/o.pdf">https://indico.ihep.ac.cn/event/7389/session/o/contribution/18/material/slides/o.pdf</a>
- Higgs@FCWG
- 3. European Strategy Briefing Book and arXiv:2001.05278
- 4. A. Robson, CEPCWS EU edition, Oxford, 2019
- 5. P. Bambade et al., ILC A Global Project, arXiv:1903.01629v3
- 6. ILC TDR, arXiv:1306.6328
- 7. S. Kawada, ILC Physics potential, EPS-HEP2021
- 8. A. Robson et al., The Compact Linear e+e- Collider (CLIC): Accelerator and Detector, arXiv:1812.07987
- 9. S. Kawada, Prospects of measuring Higgs boson decays into muon pairs at the ILC, arXiv:1902.05021
- 10. J. List, , ECFA Hlggs@FutureColliders, 2019 and arXiv:1710.07621
- 11. The CLIC Potential for New Physics, arXiv:1812.02093
- 12. M. Perelstein, PHENO-16, Pittsburgh, May 11 2016
- 13. Yu Kato @ EPS-HEP 2019
- 14. D. Jeans et al., Measuring the CP state of tau lepton pairs from Higgs decay at the ILC, arXiv:1804.01241
- B1. D. Arominski, A detector for CLIC: main parameters and performance, arXiv:1812.07337
- B2. G. Weiglein, Higgs requirements from theory, DESY, Hamburg, May 2019
- B3. ILC Higgs White Paper, arXiv:1310.0763v3 [hep-ph]
- B4. J. List, Straight to the future: Physics opportunities at the ILC, 20<sup>th</sup> Lomonosov Conference on Particle Physics, 2021

# **BACK UP**

**Corfu Summer Institute** 

Workshop on the Standard Model and Beyond


29.08.-08.09. 2021


#### HIGGS MASS

- Which precision of the Higgs mass is needed?
  - Vacuum stability (at least several GeV)
  - Impact on  $H\rightarrow ZZ^*$  width (a few tens of MeV)
- Current precision 160 MeV
- Comparable precision with HL-LHC

| Collider Scenario    | Strategy                                                | $\delta m_H  ({\rm MeV})$ | $\delta(\Gamma_{ZZ^*})$ (%) |
|----------------------|---------------------------------------------------------|---------------------------|-----------------------------|
| LHC Run-2            | $m(ZZ), m(\gamma\gamma)$                                | 160                       | 1.9                         |
| HL-LHC               | m(ZZ)                                                   | 10-20                     | 0.12-0.24                   |
| ILC <sub>250</sub>   | ZH recoil $ZH$ recoil $m(bb)$ in $Hvv$ $m(bb)$ in $Hvv$ | 14                        | 0.17                        |
| CLIC <sub>380</sub>  |                                                         | 78                        | 1.3                         |
| CLIC <sub>1500</sub> |                                                         | 30 <sup>15</sup>          | 0.56                        |
| CLIC <sub>3000</sub> |                                                         | 23                        | 0.53                        |
| FCC-ee               | ZH recoil ZH recoil                                     | 11                        | 0.13                        |
| CEPC                 |                                                         | 5.9                       | 0.07                        |

M. Cepeda, Higgs precision measurements at future colliders, IFT UAM-CSIC, Madrid, Spain, July 2019 and [2]





### **HIGGS WIDTH**

- Being less than 5 MeV, Higgs decay width can not be *directly* measured at any proposed e+e-collider
- Can be determined from individual decays (quasi-direct measurement), i.e. H→WW decays in WW-fusion, H→ZZ in HZ)

$$\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

In a combination of measurements:

$$\frac{\sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{WW}) \cdot \sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}{\sigma(\text{ee} \rightarrow \nu\nu \text{H}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}$$

$$\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{\Gamma} \cdot \frac{\Gamma}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$$

- The ultimate precision is reached in a global fit, (model-independent or in the LHC-style, so called  $\kappa$ -framework):

 $\Gamma_{H} = \frac{\Gamma_{H}^{\text{SM}} \cdot \kappa_{H}^{2}}{1 - (BR_{inv} + BR_{unt})}$ 

- Or in a global (model-dependent) EFT fit (assumes the new physics scale  $\Lambda >> M_H$ )

#### Statistical accuracy of 1-2%

| Collider              | $\delta\Gamma_H$ (%) from Ref. | Extraction technique standalone result                      | δΓ <sub>H</sub> (%)<br>kappa-3 fit |
|-----------------------|--------------------------------|-------------------------------------------------------------|------------------------------------|
| ILC <sub>250</sub>    | 2.4                            | EFT fit [3]                                                 | 2.4                                |
| ILC500                | 1.6                            | EFT fit [3, 11]                                             | 1.1                                |
| CLIC <sub>350</sub>   | 4.7                            | κ-framework [85]                                            | 2.6                                |
| CLIC <sub>1500</sub>  | 2.6                            | κ-framework [85]                                            | 1.7                                |
| CLIC <sub>3000</sub>  | 2.5                            | κ-framework [85]                                            | 1.6                                |
| CEPC                  | 3.1                            | $\sigma(ZH, v\bar{v}H)$ , BR $(H \to Z, b\bar{b}, WW)$ [90] | 1.8                                |
| FCC-ee <sub>240</sub> | 2.7                            | κ-framework [1]                                             | 1.9                                |
| FCC-ee <sub>365</sub> | 1.3                            | κ-framework [1]                                             | 1.2                                |

arXiv:1905.03764

# ILC and CLIC parameters

| Property                | unit                              | ILC at              | ILC at             | CLIC at             | CLIC at               |
|-------------------------|-----------------------------------|---------------------|--------------------|---------------------|-----------------------|
|                         |                                   | 500 GeV             | 1 TeV              | 380 GeV             | 3 TeV                 |
| L                       | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $1.8 \cdot 10^{34}$ | $3.5\cdot10^{34}$  | $1.5 \cdot 10^{34}$ | $5.9 \cdot 10^{34}$   |
| $L_{0.01}$              | $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ | $1.0\cdot 10^{34}$  | $1.2\cdot 10^{34}$ | $0.9 \cdot 10^{34}$ | $2.0 \cdot 10^{34}$   |
| $L_{0.01}/L$            | %                                 | 58                  | 59                 | 60                  | 34                    |
| Repetition rate         | Hz                                | 5 Hz                | 4 Hz               | 50 Hz               | 50 Hz                 |
| Train duration          | ns                                | 727 μs              | 897 μs             | 178 ns              | 156 ns                |
| BX / train              |                                   | 1312                | 2450               | 356                 | 312                   |
| Bunch separation        | ns                                | 554 ns              | 366 ns             | 0.5 ns              | 0.5 ns                |
| Duty cycle              | %                                 | 0.36                | 0.36               | 0.00089             | 0.00078               |
| $\sigma_{x}/\sigma_{y}$ | nm                                | 474/5.9             | 481/2.8            | $\sim$ 150/3        | $\sim$ 40/ $^{\circ}$ |
| $\sigma_{z}$            | μm                                | 300                 | 250                | 70                  | 44                    |