New Results from CMS

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore

30th August 2021

Corfu Summer Institute

21st Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfus Greece 2021

Bird-eyes view on new results (personal selection)

Outline

- Introduction
- Physics results
 The Standard Model
 The Higgs particle
 Searches for New Physics
 Searches for more Exotic particles in the Detector
- Summary/Outlook

LHC Operations

The CMS Detector

Last Year: 10 years of LHC Operation

- LHC switched on at 7 TeV end of March 2010
 - ->The highest energy in the lab!
- LHC @ 13 TeV from 2015 onwards
- Most important highlight so far: The discovery of a Higgs boson
- Many results on Standard Model process measurements, top-physics, bphysics, heavy ion physics, searches, Higgs physics
- Waiting for the next discovery...
 -> Searching beyond the Standard Model
- 10 years later: CERN in "safe mode" due to COVID19... ⊗ ⊗ ⊗

March 30 2010 ...waiting.. ...since 4:00 am

12:58 7 TeV collisions!!!

NOW: Long Shutdown-2 till start of 2022

Pictures from the present shutdown and opening of the experiment

Many "virtual" visits to CMS in past months

NOW: Long Shutdown-2 till start of 2022

Scenic pictures...

COVID has slowed down *some* operations in CMS

- Lockdown/travel restrictions/lack of in person
- Supplies from external sources (e.g. processors)
- All of these aspects impede progress indirectly Nevertheless CMS continues progressing
- Preparation for Run-3
- Scientific output

Virtual Visits...

E.g. https://www.youtube.com/watch?v=tj3tE7e8KOU

Virtiual visit for the neutrino school early August 2021

CMS Detector Status for the last Run

Run 2 pp data taking efficiency 92.3% with 2018 data taking efficiency 94%

CMS experiment in a very good shape during run-2 We can successfully deal with pile-up ~ 40 events per bx

LHC Publications in CMS

http://cms-results.web.cern.ch/cmsresults/public-results/publications-vs-time/

About 150 more since September two years ago...

~1060 publications on pp (and pPb/PbPb) physics since 1/2010

About 100 papers on Higgs studies!! Paper 16 was the discovery paper!

Standard Model Measurement

Standard Model Measurements

All measurements in good agreement with the Standard Model predictions!!

Standard Model Measurements

EWK Measurements

CMS Preliminary May 2021 CMS EW measurements vs. 7 TeV CMS measurement (stat,stat+sys) ----Theory 8 TeV CMS measurement (stat, stat+sys) ----13 TeV CMS measurement (stat.stat+sys) ----19.3 fb⁻¹ qqW ---- $0.84 \pm 0.08 \pm 0.18$ qqW 35.9 fb⁻¹ $0.91 \pm 0.02 \pm 0.09$ ----5.0 fb⁻¹ qqZ $0.93 \pm 0.14 \pm 0.32$ qqZ 19.7 fb⁻¹ $0.84 \pm 0.07 \pm 0.19$ 35.9 fb⁻¹ qqZ $0.98 \pm 0.04 \pm 0.10$ γγ→WW $1.74 \pm 0.00 \pm 0.74$ 19.7 fb⁻¹ qqWγ 19.7 fb⁻¹ $1.77 \pm 0.67 \pm 0.56$ 35.9 fb⁻¹ qqWγ $1.20 \pm 0.16 \pm 0.21$ -19.4 fb⁻¹ ss WW $0.69 \pm 0.38 \pm 0.18$ 137 fb⁻¹ ss WW $1.20 \pm 0.11 \pm 0.08$ 19.7 fb⁻¹ qqZγ $1.48 \pm 0.65 \pm 0.48$ 35.9 fb⁻¹ qqZγ $1.20 \pm 0.12 \pm 0.13$ 137 fb⁻¹ gqWZ $1.46 \pm 0.31 \pm 0.11$ qqZZ $1.19 \pm 0.38 \pm 0.13$ 137 fb⁻¹ 3 All results at: Production Cross Section Ratio: $\sigma_{exp} / \sigma_{theo}$ http://cern.ch/go/pNi7

Measurements vs NNLO Theory

All measurements in good agreement with the Standard Model predictions!!

ttbb Cross Sections

These processes are important backgrounds eg in Higgs (ttH) studies

Measured cross sections systematically larger than predictions...

Top Cross Sections

Many detailed top studies ongoing Measurements get more precise...

Measurements in good agreement with the Standard Model predictions!!

tt plus Vector Boson Production

Measurements in good agreement with the Standard Model predictions!!

Top Mass Determination

Steady improvements over the last years in Run-1

Precision better than 0.3%

Hadronization model uncertainties one of the main limitations

This is not the final word yet -Run-2 combination under way -Experiment combination next

Note: the average value at LHC somewhat lower than Tevatron one: 174.30 ± 0.64 GeV Driven by D0 result. Still not really Resolved yet...

Precision Measurement of the Z Invisible Width

SMP-18-014

 Utilizes the similarity in kinematic characteristics between the decay of the Z boson to neutrinos and to charged leptons (electrons/ muons) Select events with p_{Tmiss} and with dileptons & calculate the p_{Tmiss} excluding the dileptons from the event • The invisible width, Γ_{inv} , is then extracted from a simultaneous fit to data regions containing mostly Z boson decays to neutrinos and those dominated by Z boson decays to electron and muon pairs.

$$\Gamma_{
m inv} = 523 \pm 3 \, ({
m stat}) \pm 16 \, ({
m syst}) \, {
m MeV}$$

Single most precise direct measurement Competitive with combined direct LEP result

W Decay Branching Fractions

Precision measurement of the W boson decay branching fractions Combining all the measurements to get All BR CMS LEP $(10.83 \pm 0.01 \pm 0.10)\%$ $10.71 \pm 0.14 \pm 0.07)$ % $\mathcal{B}(W \to e\overline{\nu}_e)$ $(10.94 \pm 0.01 \pm 0.08)\%$ $\mathcal{B}(W \to \mu \overline{\nu}_{\mu})$ $10.63 \pm 0.13 \pm 0.07)$ % SMP-18-011 $\mathcal{B}(W \to \tau \overline{\nu}_{\tau})$ $(10.77 \pm 0.05 \pm 0.21)\%$ $11.38 \pm 0.17 \pm 0.11)$ % $\mathcal{B}(W \to h)$ $(67.46 \pm 0.04 \pm 0.28)\%$ with LU $\mathcal{B}(W \to \ell \overline{\nu})$ $(10.89 \pm 0.01 \pm 0.08)\%$ $(10.86 \pm 0.06 \pm 0.09)\%$ $(67.32 \pm 0.02 \pm 0.23)\%$ $(67.41 \pm 0.18 \pm 0.20)\%$ $\mathcal{B}(W \to h)$ 35.9 fb⁻¹ (13 TeV) **CMS** Preliminary W bosons from CMS LU (68%/95% CL) LEP top quark decays $W \rightarrow ev_{o}$ (10.83 ± 0.10)% LEP LU w/111 One b jet $Br(W \rightarrow \ell) = (10.89 \pm 0.08)\%$ g $Br(W \rightarrow h) = (67.32 \pm 0.23)\%$ At least one decay to e / μ (trigger) $W \rightarrow \mu v_{\mu}$ (10.94 ± 0.08)% t $e / \mu / \tau / hardons decay$ Additional jets $W \rightarrow TV_{\star}$ (10.77±0.21)%

0.100

0.105

0.110

0.115

 $Br(W \rightarrow \ell v)$

0.120

0.125

0.130

30 categories ->ML fit of the categories

Jet Differential Distributions

Comparison with NNLO calcvulations N. Glover et al.

Measurements of $B_{s(d)} \rightarrow \mu \mu$

Summer 2020 combination of $B_{s(d)} \rightarrow \mu\mu$ (ATLAS, CMS and LHCb)

Eg. BPH-20-003

The results are compatible with the SM predictions within 2.1 standard deviations

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69 + 0.37) \times 10^{-\bar{9}}$$
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = (3.66 \pm 0.23) \times 10^{-\bar{9}}$$

 $\mathcal{B}(B^0 \to \mu^+\mu^-) < 1.6 \ (1.9) \times 10^{-10} \text{ at } 90\% \ (95\%)$ $\mathcal{R} < 0.052 \ (0.060) \text{ at } 90\% \ (95\%)$

Measurements of $B_{s(d)} \rightarrow \mu \mu$

CMS Experiment at the LHC, CERN Data recorded: 2016-May-31 07:08:48.668672 GMT Run / Event / LS: 274250 / 379362289 / 189

Observation of Triple J/\Psi production

Study of double and triple parton scattering in pp colisions Five candidate events are observed in the full Run-2 data sample

Production is expected to be dominated by DPS and TPS the DPS associated effective cross section parameter is: $\sigma_{\text{eff,DPS}} = 2.7^{+1.4}_{-1.0} (\exp)^{+1.5}_{-1.0} (\text{theo}) \text{ mb}$

where $\sigma_{\text{Eff,DPS}}$ is an effective interaction area:

$$\sigma_{\rm DPS}^{\rm pp \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\rm SPS}^{\rm pp \to \psi_1 + X} \sigma_{\rm SPS}^{\rm pp \to \psi_2 + X}}{\sigma_{\rm eff, DPS}}$$

Fiducial cross section:

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = 272^{+141}_{-104}(stat) \pm 27$ (syst) fb

BPH-21-004

The Higgs

Brief Higgs Summary (2019)

We know already a lot on this brand New Higgs particle!!

We continue to look for anomalies, i.e. unexpected decay modes or couplings, multi-Higgs production, heavier Higgses, charged Higgses...

Higgs @ 13 TeV in Run-2

7.7 million Higgs produced in Run2 per experiment

- The mild deviations seen in Run-1 are gone ⊗
- Observation of H→bb in the associated production channel
- Direct observation of ttH production
- No deviations from Standard Model Higgs expectations yet!!
 The Higgs Boson is still very

much Standard Model-like!

$$\mu = 1.17^{+0.10}_{-0.10}$$

Higgs Mass

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay channels with the Run 1 and 2016 data

- excellent detector performance in lepton/photon energy scale determination
- □ single experiments are better than ATLAS + CMS Run I combination
- still dominated by statistical uncertainties

2002.06398

 M_H is known to a precision of almost 1 per mille

Higgs Width

Higgs to Diphoton Analysis

Full Run-2 results

2103.06956

Simplified Template Cross Sections

Simplied Template Cross Sections (STXS)

1610.07922

- ATLAS, CMS and the theory community have been working together in the LHC Higgs Working Group to setup a common framework for Higgs boson measurements in Run 2.
 - Reduce theory uncertainty and model dependence on measured bins
 - Each Higgs boson production mode is split into numerous templates by kinematic features that are highly correlated with reconstruction-level objects.

ggH	<i>q</i> ₂ <i>q</i> ₂ / <i>q</i> ₂ VBF	VН , ^{q'/q} , , , , , , , , , , , , , , , , , , ,	t H
(a) Gluon Fusion 87%	(b) Vector Boson Fusion (b) $Vector Boson Fusion$	(c) Higgsstrahlung 4%	(d) t t Production 1%
рт (Н)	Njets	pt (V)	рт (Н)
Njets	Mjj, pt(H+jj) (if Njets>1)	Njets	
Mjj, pt(H+jj) (if Njets>1, VBF-like)	рт (Н)		

Adapted by the LHC experiments to maximally reduce impact of model dependence and theory assumptions

STXS: Higgs to Diphoton Analysis

2103.06956

"Event classification"

STXS: Higgs to Diphoton Analysis

21

Higgs to ZZ -> 4 leptons

32

STXS: Higgs to Four Lepton Analysis

Boosted Higgs to bb pair

Higgs bosons (H) produced with transverse momentum (p_{T}) greater than 450GeV and decaying to bottom quark-antiquark pairs, and using Z->bb as

Higgs to Di-Muon Analysis

First evidence of Higgs coupling to second generation!

Higgs to Di-Muon Analysis

First evidence of Higgs coupling to second generation!

Searching for Decays to Z+meson

Decays can have information on couplings to first and second generation Fermions. Expected rates however very small (in SM)

arXiv:2007.05112

No signal observed

About factor 700 away to reach SM coupling sensitivity

Limits on HH Production

Expected and observed 95% CL upper limits on ratio of the cross section to the SM expectation for several channels B(HH $\rightarrow\gamma\gamma$ bb), B(HH \rightarrow ZZbb) and B(HH \rightarrow bbbb) with full Run-2 statistics

Getting closer !!

... Will be a target for the HL-LHC

Search for LFV Decays: $H \rightarrow \mu \tau$, $e\tau$

No sign of Lepton Flavour Violating Higgs decays in the data

MSSM Summary Results

Observed and expected 95% CL upper limits for m_A versus the MSSM parameter tan β in the hMSSM benchmark scenario.

35.9 fb⁻¹ (13 TeV) **CMS** Preliminary 60 tanβ 50 40 30 20 10 Observed exclusion 95% CL Expected exclusion 95% CL 7 h(125) 6 EPJC 79 (2019) 421 5 $A/H/h \rightarrow \mu\mu$ CMS-PAS-HIG-18-010 $A/H \rightarrow bb$ 4 JHEP 1808 (2018) 113 $A/H/h \rightarrow \tau\tau$ JHEP 1809 (2018) 007 3 $H \rightarrow WW$ (ly ly and ly qq) JHEP 03 (2020) 034 $H \rightarrow hh (bb\tau\tau)$ PLB 778 (2018) 101 2 H → tt CMS-PAS-HIG-17-027 $A \rightarrow Zh (lh\tau)$ arxiv:1910.11634 hMSSM 130 200 300 400 1000 2000 m₄ [GeV]

Observed and expected 95% CL upper limits for m_A versus the parameter tan β in the M125h scenario; arxiv:1808.0754

No MSSM signal in the Higgs sector

Brief Higgs Summary: Run-2

Combination of all Higgs production/decay channels at 13 TeV Check of overall consistency of the couplings

The Future: Studying the Higgs...

More LHC Data 2022-2024
LHC upgrade ! 2026-2036
Experiment upgrades!!
Other/new machines...

Higgs as a portal

- having discovered the Higgs?
- Higgs boson may connect the Standard Model to other "sectors"

Many questions are still unanswered:
What explain a Higgs mass ~ 125 GeV?
What explains the particle mass pattern?
Connection with Dark Matter?
Where is the antimatter in the Universe?

•What is the origin of neutrino masses?

New Physics Searches

New Physics?

What stabelizes the Higgs Mass? Many ideas, not all viable any more A large variety of possible signals. We have to be ready for that

Supersymmetry: a new symmetry in Nature?

SUSY particle production at the LHC

Candidate particles for Dark Matter \Rightarrow Produce Dark Matter in the lab

Picture from Marusa Bradac

Supersymmetry: Gluinos

No significant signal to date Within the context of the SMS: Exclude gluino masses ~ 2300 GeV for neutralino masses up to 1000 GeV

Supersymmetry: Quarks

No significant signal to date

Within the context of the SMS: Exclude squark masses ~ 1700 GeV

Chargino and Neutralino Production

Direct production of "electroweakino" pairs

Exclude masses up to 1400 GeV for neutralino masses up to 800 GeV

Top Squark Search Summaries

 $\widetilde{\chi}_1^0$

SUSY-20-002

Within the context of the SMS: Exclude with masses up to 1300 GeV for neutralino masses up to 600 GeV

Is this getting critical for Natural Models??

Other Exotica (selection)

Search for Di-lepton Resonance

The "classical" search for high mass new neutral gauge bosons Use opposite charge high p_T same flavor leptons

Search for Dark Photons in VBF Higgs

Search for a Higgs boson produced via vector boson fusion, decaying to an undetected particle and an isolated photon Experimental search: 2 VBF-jets +photon+ Missing p_T

Search for Right-Handed W and Heavy Neutrino

Events with two same-flavor leptons (e or μ) and two (boosted) quarks are selected. EXO-20-002

For $m_N = 1/2m_{WR}$ W_R is excluded at 95% CL for 4.7 and 5.0 TeV for the e and the mu channel. A 2.95 σ deviation seen at (m_{WR} , m_N) = (6000, 800)GeV

Heavy Neutral Leptons

Neutrino portal: vMSM (Neutrino Minimal Standard Model) Minimal extension of the SM fermion sector by Right Handed HNLs: N1, N2, N3.

D.Gorbunov, M.Shaposhnikov JHEP 0710 (2007) 015

-The lightest singlet N_1 (mass \approx KeV):

- Good dark matter candidate.
- -N₂, N₃ (mass in 100 MeV GeV region):
 - Mechanism to give mass to neutrinos
 - Explain baryon asymmetry

Search for Long Lived HNL

Search for long-lived heavy neutral leptons (HNLs)

EXO-20-009

HNLs produced through mixing with SM neutrinos in final state of 3 charged leptons + a neutrino

Low mass HNLs are long lived

 $\tau_N \propto m_N^{-5} V_{Nl}^{-2}$

Search for 3 leptons; two form a displaced vertex

Different sensitivities for Dirac and Majorano neutrinos

Hunt for Long Lived Particles

CMS and LLPs

- How to unlock CMS' full LLP discovery reach?
- How far can we extend the mass and lifetime?

Search for LLPs associated with a Z

Higgs decay into long lived scalarsSeach in central tracker for up to 4 displaced jetsTrigger from Z leptons

EXO-2020-03

Search for Displaced Low Mass Dimuons

Use scouting data selected for multi-muon events

Example scenarios

- Dark photons
- Single scalar field resonances

EXO-20-14

Include 2 and 4 muon final states in the search

Limits on BR as low as to 10⁻⁵

Search for LLPs in the muon system

p

Search for LLPs in the muon system

Overview of CMS EXO results

Most standard searches have been carried out with full Run-2 data Other exotic signals or new models been considered (eg bi-leptons, see later) Increased interest in expanding towards long-lived particle searches

General Search for Excesses

CMS: MUSIC tool to scan the data -> classifiy according to # of objects in event
 Use the invariant mass, S_T and p_{Tmiss}
 Automatic statistical analysis

Object	<i>p</i> _T [GeV]	Pseudorapidity
Muon	>25	$ \eta < 2.4$
Electron	>25	$0 < \eta < 1.44$ or $1.57 < \eta < 2.50$
Photon	>25	$ \eta < 1.44$
Jet	> 50	$ \eta < 2.4$
b-tagged jet	>50	$ \eta < 2.4$
Missing transverse momentum	>100	<u> </u>

Run-3 Opportunities

• B-parking

- in 2018 we used low p_T displaced triggers to save a sample of unbiased B hadron decays recoiling wrt the triggered muon
 - Parked trigger rate ~2kHz was reconstructed after the end of the run
- Enables several analyses on LFU violation currently in progress
 - Expect first approved results soon
- Studying how to further optimize the trigger in Run 3
- Scouting
 - Analysis based on a reduced data format and on the online reconstruction in the HLT farm (do not save the full event data)
 - In Run 2 all analyses based about 5 kHz (~1 kHz of Particle Flow scouting)
 - For Run 3 aim at running PF on higher rate, possible adding additional L1 triggers (use GPUs and pixel tracks)

LLP improvements

- Ongoing developments in the L1 trigger area with the aim to increase efficiency for displaced signatures
 - Increase efficiency for displaced muons
 - Extend muon triggers to hadronic showers
 - Out of time ECAL and HCAL at L1
 - Using HCAL depth information
- HLT developments also ongoing

Collected billions of unbiased B decays 12 billion events total

Mode	N_{2018}	f_B	\mathcal{B}
(Generic b hadr	ons	
$B_{ m d}^0$	$4.0 imes 10^9$	0.4	1.0
B^{\pm}	$4.0 imes 10^9$	0.4	1.0
$B_{\rm s}$	1.2×10^9	0.1	1.0
b baryons	1.2×10^9	0.1	1.0
$B_{\rm c}$	1.0×10^7	0.001	1.0
Total	1.0×10^{10}	1.0	1.0
Events f	or R_K and R_I	x• analy	ses
$B^0\rightarrowK^*\ell^+\ell^-$	2600	0.4	$6.6 imes10^{-7}$
$B^{\pm} \rightarrow K^{\pm} \ell^+ \ell^-$	1800	0.4	$4.5 imes 10^{-7}$

Run-3: What Energy?

The known hurdle: the dipole magnets need retraining..

Training to 7 TeV

- Training to 7 TeV was observed to require at least 70-80 quench cycles, in some sectors even more..
- Based on the current experience, ~ 700 quenches will be required for 7 TeV – for a total of 1232 dipole magnets.
- Following the issues during training, the target energy was lowered to 6.8 TeV in June 2021.
 - Risk analysis of 6.8 TeV versus 7 TeV due end of September.
- □ Training status 50% ready for 6.8 TeV:
 - Two sectors ready at 7 TeV 12 & 34.
 - Two sectors ready at 6.8 TeV 45 & 56.

Jörg Wenninger EPS-HEP

Run-3: Expected luminosity

Improvements at the LHC and in pre-accelerator complex (LINAC4, PS..)

Parameter`	Design	2018	Run 3
Bunch population N _b (10 ¹¹ p)	1.15	~1.1	~1.8
No. bunches <mark>k</mark>	2780	2556	2748
Emittance ε (mm mrad)	3.5	~1.8	1.8-2.4
β* (cm)	55	30 / 25	150 - 25
Full crossing angle (µrad)	285	320 - 260	320 - 260
Peak luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1.0	~2.1	~4-5

The current estimate for the **integrated luminosity over Run3** (2022-2024) is \approx 160-200 fb⁻¹

Luminosity leveling possible at start of the runs to reduce pile-up impact

 \rightarrow doubling the Run 1 + Run 2 data set

The start of Run 3 beam commissioning is scheduled for March 7th 2022.

LHC Beyond Run 3

Long term plan

Following the "loss" of 2021 to COVID, an extension of Run 3 into 2025 is under consideration, but possible radiation damage to some of the low-beta quadrupole assemblies is a worry.

Summary

- Measurements of Standard Model processes show good agreement with predictions. Precise measurements require precise calculations. New rare processes measured.
- Higgs measurements at 13 TeV. The Higgs remains very consistent with SM expectations. First access to the second generation fermion couplings. More precision with run-3.
- No sign of new physics in the 13 TeV data so far in run-2... Most analyses now with full run-2 statistics
- Long Lived Particle searches are being explored in a more systematic way. White paper arXiv:1903.04497
- New promising techniques for Run-3: B-parking
- The LHC is continuing to explore the Terascale. significant deviation to show the way!!

And hopefully one day soon:

