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GENERAL QCD PROPERTIES

The sign of the β function for the renormalization group imples
that QCD accounts for the CONFINEMENT of the quarks (”IN-
FRARED SLAVERY”) and for the scale invariance for the struc-
ture functions, which describe DEEP INELASTIC SCATTERING
(”ASYMPTOTIC FREEDHOM”). The protone and the other
baryons, which at small Q2 behave as states with three quarks
combined into a color singlet, at high Q2 appear as an incoherent
set of quarks, gluons and antiquarks with distributions, which obey
the sum rules of the parton model as the condition that at high pz
:

∫ 1

0
Σixpi(x)dx= 1

whree x is the fraction of the proton momentum carried by the
parton i .
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ALTARELLI AND PARISI EQUAtIONS

QCD implies logarithmic violations of scale invariance described by
Altarelli and Parisi equations, which allow to deduce the parton
distributions at a Q2 larger than a sufficiently high Q2

0 from the
ones at Q2

0, for which one assumes a standard form:

AxB(1− x)CP (x)

with the parameter A, B e C and the polynome P(x)depending on
the parton and such a form holds for the non polarized and for the
polarized distributions .
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FORM OF THE DISTRIBUTIONS AT Q2
0

Parton model and the consequent scale invariance hold for large
values of Q2 and (p + q)2= M2 + Q2(1

x
− 1) larger than M2 and

therefore the values x = 0 e x = 1 are exscluded as well as their
neighboroods with amplitudes decreasing with Q2 .

Therefore to fix the power behaviour around these points has not
a strong motivation .

To fix the distributions at Q2
0 one may be ispired by experiment,

which suggests a role of quantum statistical mechanics .
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FORM OF THE DISTRIBUTIONS AT Q2
0

The role of Pauli principle leads to the proposal of quanrum statis-
tical parton distributions for the partons as boundary condition for
the DGLAP equation at a Q2

0, which separates the non perturbative
and the perturbative regimes of the evolution .

S. Sohaily, F. Tramontano and F. B.
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EXPERIMENTAL FACTS

There are other phenomenological facts beyond the role of Pauli
principle to explain the isospin asymmetry in the proton sea : d̄(x)
larger ū(x)), which suggest that the functions, which give the prob-
ability that a parton, defined by its ”flavor” and helicity, carries the
percentage x of the hadron momentum in deep inelastic scattering,
are fixed by quantum statistical mechanics .
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EXPERIMENTAL FACTS

There is a correlation between the first moments of the valence
partons and the shape of their distributions, which are broader in x
for the partons with higher first moment (as for the Fermi sphere,
which implies an increasing mean energy with the number of the
fermions)

3) The common Boltzmann behaviour exp −x
x̄

for x larger of the

highest ”potential” , Xu↑ = 0.46
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PARTON DISTRIBUTIONS FIXED BY QUANTUM
STATISTICAL MECHANICAS

Quantum statisticaL mechanics implies that the parton fermion
distributions are the products of Fermi-Dirac functions of the vari-
ables, which appear in the sum rules for the longitudinal component
of the momentum and for the transverse energy, while the gluon
parton distributions are Planck functions ( Bose-Einstein functions
with vanishing potential ) . The equilibre with respect to the ele-
mentary QCD processes, which give rise to the DGLAP evolution
equations, relate the ”potentials” of the valence partons to the ones
of their antiparticles with opposite helicity and fix the ”potential”
of the gluons .
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CHOICE OF x AS THE VARIABLE

Let us remind that the choice of the energy as the variable , which
appears in statistical mechanics, follows from its presence in the
constraint on the total energy :

Σniǫi = E

For the partons the constraint is the sum rule, which implies that
they carry the hadrone momentum :

∫ 1

0
Σixpi(x)dx= 1

The role of Pauli principle suggests to write the proper functions
of quantum statistical mechanics (Fermi-Dirac for the quarks and
Planck for the gluons) in terms of the x variable , which is the one,
which appears in the sum rules of the parton model .
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SUM RULE FOR THE TRANSVERSE ENERGY

For the transverse distributions a sum rule has been proposed for
the transverse energy , defined as the difference between the energy
and the longitudinal component of the momentum . For the hadron
of the target it is given by P0−Pz, approximately equal at largePz to
M2

2Pz
. For a massless parton with the longitudinal component of the

momentum, which is xPz , and the transverse pT , the transverse
energy is given by :

p2
T

pz+
√
p2z+p

2
T

=
p2
T

Pz(x+

√

x2+
p2
T

P2
z

)

Multiplying ×2Pz we obtain a sum rule with M2 in the right hand
side .

If we define Pz the momentum of the initial hadron in the refery
system of the final hadrons, one has, neglecting terms in (xM)2 :

P 2
z = Q2

4x(1−x)
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PREDICTIONS OF THE STATISTICAL APPROACH

The statistical approach predicts the isospin and spin asymmetries
of the proton sea :

d̄(x) larger than ū(x)

ū(x) positive

d̄(x) negative

confirmed by the defect in the Gottfried sum rule and by the asym-
metries in Drell-Yan pairs produced in pp and pd scattering and in
the production of W ’s in the polarized scattering at RHIC .

It allows to distinguish the contributions of the valence partons and
their antiparticles and describes the x dependence of the ratios :

F n
2
(x)

F p

2
(x)

, ∆u(x)
u(x)

and ∆d(x)
d(x)

,

Predicts the Boltzmann behaviour exp −x
x̄

for x larger than the high-

est potential , ˜X(u↑), in good agreement with experiment.
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DISADVANTAGES OF THE STANDARD
PARAMETRIZATION

The forma AxB(1−x)CP (x) for the different parton distributions has
the disavantage that the high x behaviour for each distribution is
fixed by the exponent C, which comes out different for the different

valence quarks with the conseguence that the limit d(x)
u(x)

for x→ 1 is

0 or infinity. In the fit by Hera the parameter C is larger for u than
for d, while for the sea is still smaller with the consequence to be
dominant in that limit. To agree with the experimental behaviour

of the ratio d(x)
u(x)

the factor ad-hoc (1+9.7x2) is introduced for the

parton u .
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PARTON DISTRIBUTIONS INSPIRED BY
QUANTUM STATISTICAL MECHANICS

The massless quark parton distributions in the variables x and p2T
depend on the longitudinal and transverse potentials, Xq and Yq,
where q denotes both ”flavor” and helicity :

xq(x) =
A′

µ2
xb−1 1

(exp
x− Xq

x̄
+1)

1

[exp (2Pz(p0−pz)
µ2 − Yq) + 1]

which with the transformation : P 2
T =

µ2η(x+

√

x2+
p2
T

P2
z

)

2
gives rise to

the integral in the variable η, which has the value :

ln (1+ expYq) +
(1− x)2µ2

Q2
Poly(−2,− expYq)
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PARTON DISTRIBUTIONS INSPIRED BY
QUANTUM STATISTICAL MECHANICS

The parameter (µ2) is fixed by the sum rule for the transverse
energy to be 0.200 (GeV 2) and is proportional the denominator of
the gaussian for the transverse distribution approaches (µ)2x for
p2Tx larger than µ2xYq .

The second term contribues to the higher twist .
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THE DIFFRACTIVE CONTRIBUTION

At small x the main contribution to the parton distributions is
diffractive, probably related to the presence of the gluons, which
implies an infinite number of partons :

qD(x) proportional at x−1.25

The consistency with the sum rules :

u− ū= 2

d− d̄= 1

∆u+∆ū−∆d+∆d̄= GA

GV
= 1.26

implies that the diffractive contribution is the same for particles
and antiparticles and does not contribute to the Bjorken sum rule.

15



THE EXTENSION TO THE TRANSVERSE
DEGREES OF FREEDHOM MAY REPRODUCE

THE ”AD HOC” FACTORS INTRODUCED IN THE
2002 WORK BY BBS

To describe the distributions

xq(x)

one had to modify the Fermi-Dirac functions

1

(exp
x−X̃q

x̄
+1)

where x̄ is the”temperature” and X̃q the ”potential of the parton,
which depends on its ”flavor” and its helicity, with the factor :

AX̃qx
b

and add the diffractive contribution :

Ãxb̃

(exp x
x̄
+1)

isoscalar and unpolarized to avoid infinite contributions to the sum
rules of the parton model, if b̃ is less than 0 .
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PARTON DISTRIBUTIONS INSPIRED BY
QUANTUM STATISTICAL MECHANICS

For the antiparticles of the valence partons we have the same
diffractive contribution :

Ãxb̃

(exp x
x̄
+1)

to be added to :

Āxb̄

X̃q

1

(exp
x+X̃q

x̄
+1)

with opposite helicity for q e q̄ :

Finally for the gluon we have the Planck formula , a Bose-Einstein
formula with vanishing potential :

xG(x) =
AGx

bG

(exp x
x̄
− 1)
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THE EQUILIBRIUM CONDITIONS FOR THE QCD
PROCESSES

The equilibrium with respect to the two processes elementary QCD,
the emission of a gluon by a fermion and the conversion of a
gluon into a qq̄ pair with opposite helicities, has the important
conseguences to predict a vanishing potential for the gluons and
opposite values for the potentials of the quarks and of their an-
tiparticles with opposite helicity . The Bose-Einstein formula for
the gluons xG(x) becomes a Planck formula :

1

(exp x
x̄
− 1)

and ∆G(x) = 0
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THE EQUILIBRIUM CONDITIONS FOR THE QCD
PROCESSES

The constraint :

Xh
q +X−h

q̄ = 0

allows to disentangle the quark and antiquark contribution to the
electromagnetic deep inelastic scattering. While for the non polar-
ized distributions the separation is obtained by the quark number
sum sules :

u− ū= 2

d− d̄ = 1

for the polarized distributions the equilibrium conditions allow to
determine the polarization of the light antiquarks, ū and d̄, from
the knowledge of the shapes of the distributions of the valence
partons.
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COMPARISON OF THE VALUES OF THE
PARAMETERS FIXED IN 2002 WITH THE HERA

FIT

In the first column of the following table we report the values of
some parameters obtained by the comparison with a set of pre-
cise data on Deep Inelastic Scattering, while in the second one the
ones obtained by the comparison with the HERA fit for the non
polarized and by requiring the best agreement with the 2002 po-
larized distributions in very good agreement with the experiments
performed after . Finally in the third one the coefficients depend-
ing on the transverse potentials , Yq, in very good agreement with
the”ad hoc” factors, Xq, introduced in 2002.

20



COMPARISON OF THE VALUES OF THE
PARAMETERS FIXED IN 2002 WITH THE HERA

FIT

2002 2014

x̄ = .099 ; .102
X↑
u = .461 .446 .465

X↓
d = .301 .320 .3115

X↓
u = .298 .297 .2975

X↑
d = .228 .222 .235

b = .41 .43
b̃ = -.25 -.25

This comparison has been inspired by Jacques Soffer, who immedi-
ately realized the similarity of the distributions found in 2002 with
the result of the HERA fit .
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THE SEA POLARIZATION

As expected, the largest potential is X̃↑
u and the snallestX̃↑

d .

The equilibrium conditions imply :

∆ū(x) positive and ∆d̄(x) negative

in agreement with the asymmetries in the production of W± in
the polarized experiments at RHIC and implyng a positive ”sea”
contribution to the Bjorken sum rule .
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COMPARISON WITH THE STANDARD FORM FOR
THE PARTON DISTRIBUTIONS

Despite the fact that x = 0 ( Q2 = 0 ) and the neighborood of
x = 1 ( elastic scattering and production of resonances ) do not
belong to the domain of the Deep Inelastic Scattering, the standard
parametrization for the parton distributions is ;

AxB(1− x)CP (x)

with A, B ,C and P(x) fixed by the comparison with experiment for
each parton distribution and a separate study of the non polarized
and polarized distrinbutions. While the diffractive part, which is the
dominant one at small x, has a singular behaviour, a negative power
for x→ 0, the valence partons, the dominannt ones at intermediate
and high x, have a different power behaviour at small x . The
positive values of C give rise to a different decrease at high x for
the valence partons, 2 (u or d) for the non polarized distribution or
4, if one considers also the polarized .
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THE DIFFERENCES BETWEEN THE STATISTICAL
AND THE STANDARD DISTRIBUTIONS

For the statistical distributions the decrease at high x is naturally
explained with the Boltzmann behaviour of the parton distributions
for x larger than the”potential” of each parton :

exp −x
x̄

The variation of the ratios between the distributions of the different
valence partons :

d(x)
u(x)

, ∆u(x)
u(x)

e ∆d(x)
d(x)

is concentrated in the range between the lowest and the highest
”potential” :

(Xd↑, Xu↑) = (0.22, 0.46)

while at higher x they approach the same Boltzmann behaviour and
their ratios vary more slowly .

The parametrization standard has the opposite behaviour, since
the effect of the different values of the C parameter for the power
(1− x)C gets more important when x → 1 .
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THE LIMIT OF d(x)
u(x)

WHEN x→ 1

At high x the ratio ;

F n
2
(x)

F p
2
(x)

depends on d(x)
u(x)

The difficulty in measuring the unpolarized neutron structure func-
tion at high x is due to the Fermi motion of the two nucleons
in the deuteron, which has the consequence that to get the neu-
tron parton distributios from the ones of the proton and of the
deuteron is not easy . Therefore the small statistics and the stan-

dard parametrization imply a large uncertainty for the ratio d(x)
u(x)

at

high x .
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THE LIMIT OF d(x)
u(x)

WHEN x→ 1

Instead for the quantum statistical distributions the values of the
parameters, which fix that ratio , the ”temperature” and the ”lon-
gitudinal and transverse potentials” :

x̄, Xq e Yq

are fixed by the measurements in the region with x in the range
(0.22,0.46), where the statistics is large and the systematic error
is small .
The perfect agreement of the prediction for :

d(1)
u(1)

= 0.22

with the result of the accurate analysis by Orwell, Accardi and Mel-
nitchouk is a good confirm for the parton statistical distributions.
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THE GLUON DISTRIBUTION

THE PLANCK FORMULA

The equilibrium conditions imply a vanishing value for both the
helicities of the gluon ”potentials” with the conseguences :

∆G(x) = 0

and the Planck formula :

xG(x) = AGxbG
[exp x

x̄
−1]
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THE COMPARISON FOR THE GLUON DISTRIBU-
TION

The standard formula :

AxB(1− x)CP (x)

implies that the decrease at x depends on the exponente C and be-
comes faster as x increases, while the Planck formula has a more
regular behaviour, which approaches the proportionality to the ex-
ponential form :

exp −x
x̄

Since the gluon distribution in Deep Inelastic Scattering plays an
important role for the logarithmic scale violations, a method to
establish the agreement of the Planck distribution with the experi-
mental information from HERA is to compare the HERA result at
Q2 = 4 :

∫ 0.2

0
xG(x)dx= 0.36

∫ 1

0.2
xG(x)dx= 0.05

with the Planck formula proposed by the quantum statistical ap-
proach :

∫ 0.2

0

Agx

[exp xx̄−1]
= 0.34

∫ 1

0.2

Agx
[exp xx̄−1]

= 0.125

28



STANDARD OR PLANCK ?

The agreement is good for :

∫ 0.2

0
xG(x)dx

where most gluons are concentrated, while for x larger than .2
HERA gives a faster decrease .

Since for the valence fermions the high x decrease is described bet-
ter from the statistical distributions, probably the fast decrease at
high x proposed by HERA is the conseguence of their parametriza-
tion as appears from the comparison with NNPDF .
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PION PARTON DISTRIBUTIONS

Recently pion parton distributions have been determined by study-
ing the production of Drell-Yan pairs in pion nucleon scattering
(C. Bourrely, J. C. Peng and F. B.). The non diffractive part of
the valence partons gives the most important contribution to the
process and has been determined to be :

AUXUxbU

exp
(x−XU )

x̄π
+1)

with AU = 0.776, XU = 0.756, bU = 0.5 and x̄π = 0.106 .

While bU and x̄π are near to the values found for the nucleon, the
”potential” XU is larger than the ”potentials” found for the valence
partons in the nucleon in agreement with the dominance at high xF
of the Drell-Yan pairs produced with incident negative pions with
respect to antiprotons scattered with nucleons .
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PION PARTON DISTRIBUTIONS

The high value XU implies a negligible non diffractive part for the
antiparticles of the valence partons and for the quark number sum
rule a first moment for the non-diffractive part of the valence par-
tons very near to 1 . As long as for the second moments the two
valence partons carry about half the pion momentum, while the
remaining half is carried by the gluons and by the diffractive contri-
bution . To get a better knowledge of the gluon contribution the
same authors are studying with the help of Wen-Chen Chang the
production of J/ψ particles, to which contributes the gluon-gluon
scattering .
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PLANCK FORMULA FOR THE GLUON PARTON DIS-
TRIBUTION IN THE NUCLEON

A glance to a non-official proposal for the gluon parton distributions
obtained, keeping into account also data at LHC, leads to verify
the perfect agreement with the Planck formula :

AGbG

(exp x
x̄
−1

with the same x̄= 0.099 (!) and almost the same percentage of the
moment of the nucleon found in 2002 . The gluon distribution turns
from a power behaviour at small x into a Boltzmann exponential
behaviour at high x :

”a smoking gun for the statistical approach” .
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CONCLUSIONS

1) The agreement of the fermion distributions found in 2002 in-
spired by quantum statistical mechanics with the ones found by
Hera is an important confirm of the validity of the statistical ap-
proach, which has been motivated by the idea of Niegawa, Sisiki,
Feynman and Fields that the Pauli principle implies the isospin
asymmetry in the proton sea .

2) The theory has been improved with the extension to the trans-
verse components of the momentum and with the hypothesis that
the statistical distributions are the boundary condition at low Q2 of
the Altarelli e Parisi equations (DGLAP).

3) The agreement for the values of the parameters with the ones
found in 2002 by Claude Bourrely, Jacques Soffer and F. B. is
another point in favor of the statistical approach .

4) As long as for the dependence on the transverse moment pT at
high values approaches the behaviour :

√
pT exp

−2pT

µ
√
x̄
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CONCLUSIONS

5) The decreasing at high x and the ratios between the distribu-
tions of the valence partons are better described by the statistical
distribuzions than by the che standard ones:

AxB(1− x)CP (x).

In fact the ratios change faster in the range :

Xd↑, Xu↑ (0.22, 0.46 )

than for values larger than Xu↑ .
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CONCLUSIONS

6) An interesting property of the statistical approach is the fact
that the high x behaviour depends on free parameters, which are
fixed by measurements in a region of x, where both the statistical
and the systematic errors are small, the region (0.22, 0.46 ), where
the valence partons dominate, in such a way to provide the factor
for the Boltzmann behaviour exp −x

x̄
.

Also it predicts the isospin and spin asymmetries of the sea .
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CONCLUSIONS

7) As long as for the gluons the difference at high x between
the Planck form and the result of HERA depends on its standard
parametrizzation AxB(1 − x)C, since the first differs from the one
found by NNPDF less than the second for values of x larger than
0.2 and gives a perfect agreement with the unofficial result at LHC.

8) The statistical approach is sucessfully applied to the production
of Drell-Yan pairs in pion nucleon scattering with a large ””poten-
tial” found for the valence partons, which explains the dominance
at high xF with incident negative pion with respect to incident
antiproton .
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