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Black holes and neutron stars, breakthrough in observational data

GW binaries and their ringdown phase : GW170817 neutron star merger, GW190814 and the
large mass secondary at 2.59+0.08

−0.09 M�
Array of radio telescopes, EHT : image of M87 black hole with its light ring, Gravity :
observation of star trajectories orbiting SgrA central black hole : orbit characteristics give us
tests of strong gravity which get better as precision increases.
X-ray telescopes and timing observations of pulsars, (eg NICER aiming to measure EoS for
neutron stars).
What is the maximal mass of neutron stars? What is their equation of state? How rapid is
their rotation?
Is the compact secondary the heaviest neutron star or the lightest astrophysical black hole?
Can we find pulsars in the vicinity of SgrA?
Can we find alternatives to GR black holes as precise rulers of departure from GR?
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Plan and keywords

GR black holes
Scalar tensor : stealth solutions and Carter’s work on HJ and Kerr geodesics
Kerr Schild method and Disformal transformations will permit
Regular black holes and stationary black holes beyond GR
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GR black holes

In GR black holes are characterised by a finite number of charges

They are relatively simple solutions-they have no hair, Q2 = −J2/M

During collapse, black holes lose their hair and relax to some stationary state of large
symmetry. They are (mostly) vacuum solutions of Einstein’s eqs, Gµν = 0
Static and spherically symmetric Schwarzschild solution :

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

with f (r) = 1− 2M
r

Far away spacetime is asymptotically flat f (r) −→
r→∞

1

The zero(s) of f (r) are coordinate and not curvature singularities, they are the horizon(s) of
the black hole (rh = 2M).
An event horizon determines an absolute surface of no return. It defines the trapped region
of the black hole. It hides the central curvature singularity at r = 0
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The rotating Kerr black hole

Kerr black hole

ds2 = −
(
1−

2Mr
ρ2

)
dt2 −

4aMrsin2θ
ρ2

dtdϕ +
sin2θ
ρ2

[
(r2 + a2)2 − a2∆sin2θ

]
dϕ2

+
ρ2

∆
dr2 + ρ

2dθ2

where M is the mass, a is the angular momentum per unit mass, and

ρ
2 = r2 + a2cos2θ, ∆ = r2 + a2 − 2Mr .

Stationary and axisymmetric spacetime : two Killing vectors ∂t , ∂ϕ

Spacetime is circular : (−t,−ϕ)↔ (t, ϕ)
Geodesics are integrable : In 4 dimensions we need 4 constants of motion to describe test
particles : Lz , E ,m,Q.
Geodesic equation is given as a first order diff eq using HJ functional S,

∂S
∂λ

= gµν
∂S
∂xµ

∂S
∂xν

= −m2
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The rotating Kerr black hole

[Visser, 2007]

∂t , ∂t + ω∂ϕ define static and stationary observers.
Kerr is a causal spacetime as long as it is a black hole!
timelike and null geodesics dictate trajectories of test particles or light in the vicinity of the
black hole : light ring, black hole shadow etc.
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Scalar tensor theories : a robust measurable departure from GR

Simplest modified gravity theory with a single scalar degree of freedom

limit of most modified gravity theories
Examples : BD theory,..., Horndeski,..., beyond Horndeski,..., DHOST theories
([Noui, Langlois, Crisostomi, Koyama et al])

simplest ST have only GR black hole solutions (no hair theorems)
For hairy black holes we need to have higher derivative theories... Horndeski, Beyond and
DHOST (most general well defined theory with 3 degrees of freedom)
Nothing fundamental about ST theories, they are just sane and measurable departures from
GR.
They are limits of more complex fundamental theories
They are parametrized by 6 functions of scalar and its kinetic energy,
f ,K ,G3,A3,4,5 = A3,4,5(φ,X).
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S = M2
P

∫
d4x
√
−g

(
f (φ,X)R + K(φ,X)− G3(φ,X)�φ +

5∑
i=1

Ai (φ,X)Li

)
+Sm [gµν , ψm]

L1 = ∂µν∂
µν
, L2 = (�φ)2, L3 = φµν∂

µ
∂
ν�φ,

L4 = φµφ
ν
φ
µα
φνα, L5 =

(
φµν∂

µ
∂
ν
)2

X = φ
µ
φµ
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Horndeski and beyond

Scalar tensor theories

Limits of numerous modified gravity theories
Example :

S =

∫
d4x
√
−g
[

R − 2Λb − X + βGµν∂µφ∂νφ
]
,

Kinetic term is X = 1
2 gµν∂µφ∂νφ and theories are shift symmetric.

Conformal and Disformal transformations are internal maps of DHOST theories.
They permit us to relate the different versions of ST theories.
Conformal and disformal map :

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ
for given (regular) functions C and D.
Aim : Construct black hole solutions

[Langlois, 2018]
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Solution of spherical symmetry

Example Horndeski theory [Babichev, CC]

S =

∫
d4x
√
−g
[
ζR − 2Λb − ηX + βGµν∂µφ∂νφ

]
,

We find the general spherically symmetric solutions, ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2,

φ = φ(t, r),
simple (stealth) solution reads

f = h = 1−
2µ
r

+
η

3β
r2

,

φ = qt ±

∫
dr

q
h

√
1− h

with q2 = ζη+Λbβ
βη .

A disformal transformation will take us to a new solution for a different theory,

g̃µν = gµν −
β

ζ + β
2 X

φµφν .

The disformed metric is still a stealth black hole
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Going beyond spherical symmetry

For spherical symmetry we can find numerous solutions

Stealth solutions with X constant are generic in DHOST theories

The real difficulty is how to implement rotation.
Can we construct stealth rotating solutions?
For spherical symmetry we have a GR metric and X = −q2.
Can we obtain the same for a Kerr metric?
Questions : What is then the scalar field? What is the theory permitting such a solution?
The key is understanding what X = −q2 signifies geometrically.
Kerr : Geodesic equation is given as a first order diff eq using HJ functional S,

∂S
∂λ

= gµν
∂S
∂xµ

∂S
∂xν

= −m2

The HJ potential is the scalar field!
Result : for a certain class of DHOST theories, Kerr with X = −q2 is solution.
We then find a congruence of geodesics such that the HJ potential is regular everywhere
Stealth Kerr black hole in DHOST theory [Crisostomi, CC, Gregory, Stergioulas]
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Stealth Kerr solution

Metric is Kerr

ds2 = −
∆r

ρ2

[
dt − a sin2θdϕ

]2
+ ρ

2
(

dr2

∆r
+ dθ2

)
+

sin2θ
ρ2

[
a dt −

(
r2 + a2

)
dϕ
]2
,

∆r =
(

r2 + a2
)
− 2µr , ρ

2 = r2 + a2cos2θ ,

Black hole parameters a, µ. What is the scalar field painting this spacetime?
Carter found separable HJ potential S = −Et + Lzϕ + Sr (r) + Sθ(θ) for which

∂µS ∂νS gµνKerr = −m2

S depends on E , Lz ,m,Q, the trajectory parameters of an arbitrary timelike test particle.
Scalar is given by φ = S. But now φ needs to be defined everywhere in spacetime
(Geodesics do not cover all of spacetime necessarily!)

φ(t, r) = −q t ±

∫ √
q2(r2 + a2)2Mr

∆r
dr ,

for E = m = q, Lz = 0,Q = ..
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Constructing non Kerr rotating solutions [Anson, Babichev, CC, Hassaine]

By considering an arbitrary disformal transformation we can construct stationary metrics
which are not Kerr metrics.
In fact, the disformed Kerr metrics even with X constant are not trivial at all!

gKerr
µν −→ g̃µν = gKerr

µν + D(X)∇µφ∇νφ
for given D. Rotation creates a solution which has similar characteristics but is completely
distinct from the Kerr solution.

ds2 = −
(
1−

2M̃r
ρ2

)
dt2 −

4
√
1 + DM̃arsin2θ

ρ2
dtdϕ +

sin2θ
ρ2

[(
r2 + a2

)2
− a2∆sin2θ

]
dϕ2

+
ρ2∆− 2M̃(1 + D)rD(a2 + r2)

∆2 dr2 − 2D

√
2M̃r(a2 + r2)

∆
dtdr + ρ

2dθ2 .

For D 6= 0 not an Einstein metric!
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Properties of disformed Kerr

g̃µν = gKerr
µν + D(X)∇µφ∇νφ

For each D we have a new stationary solution. D measures the departure from Kerr

Properties :
In the absence of rotation the disformal map is a coordinate transformation.
When the metric is rotating the metric is not an Einstein metric
Metric has a ring singularity, and an ergoregion. It is a causal spacetime with an event
horizon !
However stationary observers cease to exist before hitting the event horizon (it is not a
Killing horizon)!
Spacetime is not circular!
Geodesics are not integrable
Asymptotically we have,

ds̃2 = ds2Kerr +
D

1 + D

[
O
(

ã2M̃
r3

)
dT 2 +O

(
ã2M̃3/2

r7/2

)
αidTdx i +O

(
ã2

r2

)
βijdx idx j

]
.
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Metric has a ring singularity, and an ergoregion. It is a causal spacetime with an event
horizon !
However stationary observers cease to exist before hitting the event horizon (it is not a
Killing horizon)!
Spacetime is not circular!
Geodesics are not integrable
Asymptotically we have,

ds̃2 = ds2Kerr +
D

1 + D

[
O
(

ã2M̃
r3

)
dT 2 +O

(
ã2M̃3/2

r7/2

)
αidTdx i +O

(
ã2

r2

)
βijdx idx j

]
.
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Regular black holes [Baake, CC, Hassaine, san Juan]

Construct exotic objects (non existant or problematic in GR)?

Regular black holes, wormholes...

Solution generating methods in GR : Kerr Schild method
Extending the Kerr-Schild construction. Metric is everywhere regular-genuine particle like
solution
Inner and outer event horizon, No horizon for small enough mass. Black hole→ soliton

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

, with f (r) = 1−
4µ arctan( πr3

2σ2
)

rπ
and X(r) =

2
π

arctan(
πr3

2σ2 )
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Construct exotic objects (non existant or problematic in GR)?

Regular black holes, wormholes...

Solution generating methods in GR : Kerr Schild method
Extending the Kerr-Schild construction. Metric is everywhere regular-genuine particle like
solution
Effective potential for light geodesics grazing the black hole
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Conclusions

We have seen how to construct non trivial ST black holes which are well behaved
Using classical results from GR and mathematical symmetries we can construct an armada of
phenomenologically interesting solutions
We can construct exotic solutions like regular black holes, wormholes
GW, EHT give certain constraints on coupling constant parameters but a lot more to come
in the future with key differences from GR
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