EONIKO METXOBIO ITOAYTEXNEIO
YXOAH EPAPMOSMENOQN MAOHMATIKON KAI @YSIKON ENISTHMON

TOMEAY. &TYXIKHY
EPTAYTHPIO ITIEIPAMATIKHY, ®YYIKHY YWHAQN ENEPTEIOQON

ANAIITYEH XYXTHMATOXY DAQ I'TA THAEXKOIIIO
MICROMEGAS

METAIITYXIAKH EPT'AYTA

TOLV

Nuxoioov A. Kapao tdln

Emprénov: T'edpyioc Tomoritne
Av. Kofnyntric

AB¥va, Tavoudiprog 2012

EGNIKO METXOBIO IIOAYTEXNEIO

YXOAH EPAPMOXMENON MAOHMATIKON KAI &TYXIKOQN ENIXTHMON
TOMEAY ®TYIKHY

EPTAYTHPIO ITIEIPAMATIKHY. &YYIKHY YYHAQN ENEPTEIOQON

ANAIITYEH XYXTHMATOY DAQ I'TA THAEXKOIIIO
MICROMEGAS

METAIITYXIAKH EPTAYTA

TOL

Nuxoraouv A. Kapactddn

Emprénov: edpyioc Tomoritne
Av. Kofnyntic

Evxpibnxe and v tpwern e€etactiny enttpony) tov lavoudplo tou 2012.

-Oeddwpog AXailo'rtouXog» -Eudryyehog Tolne- -Towmonitne 'eddpryioc-
-Kobnyntic- -Kabnynthc- -Av. Kabnynic-

AB¥va, Tavoudproc 2012

Nucoraog A. Kopaotddng
ITruyotyoc oxorrc Egoppoouévey Mabnuatixdy xa Puoixody Enotnuoy

© 2012 Ebvix6 MetodBio IToxuteyvelo. All rights reserved.

Contents

1 Ewaywyy

1.1
1.2
1.3

1.4

2 The
2.1
2.2

2.3

24
2.5

2.6

3 The
3.1
3.2

O Aviyveutric MicroMeGaS
To Trieoxdémo MicroMeGaS tou RD51 o o oo 000000
Mewpopatied ABTodn . o o oo o
1.3.1 VMEbus Crate
1.3.2 CAEN V2718 VME-PCI Optical Link Bridge
1.3.3 CAEN V551B C-RAMS Sequencer
1.34 CAEN V550 C-RAMS
1.3.5 CAEN V462 Dual Gate Generator
Aoyiouwxd DAQ L
1.41 Teapwd HeptBdANovo oo
1.4.2 Tumxh Awdwooio Addng AeBouévey oo Lo

Hardware

Introduction L oL
The VME Crate o e
2.2.1 The Crate o e
2.2.2 CAEN V2718 VME-PCI Optical Link Bridge
2.2.3 CAEN V551B C-RAMS Sequencer
2.2.4 CAEN V550 C-RAMS o
2.2.5 CAEN V462 Dual Gate Generator v
The NIM Crate o o0 o e e s e e e
2.3.1 Quad Discriminator LeCroy 821CS
2.3.2 Coincidence Unit LeCroy 465 0 i i
2.3.3 LeCroy Fan-In-Fan-Out Logic 429A
The Front-End Chip 0 e
The MicroMeGAS Detector o e
2.5.1 The RD51 MicroMeGAS Telescope
Trigger Logic e

Software

Introduction L e
CAENVME Library e e s e
3.2.1 CAENVMEILb.h e
3.2.2 CAENVMEoslib.h o

3.2.3 CAENVMEtypes.h e 59

3.3 Trolltech's Qt o e 59
3.4 Graphical User Interface 60
3.4.1 Display Tab 60
3.4.2 Configuration Tabo 61
3.4.3 Log Viewer e 64
3.4.4 About e 65
345 Cycle Buttons 65
3.5 The Source Code e 67
3.5.1 sre/VB50-CRAMS 67
3.5.2 src/VBB1.SeqUencer 69
3.5.3 src/V462_GateGenerator 70
3.5.4 src/ConfigFile 71
3.5.,5 src/Interface 71
3.5.6 STC/MAIN.CPP « .« v v v v e e e 75
3.5.7 inputFiles/daqg.conf 76
3.5.8 inputFiles/runNumber.conf 76
3.5.9 inputFiles/Mapping.txt 76
3510 demux/ 76
3.5.11 outputFiles/ 76
3.6 Typical Run Process e 76
Results 77
4.1 The Set-Up . . . o oo e iy
4.2 Muon Beam: run9005P.dat 80
4.3 Pion Beam: run9012P.dat o o 82
4.4 Conclusion 87

List of Tables

2.1

3.1
3.2

4.1

V2718 controller registers map Lo 35
The functions included in the CAENVMEIib.h file and are used throughout the software. . 58
Enumerations in CAENVMEtypes.h header file. 59
Runs taken during test beam. Lo 79

List of Figures

1.1

1.2
1.3

14
1.5
1.6
1.7
1.8
1.9
1.10
1.11

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9
2.10

2.11

3.1
3.2

3.3
3.4
3.5
3.6

O neployéc otic onoleg ywplletan évag aviyveutrc MicroMeGasS xafde xau 1o nwg neplypdpeTtan
1 OAANNETBEAOT TOU UE TNV TEOCTUNTOUGH BEGUN. .« o o o o e
HX\extpwd medlo yOpw and to micromesh.o
Tpapuny avamopdotoon evoe otafuod tou tmieoxoniov (apioTepd) xou Tng evepyol TEpLoyhS
ToU X80 oTofUoU (BESLE).
Mmnpoc T 6gm xon to Sudrypoppo TG Hovadag V2718,o
Mmnpoctvi 6¢m xon To Sudrypoppo TG ovadag VB5L. . . Lo
Mod. V551B Koxhoc Epyoaoudv o000 oo
Mmnpoo v 6gn xou to didrypoppo Tne wovadag VB50. . . L Lo
V462 urnpootvh 6¢m xaw and Block Diagramo
Suymotuno e xoptélag Display. o000 oo
STYROTUTO Omd TNV XAPTENS PUOUICE®WY. o Lo
STYUOTUTO TNS LOTOGENDOG UE TNV TEXUNEIOOT TOU NOYIOUIXOU. « o o o o oL

Interfaces of VMEDbus. e
Front view and block diagram of CAEN V2718 Controller
V551B Front View and Block Diagram
Mod. V551B Standard Operation Modes
V550 Front View and Block Diagram o
V462 Front View and Block Diagram L .
The NIM Crate 0 e e e e e e e
Graphical representation of an interaction of a charged particle with the detector. The
interior division into two regions is apparent. Lo Lo Lo
The potential lines of the electric field when passing through a GEM foil.
The dual set of MicroMeGAS detectors (left) and a schematic of the active area (right) of
each station. oL
Trigger logic. o e

Logos of softare frameworks L Lo
A simple main window. The widgets that are used are: QPushButons, QMainWindow,
QMenuBar, QToolBar and QStatusBar.
Snapshot of the display tab.
Snapshot of the configuration tab.
Snapshot of the log viewer tab.
Snapshot of the about tab.

3.7
3.8

4.1

4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9

Snapshot of the documentation page.
Snapshot of the file tree of the installation directory.

A long shoot of the whole set up consisting of the movable table, the solid frame, the GEM
tracker and at the end (far right) the double MicroMeGas station.
A closer shoot of the part of the set up where the double MicroMeGaS was placed. In picture
the scintillators formation for the trigger is also apparent.
The complete rack of the Test Beam setup. The trigger signal is external so no units are
used forit. L e
Beam profile for muons run as provided by SPS.o 000000
Beam profile for muons run as taken by the software.
Closer look on beam profile on X axis for muons run as taken by the software.
Efficiency plot for the chambers. oL
Beam profile for pions run as provided by SPS.o o000
Beam profile for pions run as taken by the software.

4.10 Closer look on the beam profile for pions run as taken by the software.
4.11 Efficiency plots for the pion beam test. oo,

Mepiindm

O aviyveutric Micromegas Siaviel 1on) dedtepn dexaetio {whc Tou xan KdN TEOGPEREL TOANE UTOOYOUEVES
WrotnTes (xahf xopuxh oxp(Beta, avtoyh oty oxtvofolio, udnidc pubude uétenone, xakf evepyeloxt Slaxpttix
ovéTNTaL X.0) oL omoleg oV XofloTOOV XATENANNO i éva €Upog e@appoy®y ond v Puoixh; TdmAdbv
Evepyeddv éng tn Blounyovix| napoywyn. Ltn cuyxexpuévn epyooio, mopouctdleton éva VEO NOYLOMIXO YLo
v Mn dedouévav and to tTnieoxdmo Micromegas xow Toug ENEYYOUS GTOUC omtoiouc LTOPAYBNXE.

Suyxexpéva, 610 TedTo XouudTL TG pyaciug TapouctdleTon TO LAXO Tou Yenoulotoidnxe xotd tov
EXeyy0 xou TNV Bour| Tou TNAEoXOTIOL TV €€t aviyveutiy Micromegas. Avanticoovial ot Bacixéc ttuyés niow
a6 to VMEDbus »t avohbovtal Tor %aeaxTneto Tixd Tov Hovadwy Yo Ti¢ onoleg dnuiovpyRinxoay BiNiobrixec
odnydv (drivers) yio Tov éXey 0 TOUS UEOK TOL MAEXTEOVIXOL uToXoYoTH. Télog, mapouctdletar n Aoyt
trigger mou yenowwonomdnxe xotd to test beam tng cuvepyooioc RD51.

To Beltepo xopudTt TG pyaciog elvon APIEPOUEVO G TNV TUPOLGIACT) TOU AOYICXOU XL TOL XUPAUXTNELC TIXH
Tou. AvobovTon oL IBLATNTES Xou oL EUXONES oL TEpL OUPBavVOVTOL GTO YEuPIXd TeptBAN OV xaBig xou yivetan
wot avopopd oTig poutiveg mou amapti{ouv Tov XOBXa KoTE Vo BleuxoNUVBEl xdmolog Tou eVBLapEpETAL VoL
enéufel oe aUTOV.

To tekeutaio xoppdtt Tng epyaociouc anotehel Tnv emPefalwon TL To Noyiowxd Aettovpyel OO AVIUEVOTAY.
ENéyyOnxe xotd to test beam tng ouvepyosioc RD51 tov Oxtédfeto tou 2011 xau mapoustdlovton ypopridoto
uE To TEOoPIN NG Béoung, 6Twe auTd dnwoveyHBnxay and To NoyloUxod.

Ev xotonehe(dt, umopolue vor modpe 6Tt To Aoylowxd mou nopouotdletal oe auTh Ty gpyacion amoTteNel Wia
Bextiouévn éxdoon tou 1o undpyovtoc. Acitovpyel otabepd xou pe cuyvoéTnTa AdNG xatd TOXND LMAOTEEN
and To TEOMYOVUEVO NOYLOULXO, EVE TENOC Ol EUXONIES IOV €ladryeL To Ypupxs Tou Teptfdihov elvar xploueg
Y TV Yerion Tou amd éumeipoug i &y shifters.

11

Abstract

The Micromegas detector is already in its second decade of life and already offers many promising qualities
(good spatial resolution, radiation hardness, high rate measurements, good energy resolution, etc.) which
make it suitable for a range of applications from High Energy Physics to industrial production. In this
study, a new data acquisition software is presented which is capable of reading out a Micromegas telescope,
as well as the tests in which it was submitted.

In particular, during the first part of this paper the hardware that was used for the tests on the software
is presented in addition to the set-up of the telescope. The standards of the VMEbus are unfolded and the
specifications of the modules for which special drivers were written are noted. Finally, the trigger logic that
was used during the test beam of the RD51 collaboration is also presented.

The second part of this thesis is devoted to present the software that was developed and its character-
istics. Its features and the capabilities of the graphical user interface are unrolled and the various routines
that are included in the code are presented in case one would like to interfere.

The last part of the paper is the experimental proof that the software works as expected. It was tested
during the test beam of the RD51 collaboration in October 2011 and plots of the beam profile are presented.

In conclusion, one could say that the software introduced in this paper is an improved version of the
old one. Its operation is stable and its rate is higher than before, while its capabilities make its use easier
by expert and novice shifters.

13

Evyaplotiecg

OXoxanpwvovtag tny ntuylaxy epyaoia wou , o Hbeda v euxapiotion dXhoug Toug daoxdhoug xon xaldnyntég
MOL ONOL AUTA TOL YPOVLAL, YLl THY AYATN) TOU YOV EVETVEUGAY G TN UOpQmGT Xol WTépnS ONOUS auTOUS TTOU Ue
xofodhynooy xou ue BorBnoouy xad' Oxn) Sudpxeto 160 e melpapaTic dradixaciac 6oo xon Te cuyYpaPhc
g epyaoiog.

Koat" apydc, 0o B0eda va euyapiotion wbialtepa tov xalnynt wou xdplo [ewpyio Tonokitn, o onolog pe
TN SWaoxoNlol Tou WIVNOE dEYIXd TO EVOLIPEROV UOU oL GTN CLVEXELL TNV arydmn pou yia Ty Ilepaportiny
Quo) TYnadv Evepyeudv. Oepués suyaplotiec yla tnv euxoupla mou pou €dwoe vo Bourédo woli tou oe
Ocuarta olyypovng épeuvag, vl Tig cUPBOULNES Tou ot Béuata Puoxrg xu oyl uévo xaBng xar To xivnTeo ToU
ouveyilet vor pou diver yio vor cuveyion Ty npoondbeta.

Euyaptotd tov xofnynt pou x0pto Oebdmwpo ANe€6moulo, o omolog dXa autd Tt Xedvior GUVELBAANE GTO
VO OTOXTHOW TO PEEAXL Lot TNV €PELVA, Yia TS GUUBOUNES TOU XaTd TNV AVEAUGT] TV SEBOUEVOV xat Xuplng
Yol TNV UTOUOVY TOU GTOV XATAYIOUS EPOTACEWY OTOV OTOOV TOV UTEBAANA XOTA TIC VUYTEQIVES WPES EpYaaiog
otn eveln,.

Ou Rbeda va evyaplotiow oxdun tov xabnynt pou xdpo Eudyyeho Tald v tnv vnoocthipiEn tov,
xabode xwelc v Porbela Tou 600 oe BewpnTnd boo xou oe dladixacTnd Béuata N epyooio auth dev Bu
elye oNoxAnpwoel.

Mo Eexweiot| B€on avixel atov cuvddergo xau gpixo Kwvotavtivo Kapaxdaota n forfeia tou omolou Htav
xployn v TV oXox\fpwor T gpyooiog.

TéNog, éval UEYINO EUYAPLO T AVAXEL GTOUE BIXOUE KoL avBp®OTOUS, GTNY OXOYEVELX OV, TIOU Xwplg TNV
Quxoroyix xou LAY utooThEEY Toug OXat AT Ta Ypdvia B Bo umopoloa Vo pTdon Ewg 8w, xaBie xat
6T0U¢ QPINOUC POV Yot TIC (DEES EEYVOLIOLAC TTOU TEPVEUE, OL OTO(EC UTOTENOUY TOVAXELDL YLat ONAL To TTRO BNt
mou epgavilovton ot Lon wou, eved mopdAinia o HBeka vo Toug {ntiom GuYVOUN Yiot TI UEPES TOU TOUG
TOPOUENOVOA XoTd TN SLdpxeta TN epyaoiac auTHS aANE xan ot x8fe eZetaotiny nepiodo.

"If I have seen further than others, it is by standing upon the shoulders of giants."
Sir Isaac Newton

15

CHAPTER 1

Ewoarywyn

e auto To xe@dhono Ba avamtuyBel To BewenTtind undPoubpo xabde xon Tor Baond cToryeld TOL NoYiopXOU TTOL
avantiyxOnxe ond tov cuyypopéa.

1.1 O Avwyveutric MicroMeGaS

O aviyveuthic MicroMeGaS (MicroMesh Gaseous Structure) avfixet oty xatnyopia twv MicroPattern Gaseous
Detectors (MPGD) » nrav wa mpdtoon tov J.Collar xou I'. Thopatden ota péoo e Sexaetiog tou '90.
Apyind 0 aviveLTAC AMOTENOUCE (UL EVONNAXTIXY TEOTACT Yiol TNV AV VEUST] PWTOVIOV YAUNAAS EVERYELIC
(1 — 10keV), aAX& pe Vv T8podo ToU YEOVOU XEEBLOE TIC EVIUTMOELS UE Ta TAEOVEXTAUNTO TTOU TROCPEREL
EVOVTL GTOUG UTONOLTOUS aviVEUTES aeplou. Xtn NoTtot autedv TV TAEOVEXTNUETWY cuunep aufdvovTtal 1
otafepdTnTa, N Togor AmOXELOT), 1 KON eVEpYELXY) Xal Ywpeix] daxpltixd wavetnTa, N VPNNY anddoon xau
axp(Bela Tou xabng xou N avBexTindTnTa oTNV axTvoPoNA TOU TPOCPEREL O TUYHEXPUIEVOS OVLYVEUTAC.

O aviyveuTtrig elvor piar o VUUETEY) XATAGXELY) TTOU TO UEYUADTELO TAEOVEXTNUO TOU EVOVTL GTOUG UTONOLTOUS
VL VELTES aEpiov, vl TO YEYOVOS OTL elvol LBAVLXOGS YLl UETENOELS XENC EVERYELIS TIOU XL TIRETEL VOL EXEL £VOC
TOALOC TeOXEWEVOU Vo elvon Buvart 1) xatarypay| Tou and ta Nexteovixd. H Sogopd tou ot yewuetpla ToUu
%15 T SuvaTh TNV oVl VELUST) QUTAOY TV TONUWY £lval 1) Blaéplan Tou dyxou Tou avtyveuTy ot 800 ETUEEOUS
neployés, ol omolec de dioywpilovton TAEOY and éva eninedo pe olppata, oANG and €vol TNEYUAL, YVWOTO WS
micromesh, mou anoteXel Ty xdbodo g aviyveuThc BdTaEng.

H oapyn Aettougyiag Tou micromegas gatveton 6to oxfua 1.1. To mpddto turua tou doyilet éva tpoonintoy
MexTEOVIO elvan o MAexTEOdo ohlobBnone (drift electrode). Metd and autd, 10 cwpatidio Peloxetor otny
Teploy uetatponhc (conversion region), n omola éxel uéyedog pepixd mm péypet to micromesh. H téon oe
auth TV Teployy elvon g TENG tou lkeV /em. Xnv meploy) owth) yivetan 1 apyuxr; oAAnAenidpaon tou
cwpatdiov ye Tov aviyveuth xou dnuovpyolivtan tor Ledym tévtwv-nhextpoviov. To niextpdvior odnyodvto
and To NAexTEO Tedlo va Blaoylcouv To micromesh xou vo cuve{COUY GTNY EROUEVY TEQLOYY, EVE ToL LOVTA
GUANEYOVTOL amtd To micromesh.

H neploxn avdueoa oto micromesh xa otnv dvodo xoheltan meployn evioyuone xu extelveton yio nepinou
100pm. H dvodog amotereiton and arydyio pxpootowyeior (strips) mou elvon TUTWUEVO TEVE GE UOVOTIXH
mhaxéta (Printed Circuit Board - PCB). Katd tnv xotaoxeuvr| Tou aviyveutt], 1 TpdxAno eivon vo nopapeivet
T0 XeVO avdueca oty dvodo xat 6to micromesh ctafepd xab' oA TV empdvelo Tou avixveutr. T va
YiVEL XdTL TETOLO LNOTIOLAGULO, XENoWoTolobvToL Wixeol wovetixol otilol (pillars) ou omolor evamoBétovton ye
pwtoypapixéc LeBOBOUC xon XANOTTOUY ENAYLOTO PépOg Tou aviyveuth (= 1%).

17

Micromégas

Figure 1.1: Ou neploxéc otic omoleg xwelleton évag aviyveutric MicroMeGaS xafoe xou 1o nwg
TEPLYRAPETAL 1) OAANAETBPOOT TOU UE TNV TpooTinTouca Séour.

%m

Figure 1.2: Hhextpux6 nedlo yOpw and to micromesh.
EynUoTiny| ovamopdo TaoT, Tou MAEXTELXoU TEdiou YOpw amd to micromesh. H muxvétnta tov
BUVOLXOY YRUUUGY oTNV Teployr] evioyuong elvar yapoxtneloTixy tne éviaong tou medlou oTny
TEpLOYY) QUTH o€ oxEoT UE TNV avtloTolyn o TNy TEepLoy)| oxicBnong.

Vg TOOV

MICRO-MESH

O pbéXoc¢ tou micromesh dev elvon povo va Suorwpeiler Ty TEELOYH HETATEOTAS Amd THY TEPLOYT EVIoKUONG
(amplification region). Eivaw xataoxevoouévo and yorxéd (5pum) pe wa Swdwaocia mouv Pocileton otnv
eVt e otonBoypagluc X emitpénel Ty xdpadn avoryudtwy 25um ye Bhua 50pm . Emnpocbétoc,
EUTEENEL TNV BENEUGT) TV NAEXTEOVIWY G TNV TEPLOYY) EVIOYUOTEC EVE TOpdANTN amoTEéTeL Tor BETixd LOVTA ToU
BnuovpyolvTon Xotd TV (tovoo TLdda var xdvouv To (Blo. Xto mAéyua egapuoleton Tdomn e T8ENS Tov 500mV
OO TE 0 NOY0G TOU NAEXTEWOV TEBIOU GTNY TEPLOYN EVIOYUOTE XAl GTNY TEPLOYN UETATPOTNE VoL €Vl UEYANOG.
‘Oco yeyalitepog ebvar 0 Noyog, 1650 PeYoNlTEROC elvor XL 0 aptdudS TV NAEXTEOVIWY TOL ELGEPYOVTAL G TN
neplox) evioyxuong. H Onapn wxpod Noyou xablotd to T Eya un Blamepatd UEDVOVTAS €Tl TNV SLopdveLa
(transparency) Tou xou xot' ENEXTUCY TOU OVLXVEUTA. BTNy nEPLo)T| EVIOKUONG, 1) NAEXTROVIOXT (LOVOo TLREdA
Eexwvdiel pe Yeydnn euxorio xabig To xwpixd xevd aviueca 6To TAEYUA X0t G THY dvodo elvon TOND Wixpd, eV
TAUTOYEOVA TO NAEXTEIXG TEedio elvan apxetd yeydho (Ewg e 8Ene twv 40kV /em).

Ta nhextpdvia tou Biéayioay To micromesh TepvivTag oty Teptoxy) evioyuong cuveylouy teog TNy dvodo.
H dvodoc arotedeltoan and évav apBud (cuvibuc 96) xdhxivwv strips pe tunxd péyeboc 150nm x 100pum rou
yewdvovtal, pe T Porbeia evog mpoeviouth Ue a6 B6pufo xou LPMAY evioyuom, oe W W LOVEOTIXY
G TEWOT.

‘Eva ané ta onpoavtixdtepa atovxelor Tou aviyveuth yia vo emiteuy el) BENTIoTY anddoaor elvan 1 YV TG

i X-strips X 96 X-strips

p——

96 Y-strips

Figure 1.3: Tpagu) avanapdotaon evée otofuod tou tnheoxomiov (aploTepd) xan T EVEPYOUL
neptoyfc Tou xdbe otabuol (Be€id).

pop@nc ToL NAeXTEIXOL Tedlou xovtd ato TAéYua. To opoyevég medlo mou embuueiton yior TNy Teploy evioyuong
elvor ebxoNo UNOTIOLOLO Ttapdt TNV Uixpen SLdo Taom NG TEPLOYNAC AUTAG. LUVETAC, Elval avVoEVOUEVY 1 EUXONY
onuoveyia wag niextpoviaxic xrovootifddag. To mpdfinua éyxetton ot pop@y Tou NrexTEXOL Tediou yipw
and TIC EYXOTEC TOU TNEYUATOS, OTOU YVWE(louUe OTL TUPUUOPPWVETOL XaL XAvel TNV ouotoyévelr tou. H
Yvedon tou Babuod auTtAc TN TUPAUORPOOTE XL EV YEVEL TNG HOPPNC TOU TEDOU OTIC EWBIXES QUTEC TEPLOXES
elvon amapodtnTn yiot TNy emitevdn g anddoong xou TNG Slopdveldg Tou ot veuth. Ou Buvoéc Yeauuéc
mou Eextvoly and 1o MAEXTEODO oXloBnong xatafyouy mepvdvTag uéoa and to T éyua ata strips. ‘Onwg
ouwg elvan egpavéc xon 6to oyAua 77 1 muxvoTnTa Toug UeTABENAETAL dEdny YeTd TNV Siéleuon Toug and To
micromesh. Auto avadeixviel TV Slopopd TN éviaong Twv NAEXTELXGY Tedinv oTic do autée meployés. H
evioyuon xotd T SlENEVST amd TO TAEYUN Elval aEANTEN GE OXECT UE TNV CUVOAXT Xoi yL' auTd Be o Bdveton
ur' 6¢uv, To onolo anotelel xou pia ewdomnold Slapopd avdyeca oTov micromegas xou Toug utdlotnove MSGD.
TéNog, oe uepiég nepntioec elvar Bolixd va avgnbel to Nhexteind nedio otV TEpLoYN HETATEOTAS PE OXOTO
vo aporyfel xdmola mpoevioyuaon.

To yeyovog OTL 1) ando TUCT) AVAPETH G TOL BIAXEVA TOU TAEYUOTOS Elvor txeY), 1 Y eovixn SlaoTopd xotd uixog
e TpoxLds Tou cupaTdiou elvon TOXD wxer. BuveEnne, o micromegas TEOCGPEPEL EEUPETIXT XEOVIXT| SLoXELTLXA
wavotnta. Eminiéov, oe wia un xdbetn oty evepyd neplox) teoyd, n avdntuén g ylovoo tifddag eivon xdbetn
TPOG TNV Gvodo XL €TOL TO GMUA ENGYETOL GE ULl UXQT| TEPLOYY TOV XAVONLWDY oVEYVOONS, UE OMOTENEGUA)
aviyveuTe| Bidtaln var tpoo@épel eZloou eZoupeTint| Yo dtoxpttixf xavétnta. To yapaxtnplouxd outd,
e wxpnc TERLOYAC CUYXEVTEPWONS TV NAEXTEOVIWY Bivel TNV BuvaTéTNTA GTOV micromegas Vo AeLTOUPYHOEL
o¢ Bhopoc ypovixfic tpoPorfc (Time Projection Chamber, TPC). Me yvwoth v mAnpogopia tov strips
Tou €dwaoay onua, xofdg xar Tov xedvo oTov onolo ddBnxe To ofua, elvon amhdc o xaboploude Tng TEOYLAC
evog copatidiov uéoa otov Bdhauo. TéNog, n uhniy evioyuon mou divaton v emteuy el eivon yapotnelo Tixn
WwidTtnTa ddov twv MPGD.

1.2 To Tnieoxdénio MicroMeGaS tou RD51

H ouvepyooio RD51 otoyelel oty avdmtuln TeXVONOYLOY YLol TOUSC AVLYVEUTEC aEpiou, ToL NAEXTEOVIXE
GUC TAUOITOL IOV AIATOUVTOL YLat T1) AELTOVEYiot TOUC xat TN AN TwV Bedouévmv amd Toug aviyveuTég xafng xou
TG EQPAPUOYES TTOL BUVATOL VOL EXOUV OL AVl VEVTES aepiou TN Pooixny) XaL TNV EQIOUOCUEVY] EPEUVAL.

To tnheoxdmo MicroMeGasS anotedelton and tpelg Gpotoug otafpole ye dimholg aviyveutéc MicroMeGasS.
KdéBe otofude amotereiton and 800 aviyveutés amd toug onoloug o évag dfdlel otny optlbVTLo GUVIG TWHO XL O
dX\\og oty xdBetn. To mAApeg Theoxdmo ue Toug €EL aviyveutés Tonobeteiton oe évar ELBIXG XATACHEVAGUEVO

mhaiclo 6to onolo 1 avticTaon YETHED TOU TEMTOU XAl Tou BebTEPOL oTabuol elvar 338mm xou avdueca GTov
deltepo xou tov tpito 403mm. e xdfe otofud oL Buo aviyveuTtéc Tou Tov amoTeENOUY TomobeToUvTaL 0 €vog
oLVEYOUEVA Omd TOV dANOV PE TETOW0 TEOTO WO TE Vo olpdleta ot xdbe otabud éva eninedo ohiobnong, evad
TOEENANAA 0 %d0e aviyveutric va éxel To duxd Tou eminedo mesh. Me auth v cuvbeouoloyia o xdbe otabude
amantel Tplar xavdhia Tpopodopiog nhextewic tdone. Emmpdcbeta, xdbe otabudc anotereiton and dvo PCB pe
Blaotdoeic 10 X 10em, n xdbe yio yia Tic avdyxeg avdryvoons tne xdbe xatevbuvone. Kdébe PCB anotehelton
an6 96 strips ta onola anéyouv 250pum petad Toug dnuoveYOVTaC €Tal wa evepy T tepoy 2.4 x 10ecm yia
xdbe PCB xou 2.4 x 2.4cm vy xdbe otabud. Katd tnv Swbpour| tou, éva cwpatidio mtou diaoyilet tov xdbe
otabud dwoyilel mpddta Tov aviyveuth mou Blafdlel To optldvTio dEovar i EmElTa TOV AL VeuTY) Tou dtaPdlet
Tov xdbeTo.

1.3 IIsipopatixn AldTadm

Ye auth v napdypopo TeptypdpeTon ev cuvtouia 1 yevixdtepn mewpapatixy Sidtadn yio Ty onofo unopel va
AELTOUPYHOEL TO NOYLOULXO, OE OTL ApOEd TO UALXO.

1.3.1 VMEDbus Crate

To U6 Tou Brayetpileton To Aettoupyxd QUNOEeveitar ot o Yovddo mpwtoxéi ou VMEDbus tou onolou
n apyrtextovny) Paciletaw oto VERSAbus mou avantiybnxe and v Motorola ota tékn tou 1970. To
TEWTOXONNO TS Yopaxtnellel TV emxowvwvio UETHEY TV WXEOETEEERYATTOY, TV HOVAdwY anobrixeuong
oL TOL TEPLPEQELUNY CUCTAUNTA ENEYYOU PE €vay TETAEYMEVO PeToy Toug teémo. To dXo clotnua €xel
avamtuyfel ue tétolo tpéTO KoTe

o No emitpénel vy emxowvwvio peta€d twv cuvoxeuwy tou VMEbus crate ywpelc vo Biatapdcovton ot
eontepéc Slodixaoieg Tng xdbe cuoxevrc.

o No noryxooplononfoly oL NAEXTEOVIXES XUk UNYOVIXEG TUEIUETEOL TTOU AMOUTOUVTOL Yot TNV dnutoupryio
GUOXELRY Tou Bor NelToLEYOoUY ampoBANUATIC T OE dpuovial HE GANEC CUOXEUES TOU (BLOL TEWTOXOANOL.

o No napéyel opoloyla xou 0plopolE TOL TERLYEAPOUY TO TEOTOXONNO.

o No mopéyet évar cUoTNU OTOU 1) GUVONXT| OmdBOGT] Elval AVENOYT) amd TIC EMUEPOUS CUGXEUES XL OXL
and 10 GG TNUO ETUXOWVOVINC.

‘Eva ouufotixé VMEDbus crate xotooxevdletan oe éva subrack. To teleutalo elvon éva otabepd mhaloto
TOU TUEEXEL TN UNYAVIXH UTOGTHARIEN OTIC XJPTES TOU ELGAYWVTAL GTO GUGTNUA Xt DIUQUNACEL TNV emTUYa
TV cuVdEcEmY xaBde xau T por adpa yiot TV YPUEN Tou CLVOALXOU) GUCTAUATOS.

1.3.2 CAEN V2718 VME-PCI Optical Link Bridge

H xdpta V2718 elvon o povéda master mou cuvdéeton péow tou CONET (Chainable Optical NETwork)
HE EVaY NAEXTEOVIXO UTONOYIOTY péoa amd Tov onolo divovtan ot eviolég mou Bo exteréoel. O nhextpovixdcg
unoloylo TS Ue Tov omtolo Ba cuvdebel 1 povdda Bo mpénet va elvon eZomhiopévog ue v xdpta PCI A2818 1
onofa etvon pa 32bit 33MHz PCI xdpto. H emxowvmvio etoll) UTONOYIoTIX00 GUC TAUNTOS Xat XdpTag yiveTan
péow ontixig vag. Ewg oxted V2718 pnopoiv va exeyybolv ond wa A2818 xdpta. H povdda V2718 Shvarton
VoL EXTENETEL OAOUC TOUC XUXAOUS oL TpofiénovTa and 1o tpwtdxol o VMEG4X.

V2718

AMbit FLASH 128K SRAM
BUFFER

joresst FPGA

SONET iy LOCAL BUS———

MASTER +—{
WIERF. INTERFACE +——

SYSTEM
CONTROLLER

RAM
15&32- SLAVE sttt
i
o DATA-WAY] VWME CYCLE
2 88 T pisrar MONTOR
" -
g nam. w |
£] ws [T[*| CONTROL
3 -
A2818
FPGA
- PLX-0054
" iaereace [FS =
< ol INTERFACE
Loa]
4Mbit FLASH 256K
L . sl
i || eveeR

Figure 1.4: Mnpootivr 6m xan to Sidypaupa tne povadag V2718.

1.3.3 CAEN V551B C-RAMS Sequencer

H yovéda V551B eivon 1 povéda VME nou yewileton tny Ndn twv dedouévey amd évo chip mou houfdver
dedoyuéva pe 1 pébodo tou multiplexing. H povdda propel va xetpnotel tnv ooyévewr VA twv chips (6nwg
autd mapdynxay and v IDE AS, ‘Ocho) edX& Noyw tne mhac uxdtntoc tou propel va Aettovpyrioet e&icou
%N pe mopduota chips (Amplex, Gasplex xiw).

H povddo V551B xoatooxeudotnxe Hote va eENEYyeL Ta ofjuarta tpog xon and Ti¢ xdpteg C-RAMS (CAEN
Readout for Analog Multiplexing Signals) V550 mou exteolv Tnv anomieyuatonoinon tne mAnpogopiog and
T chips Mg xaw v petatpony| tou ohpatos ot Ynploxh popeh. Mio povéda V551B unopel vo eéet éwg
19 C-RAMS, 1o omnoio onuaivel Tnv dBuvatdTnTa eENEYYOL 76608 3xovahLidv.

Tt var oxoxAnpwbet vag xhxhog Mdng dedouévav o xerotne o mpénel va tpoPetl oe yiat oelpd and pubuicelg
xon Vo tepa va Eexwvrioel 0 x0xhog. To nopaxdto neprypdpe Tic pubuioeic mou o meénel va yivouv xou T oelpd
e dwdxasiog Mdne.

O x0xhoc Mne dedopévav Eexwvder and éva eZotepixd |} VME ofua TRIGGER. "Yotepa, 1 ypopur) BUSY
evepyomoLeltan BelyvovTog Twg 1 Lovdda de unopel vo dextel dAho oo TRIGGER. To ofjua TRIGGER Eexwvdel
Evay xOXNO E0WTEPXY Bladixacldy. Metd and yedvo t1 and 1o onua avtd evepyonotolvton tar oYjuato HOLD
xou SHIFT IN. Otov 1o ofua HOLD ovayvepileton Eexwvder évog xOxhog and ohporta CLOCK petd and o
xaBuotépnon xeovou ta. To ofua CLOCK mapdyeton and évoy ecwtepind toavtot cuyvotntag 50M Hz xa
peténerta Eextvder o xVptog xOxhog NAPNG ue o xabuotépnon nepinou £10ns (jitter). Ev cuveyela, N otov
aplBud mohpol CLOCK xou CONVERT mopdyovton. O aplfudg autodc avtiotouxel otov aplfud Tomv Xovoidy Tou
aviyveut o omolog tifeton uetagd 1 xon 2047. Kdbe mokude CLOCK axoloubeiton and évav nohué CONVERT pe
wa xabuc tépnon tsns, mou mpoypauuatileton péow VME. O oxondg tng xabuctéenong authc slvon dote va
QVOEVETOL 1) OLVOLY VERTOT] TOU OVIAOYIXOU CHHATOS TO oTolo Tpoépyeton and tov multiplexer. To mhdtog tng
evepync @dong Twv mahuwy CLOCK xou CONVERT eivan t3ms mou pubuileton péow tou VME me bshma 20ns oto
ebpog amd 20ns éng Hus nepinov.

H nepiodog enavddndng t4 Tov touy CLOCK xar CONVERT pubuiletor péow tou VME oe Priuata twv 20ns

>

S5
- YME
[eom < NCH, T1.T5
INTERFACE m
MAIN SEQUENCER <:"> N u
== INTERRUPTER >
o
CON-
DROY I

Figure 1.5: Mnpootiv} 6¢m xou to Sidrypopua tne povddos V551.

o710 evpog and 40ns éng 10us.

Ta ofuoto exéyyyouv CLOCK, CONVERT, HOLD xou SHIFT IN elvan Swbéowa oe téooepa onueio exéyyou
TomOBETNUEVO GTO UTPOCTIVO TAVEN.

Me tov tedeutaio moAud CONVERT, 7 ypouur) DRESET tou VME yiveton evepyd vy lps otov onolo
emavexveitaw o xOxhog. Emnhéov, to orjpa BUSY ancvepyonoieiton av xapio and tic xdptec V550 dev €yel
mapdEel To onpo DRDY, dnhdvoviag g umdpyouv dedopéva yia Adn. Télog, undpyet éva onua VETO tom
onolo eEéyyetan amd o Noylopxd xou avaryxdlel Tnv xdpta V551B va eicéNbel oe xatdotaorn BUSY.

1.3.4 CAEN V550 C-RAMS

H povdda V550 C-RAMS eivon piar povéda VME nou amoteleltar amd 300 xovaAior LETATROTAS AVANOYIXAC
TAneogoplac oe Pmelaxh xou yenotgomnoteiton yior ThY N dedogévwy dTtay auTd elvon 6E TETAEYUEVN HopPn.
Kdbe xavéh tng povddog déxeton Betind xu apvntind oot elo660L Tol 0Told EVIGYDOVTAL X0l TEOQOBOTOUVTOL
ot povéda petotponic. H evacOnoio (mV /bit) prnopel va xabopiotel avdueoo oe téooepelc SlapopeTixoie
Noyoug pe avahoylec 1,2,5 xou 10 e yprion eowtepxddv Swaxontdv. H yovdda unopel vo petotpéder to
avanoywd oe dngoxd ofua pe pubud éog xon SMHz, déxeton dagopixy) elcodo ue emheypévn evioyuon,
€xer 12bit ypouuxr petatponn xou emitpénel T yenon Tov uedddwv zero suppression xu agaipeong pedestal,
EVO TENOG TEPLAOUPAVEL EQUPUOYES BLoty VOO TIXGY EQYACLMY X0l TN BUVATOTNTA AUTOENEYYOU.

Me v Umopgn evog e€mtepixo CONVERT orjuato, To onpo mou elodyetan devypotiletan and évav ADC xou n
dnproe) Tou T cuYXEIvVETOL UE Lol TUTH XoTw@Ao). Av T0 ofua elval JEYONDTERO amd TO XATCOPAL, opanpe(tan
70 pedestal xa To anotéNeoua anobnxedeton TNV TEOCKEWY UVAN TNE wovadag pe Ty Aoywr) FIFO. T auto
Tov oxon6 xdfe éva amd To 500 XAVINLL TNG HOVEDAG ATOTENE(TOL A6 UVAUT Yiot TNV AmoBnXELoT) TV TGOV
xato@Xol xou pedestal.

O apbudc N twv xavokiedv mou unopet vo Slofoactel and tn povada Unopel Vo TeoypouudTio Tel aviueca oe
32 xon 2016 pe Brua 32 xovakidv. Yto téhog Tou xOxhov petatponhic (VoTepa Snhady| and mopwolc CONVERT)
% ool xon 1 teheutaior Né€n amobnxeutel oty uviun, av n uvAun tepléyel €otm xon Wt AEN TéTE 1 Lovada
tifeton oe xatdotaon Data Ready dnidvovtag mog to Sedouéva Ba mpémel va diafactolv uéow tou VME.

TRIGGER |_I
HOLD [|

14

/CLOCK || || Npm_l_[
13

CONVERT || || ”"“‘““_[_I

15

{SHIFTIN
300 na
100 na

BUSY _[I_
DRESET [Ll
L

IARESET

DRDY [_ L

Figure 1.6: Mod. V551B.

1.3.5 CAEN V462 Dual Gate Generator

H yovéda V462 anotekelton and 6o aveldptnroug gate generators ixovols va Aettoupyolv Eexwplotd aTo
ebpoc Tov 100ns éoc 9.999999s. Ilupdyouv teia ofuata NIM: tnv nONn (Gate), to ofjua apyfic (Begin
Marker) Th\dtouc 100ns xat 1o ofpa téhouc (End Marker) mhdtoug 100ns oto téNog Tou TeApol TOANG.

H povédo Bacileton otnv Aettovpyia twv Programmable Gate Arrays nou nepiéyouv oxedov OXn 0 hoyixy
Yo xofepio amd Tic Aettoupyieg Tne yevvrtelag. YTdpyouv 8bo registers ovd xovaAL: éva ylo TOV TOTXG TEOTO
(local mode) xt éva yio tov tpéno VME (VME mode).

Ytov tomxd 1pdT0, TO MEPLEYOUEVO TwV registers petagpépeton ot oxte 4bit multiplexers mou emitpénouy
™V EUPAVNOT TOL TAGTOUE TNE TUANG Xou Topouatdleton ot Yepixols ouyxeltég bit-to-bit. H yovéda tepiéyet
oxty 4bit BDC petpntég nou tomobetoldvian 6to undév étav n mOAN dev €xel onua trigger. ‘Otav to orpa
Start evepyonoeiton ol petpntéc apyilouv vo yetpolv ot pa ouyxvétnta 10MHz xou to anotéleopo nepviétan
oty XNN eloodo Tov ouyxpltey. Otav 1 32bit Né&n and toug petentéc grdoel o éva amd To ETAEYUEVAL
registers 10 P€TENUO OTAUATEL X0 TO oYjdat TUANG TENEWWVeL. Evog véog x0xhog elvan Buvatdg auéong Yetd to
ofua End Marker.

O tomxoe tponoc (Local Mode) yapaxtneileton and thy mopousiaot tou TepleXopévou 6To Tomxd register
mou yivetow To register mou Ba cuyxpelbel pe Toug petpnTéc. Emnhéov, oe autd tov TpOT0 0 YpNoTNG URopEEl
VOl TPOTIOTIOLACEL TO TIEPLEYOUEVO TwV registers uéow Tecodpwy XOLUTIOY Xan vor Boel éval BlapopeTind TAdTOg
otov ToAué noAne. Kdbe dnglo mouv emhéyeton péon twv xouumidv DIG SEL +/— Zexwvdel va avafocPrivet

TEST PATTERMN

e —
BuS —y PED. & TH.
MEMORY \,/':>
zZ=RD
N FFD b
[me-] SUPPRESSION
-
[ime-] ﬁ
Test Mode]
I DDNTROLLDGIC< <::>
GONY b
0
DRDY
VME ul
e INTERFACE : : =
oRov <
CONV t |
COMTROL LOGIC
Test Mode 1™
[]
Ly
[] zERD
B —
SURPRESEION
PED. & TH.
MEMORY
VME :>
BUS

TEST PATTERN

Figure 1.7: Mrpootiv} 6¢m xou to Sidrypapua e povddos V550.

xou 1) Th) Tou propel vor oxkoyfel pécw Tov xoupmdy FIG SEL +/—.

O tpémoc VME (VME mode) yopaxtnpileton and v mopouciaon tou Tepleyouévou oTo register tou
VMErou yiveton to register mou o cuyxpeifel ye toug uetpntéc. To trigger tng mdAng xou To mAdTOC TOUL
rozpo0 xafopilovton péow tou VME xau tar xouumnid 8ev ypnotponolodvton 6tay éxet emheydel o ouyxexpuévoc
TpdTOC.

Onolocdhmote xou va givon 0 TpdTog Aettovpyiog mou €xel emheyBel n mOAN ndvta xdvel trigger amd éva
ofua NIM # and 1o ndtnua evég START xoupmiod yia xdBo xavéhe. Otav undpyer to ofua TOANG xow yLot ONN
TOU T Bidipxetar OXAL To SANAL GHPOTOL EXXEVNONG oy VOOUVTL.

| DATA
| TRANSFER |

GENERATOR
COMMANDS

VME REGISTER
COMMON
COMMANDS N

» GENERATOR y VME | VME
NIM INPUTS 4 INTERFACE | BUS

NIM OUTPUTS 4
LOCAL REGISTER

DISPLAY
BLOCK) ! IDENTIFIER

Figure 1.8: Mnpootuv 6¢n xon Block Diagram tou CAEN Mod. V462 Dual Gate Generator.

1.4 Aoywouixo DAQ

Tiat T xotaoxevr) Tou NoYIGUX00 Yiol TNY avdy VwoT) Twy dedopévay and to tneoxdmio MicroMeGasS ypnotpomouifnxe
N BuBXobxn mou npoapépel CAEN yio to UNXO NG, 1 YAGOOoA Tpoypaupationol Qt4 yio tn dnuiovpyio Tou
Yeagpxol meptBdiNovtoc xou 1 C' + + Lo Tov xddixa Tne Mg dedouévov. TéNog, v EQapUoYT| ELPAVIONG

By poppdtov xenoworowdnxe n epyareodixn ROOT.

1.4.1 Teapuxd IlesgiBdANov

It to Moyiowxd mou avamtiydnxe xou tapovaldleton e auth TNy epyacia n Qt drwg avagpéebnxe xenowonoLeiton
Y TV dnovpyia xi 0pbr Aettoupyia Tou ypagpxol mepiBdriovtoc. H mpoypoppatioiny) x\don mou elvou
uevBuvn v o ypapx6d TepiBdihov (GUI) xokelton Interface xow o xddixag g umopel va Peebel otov
UTIOXATENOYO ST/ TOL NOYLOWXOD.

To xevtpid napdbupo tou GUI anotekeiton anéd éva QTabWidget ue téooepic tabs (Display, Config-
uration, Log Viewer, About) x ané éva oOvoro ané QPushButtons nou onuatodotodv wa mowalio amd
Aertoupylec mOU aPoPOUY TNV ETUXOWGVIOL TOU NOYIOWXOU UE TO LAXG xan Tov x0xho AAPne Sedouévov.
Onoudnrote 610 ypupxd TepiBIANov eugavileton xdmolo yedupo and 1o dvoua evog widget vo elvan utoypopUopévo,
BNADVEL IO TO YEAUUA AUTO YEMOLLOTOLELTAL YIdl TNV CUVTOUEUGT] EVERYOTOINONG TOU GUYXEXpWEvou widget.
To mTAfixTeo Tou yenoiponotelton yia Tic cuvToueloeLs eivon To ALT. Juvende, yio Topdderyuo, To xouvun! Initial-
ize éyel unoypauULoUéVo TO Yeduua i To omolo onpalvel TL unopet va evepyomolnbel uéow Tou TAnXTEONOYiOL
av matnolv o T xTpot ALT+i.

Koaptéla Display

Kétw and tnv xaptéra Display undpyet évae xaufdc ROOT otov onolo epgavileton évag apfuo totoypapudtoy
mou eivon (0o pe tov aplbpd twv aviyveutwy. To wotoypduuarta autd arotehoby hitmaps otoug avtiotoroug
aviyveutég. T xdBe xixho Admg dedouévav o xenotng emiéyel évav aplbud o omolog LTOBEWVUEL UE TTOLO

Display | Configuration = Log Viewer About

Chamber X Chamber Y

10° Chamber X 10° Chamber Y

Enries 1001086 Entries 1114774

Moan 4865 Mean 39.57

5000 Rus zs3r| 10000 RMS 2857
4000~ 8000+
3000~ 6000

Initialize
2000 4000
1000~ 2000
G”H”ﬁ.ﬂ‘n...mﬂml.mm -ﬂm& Gﬁ\|\|\|\||||\||\|\|||||\|u|||||\|\ mm Help
o 10 20 30 40 50 €0 70 80 90 o 10 20 30 40 50 60 70 80 90

Close

Figure 1.9: Ytiywédtuno tng xaptéhac Display.

euBUS Bo avavevovtan Tol Lo TOYEdUUATA OE HovAadeg yeyovoTwy. O aptbudc autdg xakelton Display Refresh
Rate xt av o xpiotng tov Béoel (oo pe 1000, téte autd onuaiver mog o xaufde Ba avavedveton xdfe 1000
veyovoTa.

O xopPdc ywelleton duvauxd oe évav aplbud and pads ioo pe to dimhdoto tou aplbuod twv C-RAMS mou
umdpyouv ot Bdtadn. Autod yiveton duott xdbe C-RAMS anotelertan and dVo FIFO xou cuvend o apibude
TV vy veutody Ba elvon (oog ue tov aptbud twv FIFO. O tithog tou xdbe 1o toypduatoc eniong tibetan Suvouixd
oe oyéon ue v opibuon Tov FIFO. Ta nopdderypo o aviyveuthc nou Bo Siofdletar and to dedtepo FIFO
e teltng C-RAMS 0o mapovoidleta pe éva lotdypoppo e titho Chamber 6.

Kogtéra Configuration

Meydhn tpocoyn éxet Sobel otnyv xotaoxeuh) evog anhol epBdilovtog yio Ty eUBULom Tou Noylouxol oTic
avdryxec tng xdle melpopoatinic didtagng xu avdhoya pe Tic dabéoules LoVAdES avdyvoong.

H xaptéra tov pBupicewy xweiletar oe entd uéen. SexvidvTag amd To TAVe JpLoTERH XOUUATL, 0 XeNoTNg
umopel v pubuioer tn SievBuvon xau To yeoviopd tou Sequencer. Axplide, dimha oe auTé elvon To xouudTL
pLBuong Tov C-RAMS 6nou o xpfiotng elodyet tov aplfud xou tic Bieubivoelc Twv uovddwy. 3TN cuvéxeld,
urdipyet o xoppdtt Tou Gate Generator, 6o onolo e TN xpron evég checkbox o xeYioTng dSnAwveL av uTdpEyEL
1) Oy o Tétotol Lovada ot BLdTaEn.

Ané xdtw, undpyel To xouudt pibuong Tov readout markers. Autég elvan ouyxexpiéveg Néelg twv 32bit
mou uTodeEVOoLY TNV évapén X To Téhog xdbe xoppatiod 6To opxelo mou e&dyel To mEdYeoupa. YoTepa,
uTdpyer To xoppdtt 6nov pubuiletan o aplBude Tou run xou o tOnog Tou. TéNog, umdpEyEL TO xoppdTt ToU
nepLéyel yevxés pubuloeic 6mwg 0 aplBude TV XoVOMMY avdyvwong, o péyiotog aptbuds yeyovdtwy mou Bu
cuAkexBolv yia To cuyxexpiévo Tun, N xeovxn xabuctéenon oTny avauovy) Tou interrupt oruaTog xou To
paths tov apyeinv mou ypetdlovton yio T pUBULOT TOL TEOYEEUUATOS.

Koptéla LogViewer

H xoptéha xotarypaghc YeYovoTwy xpatdel TANpogoples xatd tov x0xho Nne dedouévwv oyetixée pe o dio
epgaviCovtag elte TAnpogopies, elte opdiuata Tou TUxdY cuuPalvouy xotd T Nettovpyia Tou Noyiouxol. Kdbe
Yoauurn yapoxtneiletal and TNV yeovixh TAneoopla xou évay delxtn delyvovtag ndéco onuavTed yio TV opb

Display | Configuration | Log Viewer = About

Sequencer CRAMS Gate Generator
Sequencer Base Address 0xDD110000 Number of CRAMS | 1 N Is there a Gate Generator?
Trigger to Hold Delay C-RAMS 0: Baepl s
Hold to Sequence Delay 0x00170000 Channel 0: Upper Display
Active Clock Duration C-RAMS 1: Channel 0: Lower Display
Period of Clock and Convert Sequence Channel 1: Upper Display
Clock and Convert Delay RS Channel 1: Lower Display
Readout Markers C-RAMS 3: Misc
Header Begin Marker Number of Readout Channels
Header End Marker C-RAMS 4: & Maximum Number of Events. 1
Event Data Begin Marker Interrupt Request Timeout (msec)
Event Data End Marker C-RAMS 5: Configuration File Path _—
nitialize

Rester el e {inick/NTUADAQ_ALLTOP/inputFiles/dag.cont’ -
Footer End Marker C-RAMS 6: Mapping File Path:

ckINTUADAQ_ALLTOP/inputFiles/Mapping.txt

C-RAMS T: =

Display Refresh Rate 5000 ;

Run Information
?
Run Number w012 - C-RAMS 8: Save sample hitmaps to ROOT file?
Type of Run (physics =
S C-RAMS 9: Help

Unlock Reset Default Apply

Close

Figure 1.10: Etvypdtuno and tnv xoptéla pubuicewy.

Aettovpyla Tou TEoYEdUpaTOG Elvan 1) TANEOQOopio Tou elodyeTon. TTdeyouv Tewdv eWdwy delxteg: o delxtng
INFO mou yapaxtneilel tic mAnpogoplec oxetxd ue tov x0x o, o deixtne WARNING nou amotehel évor o@dhua
XaTd TN AetTovpyeio Tou Aoylouixd To omolo umopel Vo uny etval xplGLHo Yl TOV GUVOAXS xUXNO XL 0 BeixTng
FATAL mou yopaxtipilel xployo opdipota tor omolor SMAGVOLY gite o@diuo oOViEoNC Ue To LA elte xdmoto
TpoPANUL 6T0 apyelo Tou mopdyeTo.

T mapdiderypa, uior TAnpogoplor uropet vor etvon

[INFO] Configuration locked for non-expert users.
EVE €VaL Un %ploWo GPAarUaL

[WARNING] Error while generating Event Data Bottom Header. Possibility of corrupted
file.
TéNog, éva xplowo o@drya eivon

[FATAL] Error while initializing controller.

Emunhéov, n xaptéha auth mepiéyet i éva xouuni Clear mou xabapllel v o topiot Tou nueporoyiou.

Kogtéra About

H xaptéha auth meptéyel mAneogoplieg yiot Tov dnuLoupyd Tou AOYIoUIXOU XaL TNV €xBocT Tou.

IT\Axtpa Kixlou
Tao TAAxTEa TOU XUXAOL NAPUNC Bedopévov elvon tar €€L T xTpo oT0 Be&l xouudTL Tou Yeapxod teptBdANovtoc.

e Initialize: ‘Otov 10 cuyxexpiuévo mA\ixtpo matnBel téte mparypotonoeitan 1 oOvdeon petagld Tou
AoYLoUXol xaL TOU LAWOU, To dpyela eio6dou dlafdlivion xar tor apyela e£650u dnuioupyolvTaL XoL
YEAPETOL OE oUTA TO TPMTO XOUPETL Tous. Av 1 apyxornoinon elvon emTUYAS Evo <<TX>> ElodYETOL
670 %0UTL ENEYYOL BimAal 6TO xouuTl, elodyeTon Wa Ypouur oTo log xou To xouun! Start Cycle yivetou
T éov evepyd. Av 1 apyonoinom dev elvon emituyc T0 xouTl ENEYYOL UEVEL auETEBANTO xou Evar urvupa
opdnporoc epgavileton oto log. Trdpyer TENOC xou Wiot GUVTOUEUON amd TO TANXTEONGYLO Tou elvor
ALT+I.

About Contact

NTUADAQ

a simple documentati

Welcome

Home This is the online documentation of the NTUA DAQ Software for the Gassiplex front end chip.

Fun Process The software was developed by Nikolaos Karastathis and uses Ot as its graphical end framework and RODT

Graphical User Interface as the plotter framework for the online display. It is built using Qt4.7 and gcc 4.5 under Linux Kernel 4.6
Files enviroment.

Error Messages
You can run the software using the desktop icon. A terminal should run alongside with the graphical user

interface of the DAQ software. In the terminal, if the software is not set in debug mode, should appear (if
there are any) warnings and errors concerning either the initialisation of the modules, or the data taking
ycle. Please pay attention to this screen when starting a run. The Log Viewer may not contain all the
generated errors.

When program is started, press the Initialize butto to initialize the modules. If the initialization is
successful then the checkbox next to the button would be checked and the Start button should be enabled.
Start the run by pressing the Start button. You can stop the run either by pressing the Stop, either it will
stop itself if the maximum number of events is reached. More on GU| widgets.

Copyright © 2011, Created by Hi

Figure 1.11: YtiywéTtuno tne loTOCENDOG UE TNV TEXUNPIWGT] TOU NOYIGULXOU.

Cancel Init.: Av yio onolodhnote Aéyo o xeNoTne BENEL VoL oxupOEL TNV aEyXOToiNoT TOL LG TAUATOC
TO CUYXEXPWEVO XOUUTL eXTENEl TNV evépyelol auTh. Muyxexpiéva, eeubepdvel ™) uvAun omd o
avTixelpevo mou dnuoupy oy Yl T povddeg AAdmg Bedopévov xabde xan xhelver 6mowa apyela
mhavév vo dvolay xatd Ty apyixononon. Av 1 evépyela auth elva emituyfc To xouun! Start Cycle
arevepyomoteltar. H cuvtdueuon yia awtd to xouunl eblvon ALT+N.

Start Cycle: To xouun{ auto yenotpuonoeitar yio Ty €vapén Tou xOxAou Midne dedopévav. O xixhog
veVvd éva véo viua Blodiaotov (thread) xon Eexwvder Ty xatarypagt| Twv SEBOUEVWY TOU CUYXEXELIEVOU
run. ITowihec mnpogopiec Tundvovtar 6to log xatd) Sidpxela Tng cuANoyHc. ‘Otav To xouun! Start
Cycle motndel 1o xouun! Stop Cycle yivetaw evepyo. H ouvtoueuon yio outd 1o xouun! eivan ALT+T.

Stop Cycle: Av éyel emheybel nwg yio vor otopatrioet éva run Bo mpémel auté vor PTdoet Evay UEYLeTo
apBud téte €tol Bo yiver. EwddAhwg, vl o otopdtnua evdc evepyold run Oo mpénel va motnbel autoL
10 TAxteo. To xouuni Stop Cycle evepyonoiel Eavd to xouunt Start Cycle evd 1 GUVTOUEUGCT TOU
elvow ALT+P.

Help: To xouuni Help avolyel pia GeXdot 6T0V QUNNOPETENTY TOU AELTOURYIXO0) GUCTAUNTOS OTOU
UTIBEYEL Pt Lo TooENDA UE TANPOoYOpieg oyeTind pe TV Bodixacio Tou ypeldletal Vo EXTENESTEl WOTE Vol
Teégel pe emituyio To Noylopxd. Ev cuvtouia eivon éva mponctind xan yeriyopo avtiypapo g mopoloog
epyacioug divovtog xatnyopolononuéves tanpogopiec. H cuvtopeuon yio to cuyxexpiuévo xouunt elvou
ALT+H.

Close : Eivou 1o TAxtp0 pe t0 onofo xheivel to mopddupo tou Aoyiowxot. H cuvtéueuon eivon ALT+C.

1.4.2 Tumwxn Awadixacio Afdng Acedopévoyv

Ye autod To xouudTL TEpLYpdgETaL €V cuvTopia 1 TuT Saduaion Yo T Am Tou apyelou Bedouévay amd éva
run. Apxixd, yiot vor EXTENEGEL XETOLOG TO AOYIOWXO XPELLETOL VoL EXTENETEL TNV EVIONY

. /NTUADAQ

Xtn ouvéyela Ba mpénel va pubuiotel To hoyouxd uéow tng xapTélag pubuicewy. Xe auth Bo meémel va
exeyyBel eyxvpdtnta TV TANPOPoELY Tou Teptéyovton ota widgets. Metd axoloubel n olvdeon e To
LVAXO Ue TN yeNon tou xouumol Initialize. ‘Otav matndel 1o cuyxexpévo xouuni yivetow n oOvdeor tou
NAEXTEOVIXOU UTONOYIOTH He TN povdda V2718, apyixonoolvtar ot wovédeg VH51B xou V550 (xou vor umdipyet
n V462) xou avolyer to apyelo e€aywyrc. Av 1 apyxonoinon elvon emtuyfic t0Te 0 x0uTL EXEYYOL Bimha
6710 xoupn! Initialize oAN&lel xatdotaoy ot Qt: :Checked xou To dV0 xoUUTLE antd X&TW EVEPYOTOLOUVTOL.
To npdto (Cancel Init.) ov matnbel oxupdvel v apyixomoinom eved 1o deltepo (Start Cycle) Eexivdet
Tov xUxho Midne dedouévov. Evd o xixhog elvon oe e€éNEN éva ofjpo Swaxonrc (interrupt) mopdyeton omd
tic C-RAMS Snhédvovtag nwg undpyouv dedouéva yia M. ‘Otav autd to ofjpa eyxupotombel 1 Siadixacio
xotarypaphc Eexwvdel ypdpovtog éva event data pmhox oto apyeio e€6dou petagépoviac ta oTouyela 32bit
Aé€ewv and 1o FIFO tng xdfe C-RAMS cto apyelo pe tn poppt| evdg dexacadinol. To run Bu telewdoel eite
6tay pTdoel aTov UéyioToupldud yeyovdTwy oTov onolo éxel pubwotel, eite av natndel To xouuni Stop Cycle.
I v xhefoel To run, o opyelo e£680U XAElVEL, Ol LOVABES UNXOU ETAVERYKOVTOL GTNV UEYIXT) TOUG XAUTACTOOT
xou 1 xopTéNa pubuicewy avavedvetaw oty VEo TS Hopn (oTtnv ousia oAXELel 0 aplbudc Tou run mou eivan
étoo va \ngbel) Gvtog étoyun yior TNV ETOPEV XEHOM TNG.

CHAPTER 2

The Hardware

2.1 Introduction

During the installation and implementation phase of the software a specific set of hardware modules was
used. In this chapter, each part of this set will be presented along with its most basic properties. It goes
without saying that for someone to present all of the properties of each module would be a Herculean task,
so only the ones that are used throughout the code are presented in detail whereas the rest are simply
referred.

2.2 The VME Crate
2.2.1 The Crate

The architectural concepts of VMEbus are based on the VERSAbus developed by Motorola in the late
1970s. The VMEDbus specification defines an interfacing system used to interconnect microprocessors, data
storage and peripheral control devices in a closely coupled hardware configuration. The system has been
conceived with the following objectives:

e To allow communication between devices on the VMEbus without disturbing the internal activities

of other devices interfaced to the VMEDbus.

e To specify the electrical and mechanical system characteristics required to design devices that will
reliably and unambiguously communicate with other devices interfaced to the VMEbus

e To specify protocols that precisely define the interaction between the VMEbus and devices interfaced
to it.

e To provide terminology and definitions that describe system protocol.

e To allow a broad range of design latitude so that the designer can optimize cost and/or performance
without affecting the system compatibility.

31

e To provide a system where performace is primarily device limited, rather than system interface
limited.

A conventional VME Crate is constructed on a subrack. That is a rigid framework that provides mechanical
support for boards inserted to the backplane, ensuring that the connectors mate properly and that adjacent
boards do not contact each other. Furthermore, it guides the cooling airflow through the system and
ensures that inserted boards do not disengage themselves from the backplane due to vibration or shock.
The VMEDbus backplane is a printed circuit board with 96 or 160 pin connectors and signal paths that bus
the connector pins. The subrack provides the slots, which are positions where a board can be inserted into
a VMEDbus backplane. Finally, a board is a printed circuit board, its collection of electronic components
with either one or two 96 or 160 pin connectors that can be plugged into VMEbus backplane connectors.
The VMEDbus provides the end-user with a collection of cycles performing a wide range of processes.
However before going in further detail a definition of the Master and Slave terms is needed. A Master is a
functional module, that means a collection of electronic circuitry that resides on one board, which initiates
a Data Transfer Bus (DTB) Cycle in order to transfer data between itself and a Slave module. In addition,
a Slave is a functional module that detects DTB cycles initiated by a Master and when those cycles specify
its participation, transfers data between itself and the Master. The types of cycles on the VMEbus are :

e Read Cycle - A Data Transfer Bus cycle used to transfer 1, 2, 3, 4 or 8 bytes from a Slave to a
Master. The cycle begins when the Master broadcasts an address and an address modifier. Each
slave captures the address modifier and address and checks to see if it is to respond to the cycle. If
S0, it retrieves the data from its internal storage, places it on the data bus and acknowledges the
transfer. The Master then terminates the cycle.

e Write Cycle - A DTB cycle used to transfer 1, 2, 3, 4 or 8 bytes from a Master to a Slave. The
exact stages as at the read cycle are followed.

e Block Read Cycle - A DTB cycle used to transfer a block of 1 to 256 bytes from a Slave to a
Master. This transfer is done using a string of 1, 2 or 4 byte data transfers. Once the block transfer
is started, the Master does not release the DTB until all of the bytes have been transferred. It differs
from a string of read cycles in that the Master broadcasts only one address and address modifier (at
the beginning of the cycle). Then the Slave increments this address on each transfer so that the data
for the next transfer is retrieved from the next higher location.

e Block Write Cycle - A DTB cycle used to transfer a block of 1 to 256 bytes from a Master to a
Slave. The block write cycle is very similar to the block read cycle. It uses a string of 1, 2 or 4 byte
data transfers. The Master does not release the DTB until all of the bytes have been transferred.
Again the difference from a string of write cycles is the incrementation of the address by the Slave.

e Multiplexed Cycle - A DTB cycle that transfers address information and/or data information
using both the address and the data buses. Multiplexed cycles are used in four cases.

A64 the full address bus and the full data bus are combined to create a 6 bit address.
MBLT the full address bus and the full data bus are combined to create a 64 bit data word.
A40 the full 24 bit address bus and the full 16 bit data bus on the P1/J1 connector are combined
to create a 40 bit address.
MD32 the lower 16 address lines and the lower 16 data lines are combined to create a 32 bit data word.
A Multiplexed Cycle will have an Address Phase that is separate from the Data Phase. The Address
Phase may include (i.e. A64 and A40 cycles) or may not include (i.e. A32, A24 cycles) the use of

Data Bus. The Data Phase may include (i.e. MBLT, MD32 cycles) or may not include (i.e. D32,
D16 cycles) the use of the Address Bus.

e Read-Modify-Write Cycle - A DTB cycle that is used to both read from and write to a Slave
location without permitting any other Master to access that location. This cycle is most useful in
multiprocessing systems where certain memory locations are used to provide semaphore functions.

e Address-Only Cycle - A DTB Cycle that consists of an address broadcast, but no data transfer.
Slaves do not acknowledge Address-Only cycles and Masters terminate the cycle without waiting for
an acknowledgement. No data strobes or acknowledge strobes are asserted in an Address-Only cycle.

e Address-Only-With-Handshake Cycle - A DTB cycle that consists of an address broadcast, but
no data transfer. The addressed Slave responds in the same manner as a standard access cycle.

e Interrupt Acknowledge Cycle - A DTB cycle, initiated by an Interrupt Handler, which reads a
STATUS/ID from an Interrupter. An Interrupt Handler generates this cycle whenever it detects an
interrupt request from an Interrupter and it has control of the DTB.

The VMEDbus functional structure can be divided into four categories. Each consists of a bus and its
associated functional modules which work together to perform specific duties. Each category is briefly
summarized below.

e Data Transfer - Devices transfer data over the Data Transfer Bus (DTB), which contains data
and address pathways and associated control signals. Functional modules called Masters, Slaves,
Interrupters and Interrupt Handlers use the DTB to transfer data between each other. The other
modules, called Bus Timer and TACK Daisy Chain Driver also assist them in this process.

e DTB Arbitration - Since a VMEbus system can be configured with more than one Master or
Interrupt Handler, a means is provided to transfer control of the DTB between them in an orderly
manner and to guarantee that only one Master controls the DTB at a given time. The Arbitration
Bus modules (Requesters and Arbiter) coordinate the control transfer.

e Priority Interrupt - The priority interrupt capability of the VMEbus provides the means by which
devices can request services from an Interrupt Handler. These interrupt requests can be prioritized
into a maximum of seven levels. Interrupters and Interrupt Handlers use the Priority Interrupt Bus
signal lines.

e Utilities - Periodic clocks, initialization and failure detection are provided by the Utility Bus. It
includes a general purpose system clock line, a system reset line, a system fail line, an AC fail line
and two serial lines. Utilities also include power and ground pins.

2.2.2 CAEN V2718 VME-PCI Optical Link Bridge

The module V2718 is a single unit wide VME master module, which can be interfaced to the CONET
(Chainable Optical NETwork) and controlled by a standard personal computer equipped with the PCI
card CAEN Mod. A2818. The A2818 is a 32bit 33MHz PCI card; the communication path uses optical
fiber cables as physical transmission line. Up to 8 V2718 VME masters can be controlled by one A2818
CONET controller. The module is capable of performing all of the cycles, addressing and data transfer
modes foreseen by the VMEG4X specifications (see subsection 1.2.1). For our software it suffices to use the
default settings of the controller so except for a call to initialize the module, no other registers are modified.
A table of all the registers of the controller are presented in ?7.

Each module that may be inserted in a slot of the crate and controlled by V2718 module needs a specific
32bit word that identifies the controller and assigns the module as a slave of the controller. Finally, the
module supports Single Read /Write Cycle, Read Modify Write Cycle, Block Transfer Cycle and Multiplexed
Block Transfer Cycle for data transfer, as well as A16, A24, A32, CR/CSR, ADO and ADOH addressing.

2.2.3 CAEN V551B C-RAMS Sequencer

The model V551B CAEN C-RAMS Sequencer is a 1-unit wide VME module that handles the Data Ac-
quisition from multiplexing front-end chips. The module is well suited to handle the VA family of chips
(produced by IDE AS, Oslo) but due to its flexibility it can also be used with similar chips (Amplex,
Gasiplex, etc.).

The V551B has been developed to control the signals from and to the C-RAMS (CAEN Readout for
Analog Multiplexing Signals) boards module V550, the latter taking care of the conversion of the multiplexed
signals from the front end boards housing the above chips. A single V551B can control up to 19 C-RAMS
modules in a complete VME crate, this enabling the readout of 76608 (19 C-RAMS x 2 FIFO x 2016
words) multiplexed detector channels.

The multiplexing frequency can be set via VME from 100kHz to 5MHz, with programmable Duty
Cycle. The delay between the multiplexing Clock signal and the Convert signal of the acquisition cards

SNa AL

SN NOILYHLIgYY 510

)
¢ s J\J,____v
)
)

SN8 LdNYY3LNI A LHOIHd

7 [[% NN v 1]]

SNE H345NYH L v1wd

@@ICIQ @ AV, @c vV

Figure 2.1: Interfaces of VMEbus.

hﬁ.ﬁ.. H.,,.-.H 21901 uuﬁ:uhz_ INVIdHOVE | [D1D907 IDVIHILINI NV 1D VE
AR1E UELL O e Hmo woenow | o0
IS EL Ll HAEITEY v satay | |uoyom iy ._.&,H Y | |enss WV
.ﬁ_..‘_. .b MWOLLINME 33 TIOHLING D WILSAS
WLAEELN | | VI EE z woLanELn || s I
ﬁ © @ \@ ® \@ @ © AMINNI0T SIHL A8 0INIH30
TR T
S s A231A30 ONISSII0H4d ¥ 1vd

NOLLINM S O AHOWNAN MNOLINE Nd

NAME ADDRESS TYPE BITS | FUNCTION

STATUS 00 read 16 Status register

VME_CTRL 01 read/write 16 VME control register

FW_REV 02 read only 16 Firmware revision

FW_DWNLD 03 read/write 8 Firmware download

FL_ENA 04 read /write 1 Flash enable

IRQ_STAT 05 read only 7 IRQ status

IRQ_-MASK 06 read/write 7 TRQ mask

IN_REG 08 read /write 7 Front panel input register
OUT_REG_S 0A read/write 11 Front panel output register
IN.MUX_S 0B read /write 12 Input multiplexer set
OUT_MUX_S 0C read/write 15 Output multiplexer set
LED_POL_S 0D read /write 7 LED polarity set

OUT_REG_C 10 write only 11 Front panel output register clear
IN.MUX_C 11 write only 12 Input multiplexer clear
OUT_MUX_C 12 write only 15 Output multiplexer clear
LED_POL_C 13 write only 7 LED polarity clear

PULSEA_0 16 read/write 16 Period and width of pulser A
PULSEA_1 17 read /write 10 # of pulses and range of pulser A
PULSEB_0 19 read/write 16 Period and width of pulser B
PULSEB_1 1A read /write 10 # of pulses and range of pulser B
SCALERBO 1C read/write 11 End Count Limit and Autores of scaler
SCALER1 1D read only 10 Counter value of scaler
DISP_ADL 20 read only 16 Display AD[15:0]

DISP_ADH 21 read only 16 Display AD[31:16]

DISP_DTL 22 read only 16 Display DT[15:0]

DISP_DTH 23 read only 16 Display DT[31:16]

DISP_PC1 24 read only 12 Display control left bar
DISP_PC2 25 read only 12 Display control right bar
LM_ADL 28 read /write 16 Local monitor AD[15:0]
LM_ADH 29 read /write 16 Local monitor AD[31:16]

LM_C 2C read /write 9 Local monitor controls

Table 2.1: V2718 controller registers map

can be adjusted to wait for the settlement of the analog signal coming from the multiplexers. The delay
between the Trigger and the Hold signal and the delay between the Hold and the Conversion Cycles are

also programmable, thus extending the module's flexibility.

The module houses a VME RORA (Release on Register Access) Interrupter. Via VME it is possible to
program the interrupt generation on the condition that DRDY signal is asserted, signaling that at least one
channel in a system has data to be read out. The module works in A23/A32 mode and the data transfer
occurs in D16 mode and its base address can be set via two rotary switches placed on the board.

The registers of the module will be briefly presented as they are accessed throughout the code.

V2718

ANbit FLASH 128K SRAM
| R aurER

LD FPGA

LOGAL BUS——+
M INTERFACE +—— MASTER +—

SYSTEM
CONTROLLER

RAM
16x32 = SLAVE -t
VME CYCLE
MONTOR
ro I
™ CcoNTROL
FPGA
PLX-8054
LOCAL BUS PCI -

= —{
(BHIEACE INTERFACE

AMbit FLASH 258K SRAM
s
e BUFFER

Figure 2.2: Front view and block diagram of CAEN V2718 Controller

b

.
VME
[cow}—< 1 NCH, T1..T5
INTERFACE m
MAIN SEQUENGER <:> N .
= INTERRUPTER >
i
CON.
DROY I

Figure 2.3: Front view and block diagram of mod. V551B.

Module Identifier Words Register

This 16bit register is located at the address Base+%FE and identifies a single module via a serial number
and any change in the hardware will be shown by the Version number.

15 14/ 13 12 11 1009 8 7 /6|5 4 3 2 1 0 Address

Version Module's serial number Base + % FE
Manufacturer number Module type Base + % FC
%FA Fixed code % F5 Fixed code Base + % FA

Interrupt Vector Register

1514 13 12 11109 8 7 6 5 4 3 2 1 0

STATUS /I D

Interrupt STATUS/ID

This 16bit register is located at the address Base+%00 and contains the STATUS/ID that the V551B
Interrupter places on the VME data bus during the Interrupt Acknowledge cycle.

Interrupt Level Register

1514 131211 109 8 7 6 5 4 3 2 1 0

INT. LEV.

Interrupt level

This 16bit register is located at the address Base+%02 and contains the value that the V551B Interrupter
places on the VME data bus during the Interrupt Acknowledge cycle.

Clear Register

This register is located at the address Base+%04 and a VME access (read or write) to this location causes
the following:

e a pulse of 500ns is generated on the CLEAR output
e a pulse of 500ns is generated on the DRESET line of the Control Bus
e a pulse of 500ns is generated (if enabled) on the ARESET line of the Control Bus

e if the conversion sequence is in progress, it is aborted and this causes an anticipated pulse (1 s
duration) on the DRESET (also ARESET if enabled) line of the Control Bus, while the BUSY output
becomes not active.

Trigger Register

This register is located at the address Base+%06 and a VME access (read or write) to this location starts
a conversion sequence. The same action is performed if the TRIGGER input signal is active.

Status Register

151413 12 11 10 9 8 |7 |6 | 5 4 3 2 1 0

| |AS|B|DYAT‘V‘ID‘

INTERNAL DELAY

VETO

AUTOTRIGGER

DATA READY (read only)

BUSY (read only)

ACTIVE SEQUENCE (read only)

This 16bit register is located at the address Base+%08 and contains information concerning the status
of the Sequencer module. Only six of sixteen bits are used which are presented in the figure above. The
first bit (bit 0) defines if there is an internal delay on the Mod. V551B, next is the VETQ bit. When in veto
state, the Sequencer does not accept or send any signals for data taking. Incrementing the bit number, one
is presented with the AUTOTRIGGER bit which defines if the module is autotriggering its way to data taking
and the bit for data ready (places a signal of DRDY on the VME lines). Finally, the last two bits are for
the BUSY state of the Sequencer and if there is an active readout sequence at the moment of accessing the
register, that is if the Mod. V551B is in a status between an accepted TRIGGER and a DRESET generation.
The BUSY bit is on during a conversion sequence in which no other data are to be taken for conversion.

Test Register

15 14/ 13/ 12/ 11 10 9 8 7 6 |5 4 3|21 |0

‘PL SL‘CL‘TM‘

L TEST MODE
CLOCK LEVEL
SHIFT-IN LEVEL
TEST PULSE LEVEL

This 16bit register is located at the address Base+%0A and contains information about the test state which
is provided by Mod. V551B. The first bit defines if the user will use the test mode or not and the others
define the variables of the test state.

Number of Channels Register

15 14/ 13 12011 10 9 | 8 7 6 54 3 2 1 0

Numberofchannels

This 16bit register is located at the address Base+%0C and contains the number of the channels that
will be read out. The number N of detector channels to be read out by the C-RAMS can be programmed

via this register up to 2047 (though the V550 C-RAMS can accept only up to 2016 detector channels).

T1 Register

15 14 13 12 11 10/9 8 7 |6 5 4 3 2 1 0

T1

—— T1VALUE

This 16bit register is located at the address Base+%0E and is used to set the T'1 parameter on 8 bits. It
gives the delay ¢1 between the Leading Edge of the TRIGGER and the HOLD assertion. The actual delay ¢1
(in nanoseconds) is calculated as follows:

t1 =500+ 71 x 10ns

where 0 < T71 < 255.

T2 Register

15 14 13 12 11 10/9 |8 7 6 |5 4 3 2 1 0

T2

L T2 VALUE

This 16bit register is located at the address Base+%10 and is used to set the T2 parameter on 9 bits. It
gives the delay t2 between the HOLD assertion and the start of the CLOCK/CONVERT sequence. The actual
delay t2 (in nanoseconds) is calculated as follows:

to = 130 + T x 20 & 10ns

where 10 < T < 511.

T3 Register

15 14 13 12 11 10/ 9 |8 7 6 |5 4 3 2 1 0

T3

L T3 VALUE

This 16bit register is located at the address Base+%12 and is used to set the T'3 parameter on 8 bits.
It gives the duration t¢3 of the active phase of the CLOCK and the CONVERT. The actual duration ¢3 (in
nanoseconds) is calculated as follows:

t3 = TQ x 20ns

where 1 < T3 < Ty and T3 < 255. This constraint (73 < T3) follows automatically from the fact that the
active phase of the CLOCK and CONVERT must be less than their own period.

15 14 13 12 11 109 |8 7 |6 5 4 3 2 1 0

—— T4 VALUE

T4 Register

This 16bit register is located at the address Base+%14 and is used to set the T4 parameter on 9 bits. It
gives the period t4 of both the CLOCK and the CONVERT sequence. The actual period ¢4 (in nanoseconds) is
calculated as follows:

ty =20+ T4 x 20ns

where 1 < Ty < 511.

T5 Register

15 1413/ 12 11 10/ 9 ' 8 7 6 5 4 3 2 1 0

T5

L T5 VALUE

This 16bit register is located at the address Base+%16 and is used to set the T'5 parameter on 9 bits. In
NORMAL MODE it gives the delay t5 between the CLOCK and the relevant CONVERT. The actual delay ¢5 (in
nanoseconds) is calculated as follows:

ts =40 + T5 x 20ns

where 2 < T5 < 511.
In TEST MODE, it gives the delay t¢ between the Leading Edge of the TEST PULSE and the first CONVERT
pulse. The actual delay ¢¢ (in nanoseconds) is calculated as follows:

te = 150 + 15 x 20 & 10ns

where 2 < T5 < 511. The 10ns Jitter is due to the synchronization with an internal Oscillator.

Write Internal DAC Register

15 14 13/ 12/ 11 10 9 8 7 6 5 4 3|2 1 o0

DAC VALUE

\— INTERNAL DAC

This register is located at the address Base+%18 and allows to set the Analog positive voltage VCAL on
the front panel "CONTROL" connector. It is 12 bits long and the full scale value (0zF F'F) corresponds to
a +5V, 50mA (max.) output on the VCAL line. The polarity can be changed via an internal DIP (Dual
In-line Package) switch.

Standard Operations

In order to proceed with an ordinary acquisition cycle, the user must perform a series of settings, and there-
after start with the ordinary cycle. The following describes the settings to be done and the corresponding
operation sequence.

The readout sequence starts with an external or a VME TRIGGER. The BUSY becomes active, indicating
that the module cannot accept another TRIGGER. The leading edge of the TRIGGER starts a monostable
multivibrator circuit. This circuit, after a time ¢; programmable via VME in 10ns step in the range 500ns
to 3us approximately, activates the HOLD and the SHIFT IN signals (the latter after ¢; + 300ns). The HOLD
signal is used to sample the signal at the output of the shapers at peaking time. The SHIFT IN is the token
signal for the first chip in the multiplexing chain and must be active at the occurrence of the first CLOCK.
For this purpose, a hold time of 100ns is provided.

Once the HOLD is asserted, the CLOCK cycles begin after a time to programmable via VME in 20ns steps
in the range of 170ns to 10us approximately. The CLOCK is generated by an internal 50M H z oscillator:
due to this, the acutal start of the readout (i.e. the first MUX CLOCK) will be delayed with respect to the
HOLD assertion with a +10ns jitter.

In the following readout sequence, N CLOCK and CONVERT pulses are generated. The number N of
detector channels (between 1 and 2047) can be programmed via VME (though the V550 C-RAMS can
accept up to 2016 detector channels).

Each CLOCK pulse is followed by a CONVERT pulse after a delay of tsns, programmable via VME in 20ns
steps in the range of 80ns to 10us approximately. The purpose of this delay is to wait for the settlement of
the analog signal coming from the multiplexers. The width of the active phase of the CLOCK and CONVERT
pulses is tgns programmable via VME in 20ns steps in the range 20ns to 5us approximately.

The repetition period ¢4 of the CLOCK and CONVERT pulses (and consequently the multiplexing frequency)
is programmable via VME in 20ns steps in the range 40ns to 10us approximately.

The CLOCK, CONVERT, HOLD and SHIFT-IN signals are available on four test points placed on the front
panel. The active level on the test points is always high, disregarding the normal level of the relevant signals
on the front panel connectors.

With the last CONVERT pulse, the DRESET line (also the ARESET if enabled) becomes active for a 1us
time and resets the front end circuitry.

After the generation of the last CONVERT pulse, the BUSY signal becomes not active if none of the V550
acquisition cards has asserted the DRDY signal. Otherwise, when the DRDY has been raised (at least one
channel has data ready), the BUSY signal remains high until all the V550 FIFOs have been read out, i.e.
until the DRDY becomes not active.

A software controlled VETO is also available. The VETO forces the V551B in a BUSY condition (no TRIGGER
accepted).

Interrupt Generation

The operations of the V551B VME RORA Interrupter are fully programmable; via VME it is possible:
e to set the VME Interrupt Level
e to program the VME Interrupt Vector (STATUS/ID)

The interrupt is generated on the assertion of the DRDY input signal, which is the logical wired-OR of
all DRDY signals coming form the acquisition cards. Thus, the interrupt is requested when, at the end of the
readout sequence at least one channel in the system has data to be read out, and is released when all the
FIFOs have been completely read out.

If the Interrupt Level is set to 0, no interrupts will be generated from the V551B module.

2.2.4 CAEN V550 C-RAMS

The model V550 CAEN Readout for Analog Multiplexed Signals (C-RAMS) is a single unit wide VME
module housing two independent Analog to Digital Conversion blocks to be used for the readout of analog
multiplexed signals coming from some of the well known front-end chips (Amplex, Gasiplex, Viking, etc.).

TRIGGER [

IHOLD | |
14

/CLOCK || “ N.m;_u
3

CONVERT || || ”“““_ﬂ

15

ISHIFT IN 200 ns
100 n=

BUSY | L
DRESET I_ml
L]

[ARESET

DROY [_ —‘_

Figure 2.4: Standard operation modes of the Mod. V551B.

Each block of the module accepts positive, negative or differential input signals; the signals are amplified
and fed to an ADC. The sensitivity (mV /bit) can be selected among 4 different values (with relative ratios
of 1, 2, 5 and 10) by means of internal jumpers. The module has conversion rate up to 5M H z, differential
input with selectable amplification, 12 bit linear conversion, zero suppression and pedestal subtraction,
diagnostics and self-test capabilities.

With the occurrence of an external CONVERT signal, the input signal is sampled by the ADC and its
digital value is compared to a threshold value, if the signal is over the threshold, the pedestal is subtracted
and the result is stored in an output buffer arranged in FIFO logic 2K x 32 bit. For this purpose each block
of the module houses two memories for the storage of the thresholds and the pedestals of each detector
channel. The pedestal and threshold values are independent for each channel and the pedestal/threshold
memory, which is arranged in 2K x 24 bit, can be filled (and read back) via VME with the desired values.

The number N of detector channels to be read out can be programmed via VME between 32 and 2016
in steps of 32. At the end of a conversion cycle (N CONVERT pulses), with the last word stored in the FIFO,
if there are data in the FIFO, the module channel goes in the Data Ready state signaling that the data
must be read via VME. A positive open-collector signal ("DRDY") is available for each channel on the front
panel and is provided with two bridged connectors for daisy chainng. A fast CLEAR signal is also available
for cycle abort.

It is possible to operate the module also in TEST mode (VME selectable) by simulating some input

TEST PATTERN A

e =
BUE =y PED. & TH.
MEMORY
zERO
N FIFO p
L. SUPPRESSION
Test Mode]
I CONTROL LOGIC < <:::>
CONY e
IDENTIFIER |]
DR
VME W
e INTERFACE : : =
[oRove “
CONV t | :
CONTROL LOGIC < - <:::>
Test Made L]
[o1e]
anc Ly
[] . ZEROD
E ::> FIFO :>
s SUPPRESSION
PED. & TH.
MEMORY
VME :>
BUS

TEST PATTERN

Figure 2.5: Front view and block diagram of mod. V550.

patterns, which can be written via VME, as if they were coming from the ADC.

Finally, the module works in A24/A32 mode. The data transfer occurs in D32 and a block transfer
mode is also available.

In the following, the registers of a V550 module are presented in short.

Module Identifier Words Register

15 14 1312 11 109 8 7 6 5 4|3 2 1 0 Address

Version ‘ Module's serial number Base + % FE
Manufacturer number ‘ Module type Base + % FC
% FA Fixed code ‘ % F5 Fixed code Base + % FA

This register contains three 16bit words that are used to identify a module located at the address
Base +%FA, Baset+%FC, Base+%FE. At the address Base+%FA the two particular bytes allow the au-

tomatic localization of the module. For the Mod. V550 the word address Base+%FC has the following
configuration :

Manufacturer Number = 000010 b
Type of module = 00000110100

The word located at the address Base+%FE identifies the single module via a serial number and any change
in the hardware (for example the use of a faster Conversion Logic) will be shown by the Version number.

Test Pattern Register

15 14 13 12 11 1009 8 |7 6 5 4 3 2|1 0

-IOV ‘ v ‘ CHANNEL DATA

12 bit detector Channel data
simulated valid data

simulated overrange

This 16bit register is located at the address Base+%16 for Channel 1 and Base+%14 for Channel 0 and
contains the values of a simulation pattern returned by Mod. V550.

Word Counter Register

15 14 13 12/11 109 |8 |7 |6 5 4 3 2 1 0

- NUMBER OF OVER THRESHOLD DATA (No. of Data in FIFQ)

This 16bit register is located at the address Base+%12 for Channel 1 and Base+%10 for Channel 0 and
contains the number of words that are over threshold, that is of course the number of data in FIFO.

FIFO Register

3130 [20 [28 [27 [26 [25 [24 [23 [22 [21 oo 1o 18 [17 16 15 [1a [1a[12[11 [0 Jo e [7 [e [5 [a [3 [2 [1 Jo
o |v Channel number Channel data
Validity bit : = 0 converted value is under pedestal

= 1 converted value is over pedestal

Overrange bit : =0 no FADC overrange
=1 FADC overrange

This 32bit register is located at the address Base+%0C for Channel 1 and Base+%08 for Channel 0. It
contains the values of the ADC channel number that holds the value of channel data when these data are
valid or over range. The two FIFOs are also accessible in block transfer mode.

Clear Module Register

This register is located at the address Base+%06 and one can access it only in Write Mode. A VME write
access to this location aborts the conversion process, if one is active, clears the FIFOs and clears the word
counters.

Number of Channels Register

15 14 13 12 1110 9 8 |7 6 5 4 3 2 1 0

_ DCN Channel 1 ‘ DCN Channel 0 ‘

Detector Channel Number channel 0

Detector Channel Number channel 1

This 16bit register is located at the address Base+%04 and allows to program the number of detector
channels to be read out in step of 32. This number ranges from 32 (DCN = 1) to 2016 (DCN = 63). If
DCN equals zero then only one detector channel will be read out.

Status Register

%5 14 13 12,11/ 10 9 |8 |7 |6 5 4 3 2 1|0

/F1| /FO| /H1| /HO JE1 J/EO /D1 /DO MO | T

Test mode

Memory Owner

DRDY Channel 0 read only
DRDY Channel 1 read only
FIFO 0 EMPTY read only
FIFO 1 EMPTY read only
FIFO 0 HALF FULL read only
FIFO 1 HALF FULL read only
FIFO 0 FULL read only
FIFO 1 FULL read only

This 16bit register is located at the address Base+%02 and offers information about the status of the
module at the moment of access. In incrementing order the bits indicate if a test mode is activated, the
memory owner of the module (VME or Conversion Logic), if there are ready data on channels 0 or 1 and
if the FIFOs of channels 0 and 1 are empty, half full or full.

Interrupt Register

This 16bit register is located at the address Base+%00 and contains the value of the Interrupt Level and
the STATUS/ID that the V550 Interrupter places on the VME data bus during the Interrupt Acknowledge
cycle.

15 14/ 131211109 8 7 6 5 4 3, 2/1 0

INT. LEV. STATUS/ID ‘

\— Interrupt STATUS/ID

Interrupt level

Pedestal and Threshold Register

CHANNELO

31]30]20]28[27]26]25]24]23]22]21]20]19] 18] 17[16]15[14]13]12]11]10[9 [8[7 |6 [5[4 |3 [2 [1 [0 | ADDRESS
Pedestal detector channel 0 Threshold detector channel 0 Base + % 2000
Pedestal detector channel 1 Threshold detector channel 1 Base + % 2004
Pedestal detector channel 2047 Threshold detector channel 2047 Base + % 3FFC

CHANNEL 1

31[30]20]28[27]26]25]24]23]22]21]20]19] 18] 17]16]15[14]13]12]11]10[9 [B[7 |6 [5[4 |3 [2 [1 [0 | ADDRESS
Pedestal detector channel 0 Threshold detector channel 0 Base + % 4000
Pedestal detector channel 1 Threshold detector channel 1 Base + % 4004
Pedestal detector channel 2047 Threshold detector channel 2047 ‘ Base + % 5FFC

These 32bit registers are located at the addresses Base+ %2000 until Base+%5FFE for channel 0 and at
Base+ %4000 until Base-+%5FFC for channel 1. These registers are accessible via VME only if the Memory
Owner bit is set to zero (default value). The registers' size is 2048 words but only 2016 are actually used
by the conversion logic as 2016 is the maximum number of channels.

Operation Sequence

Each channel of the unit accepts two analog signals via front panel connectors. The difference between the
two signals is amplified and fed to the FADC. The sensitivity (mV /bit) can be selected among four different
values (with relative ratios of 1, 2, 5 and 10) by means of internal jumpers.

The channel needs an external CONVERT pulse whose leading edge indicates that the analog signal must
be sampled. The signal (ECL level) can be provided via pins of the VME backplane or via the front panel.

The number N of detector channels, which is between 32 and 2016, can be programmed via VME. In
addition, the pedestal and threshold registers must be filled via VME with the chosen values. This memory
can be accessed by VME only when the acquisition is stopped and the switching can be performed by means
of the CONTROL REGISTER.

With the occurence of the leading edge of the CONVERT signal the analog signal is sampled by the FADC
and its digital value is compared to the threshold of the current channel. If the channel is over threshold,

the pedestal is subtracted and the result is stored in the FIFO. The word in the FIFO has the following
format

d<31> d<30> d<29..23> d<22..12> d<11..0>

Overrange Data Valid Reserved Channel # Channel pulse height

The D31 bit indicates a FADC overrange, while the D30 bit indicates that the field PULSE HEIGHT is
valid, which means that is positive after pedestal subtraction. The bits from D23 to D29 are not specified.
After N CONVERT pulses the data readout of an event is over. When the last CONVERT pulse has been
processed and the FIFO is not empty, the card channel goes into DATA READY state, signaling that the data
must be read. The DATA READY state is signaled by a bit of the status word (DRDY) and a positive open
collector signal DRDY supplied via two front panel bridged connectors.

The daisy chain connection performs the wired-OR of the DRDY signals of different channels. When a
channel is in DATA READY state the signal CONVERT has no effect on the card. After the last VME read from
the FIFO, the DRDY signal goes low and the channel is ready for other acquisitions.

The readout from the FIFO can be performed either in a random VME read for each FIFO, or a block
transfer for each FIFO. For this mode a word counter for each FIFO is available, in order to know the
number of words stored in FIFO.

The beginning of the reading phase is triggered either by software polling of the DRDY bit, or by interrupt
raised by the card on the condition that at least one of the DRDY of the two channels goes high, or even by an
interrupt raised by the control card (CAEN Mod. V551B Sequencer) on the condition that the wired-OR
of the DRDY signals goes high.

The system housed in a single crate, that is one VME CPU, one control card and M acquisitions cards)
can handle up to 4032 x M detector channels.

Interrupt Generation

The operations of the V550 VME RORA Interrupter are fully programmable; via VME it is possible
e to set the VME Interrupt Level
e to program the VME Interrupt Vector (STATUS/ID)

The interrupt generated on the logical OR of the two DRDY signals (at least one channel has ended the
programmed N conversion cycles and its FIFO is not empty) and released when the two DRDY signals are
low (the two FIFOs have been completely read out).

2.2.5 CAEN V462 Dual Gate Generator

The CAEN Model V462 is a Dual Gate Generator housed in a l-unit wide VME module. Each mod-
ule consists of two Gate Generators, one per channel, independently programmable between 100ns and
9.9999999s. These generate three standard NIM signals: a Gate, a Begin Marker of fixed 100ns width,
simultaneous to the beginning of the Gate, and an End Marker of fixed 100ns width, simultaneous to the
end of the Gate.

The module is based on the use of Programmable Gate Arrays containing almost all the logic of each
generator's operations. There are two working registers per channel, one for Local Mode, the other for
VME Mode.

In Local Mode, the content of the Local Register is transferred to eight 4bit multiplexers that allow
displaying of the gate width and is presented to some bit-to-bit comparators. The module contains eight
4bit BDC' counters that are positioned to zero if the gate is not triggered. When the Start signal takes
place, the counters start counting at 10M H z frequency and the output of these counters is presented to
the other input of the comparators.

IBinary Deciman Counter.

DATA
' TRANSFER |

GENERATOR
COMMANDS
VME REGISTER
COMMON
COMMANDS N
» GENERATOR 4 y VME | VME
NIM INPUTS 4 INTERFACE BUS

NIMOUTPUTS 4
LOCAL REGISTER

DISPLAY

BLOCK IDENTIFIER

Figure 2.6: Front view and Block Diagram of CAEN Mod. V462 Dual Gate Generator.

When the 32bit word of the counters reaches the one of the selected register, the counting stops and
the gate signal ends. A new cycle is possible right after the End of Gate Marker signal.

The Local Mode is characterized by the display of the content on the Local Register, which becomes
the register to compare with the counters. Moreover, in Local Mode, the user can modify the content of the
register via four push buttons and set a different width of the Gate. A digit (unit) that is selected via the
DIG SEL +/— push buttons starts blinking and the value of the digit can be incremented or decremented
with the FIG SEL +/— push buttons.

The VME Mode is characterized by the display of the content of the VME Register, which becomes
the register to compare with the counters.The gate triggering and width are programmable via VME. The
selection switches and push buttons for the width setting become totally ineffective on the selected register.

Whichever operating mode is selected, the Gate can always be triggered by the NIM signal or the push
button "START" for each channel. When the Gate signal is present and for all the Gate duration, all the
"START" signals are ignored ("non-updating" operation).

The Model V462 is an A24, D16 VME slave. Its base address is fixed by four internal rotary switches.
A front panel LED (DTACK) lights up each time the module generates the VME signal DTACK. The main
registers of this module are to be presented in short.

Module Identifier Words Register

These 16bit registers are located at the addresses Base+%FA, Base+%FC, Base+%FE and contain three
words that are used to identify the module. At the address Base+%FA the two particular bytes allow the
automatic localization of the module. For the mod. V462 the word at address Base+%FC has the following
configuration

Manufacturer Number = 000010 b

Type of module = 0000001010 b

The word located at the address Base+%FE identifies the single module through the module's serial number
and any change in the hardware will be shown by the Version number.

15] 14] 13] 12’11‘10“9‘8‘7‘6

5“4\3‘2\1\0

Version Module's serial number
Manufacturer number ‘ Module type
% FA Fixed code ‘ %F5 Fixed code

Control and Status Register

Address

Base + % FE
Base + % FC
Base + % FA

D15 D14 D13 D12 D11 D10 D9 DO
I ERR VME/ VME/ GATE | GATE | START | START
LOC1 | LOCO | CH.1 CH.0 CH. 1 CHO

The Control and Status register is a 16bit register located at the address Base+%00 and contains some
information on the status of the module in the five most significant bits:

e the bit in D15 is an error bit and indicates that one of the two generators is either in local mode or

that its gate is open

e the bits D14 and D13 indicate that, respectively, channel 1 or channel 0 are in VME or Local Mode

(bits are high if the channels are in VME mode)

e the bits D12 and D11 indicate that, respectively, the gate of channel 1 or channel 0 is open.

e Every attempt to write into one of the aforementioned bits generates a Bus Error and a LED on the

front panel (BERR) lights on.

e The two bits of the Control and Status Register that can be used in write mode to trigger via VME
the gate generators are D10 and D09 that trigger channel 1 and channel 0 gate generators respectively.

Any attempt to read these two bits is ineffective.

e The bits in D8 through DO are meaningless.

Generators Register

1514 13121110 9 8 7 6 5 4 3 210

BASE + %08 [LEAST SIGNIFICANT DIGITS CHANNEL 1

1514 13121110 9 8 7 6 5 4 3 210

BASE + %06 [MOST SIGNIFICANT DIGITS CHANNEL 1

1514 13121110 9 8 7 6 5 4 3 210

BASE + %04 | LEAST SIGNIFICANT DIGITS CHANNEL 0

1514 13121110 9 8 7 6 5 4 3 210

BASE + %02 [MOST SIGNIFICANT DIGITS CHANNEL 0

These 16bit registers are located at the addresses Base+%08, Base+%06, Base+%04, Base+%02. The gen-
erator registers (gate width duration) are composed of two 16bit registers per channel. Address Base+%08
containes the four least significant digits of the gate width for channel 1, whereas Base+%06 the four most
significant. The same pattern is for channel 0 at Base+%04 and Base+%02 for the least and most significant

digits accordingly.

Front Panel Signals

To trigger externally the Gate Generators, two START inputs, one per channel, can be sent to the module.
These should be standard NIM signals of 20ns minimum width, otherwise the Gate could not be triggered.
A gate is triggered by the leading edge of the NIM START signal.
There are three output signals with a fan-out of two for each channel: the Gate, the Begin Marker and
the End Marker. The Begin Marker is simultaneously with the Gate ending, and also its width is 100ns.
The delay between the trigger signal and the leading edge of the Gate or Begin Marker signals is
(140 £ 10)ns.

2.3 The NIM Crate

For a readout trigger two plastic scintillators were used, whose signals were fed into a coincidence unit and
the output was input for the V551B Sequencer TRIGGER signal. This section describes the modules of the
NIM create on the rack that was used.

Figure 2.7: The NIM crate modules used. From left to right: LeCroy quad discriminator 821CS,
LeCroy coincidence 465, LeCroy fan-in-fan-out logic 429A, and a custom-made unit from LAPP
that is missing from the picture.

2.3.1 Quad Discriminator LeCroy 821CS

The discriminator is a device that responds only to input signals with a pulse height greater than a certain
threshold value. If this criterion is satisfied, the discriminator responds by issuing a standard logic signal;
if not, no response ins made. The value of the threshold can be adjusted by a helipot or screw on the front
panel. As well, an adjustment of the width of the logic signal is usually possible via similar controls.

The LeCroy Model 821 is a high performance Quad Discriminator incorporating the features requested
by experimenters throughout the world. Its hybrid front ends afford high sensitivity and greater than
100M H z counting rate capability. The input signal can be from —30mV to —1V and the outputs are six
differential-type current source. The module offers a double-pulse resolution less than 9ns.

The signals coming from the plastic scintillators were fed into the two channels of the discriminator. If
the input pulse is higher than this threshold a logic output signal is produced by each channel and is fed
into the coincidence unit.

2.3.2 Coincidence Unit LeCroy 465

The LeCroy Model 465 contains three independent high-speed general-purpose coincidence units in a single
width NIM module. Each channel has four coincidence inputs and a separate veto input which accepts
standard negative NIM logic levels. The logic inputs may be individually enabled or disabled without
altering input cabling or termination by means of front-panel pushbutton switches. With all inputs enabled,
four inputs are required. Disabling the logic inputs is equivalent to reducing the number of simultaneous
negative inputs required for an output. Thus, each channel may be programmed for 4-fold, 3-fold or 2-fold
logic decisions. With only one input enabled, each channel of the 465 operates a a logic fan-out.

Once triggered by singls satisfying the input coincidence requirements, the module generates five NIM
fast logic outputs: one pair of —32mA negative preset outputs, one —16mA preset complementary output
and one pair of —32mA overlap outputs. The preset outputs are continuously adjustable from less than
5ns to greater than 500ns by means of a front-panel multiturn potentiometer and are independent of input
overlap time, amplitude and rate. Because it is updating, it may be retriggered even before the end of an
output pulse that is already present. The overlap outputs are equal in duration to the coincidence overlap
and produce outputs up to the maximum input rate capability.

The logic signals of the discriminator unit were fed into the coincidence unit. The module compares the
input signals and if a coincidence is occurred a logic pulse is generated that is input for the V551B VME
Sequencer module as a TRIGGER signal.

2.3.3 LeCroy Fan-In-Fan-Out Logic 429A

Fan-outs are active circuits which allow the distribution of one signal to several signals of the same height
and shape. This should be distinguished from the passive pulse splitter which divides both the signal and
the amplitude. The fan-on, on the other hand, accepts several input signals and delivers the algebraic sum
at the output. These modules may be bipolar, i.e. accepting signals of both polarities, or of the same
polarity, i.e. accepting signals of one polarity only. Fan-ins are particularly useful for summing the outputs
of the several detectors or the signals from a large detector with many outputs. Both fan-ins and fan-outs
come in two varieties: linear and logic. The linear modules accept both analog and logic signals, whereas
logic fan-outs and fan-ins are designed for logic signals only. In the case of a logic fan-in, the algebraic sum
is replaced by a logical sum (i.e. OR).

Both fan-in and fan-out modules have the same basic function of combining the inputs and distributing
multiple outputs. The Model 429A is a multi-functional fast logic module designed to fulfill a wide variety
of signals handling needs. It combines the operations of TTL-to-NIM level translation, logic fan-in, logic
fan-out and polarity inversion in one low-cost module. Each of the 4 channels has four inputs which accept
both NIM and TTL levels. This is particularly usefull for test setups and experiments where digital triggers
and/or control logic may use both signal standards.

Each channel of the 429A includes four independent logic inputs, four normal logic outputs and two
complementary logic ouputs. Channels may be paralleled to provide up to 16 inputs and 24 outputs by
means of a front-panel switch. An efficient circuit design holds power dissipation of the entire module to
within the NIM standard.

The 429A eliminates the extra cabling and time delay involved when conventional fan-ins and fan-outs
must be cascaded. In addition, it eliminates the common use of expensive logic units to perform logical
OR with adequate fan-out. The ability to conveniently parallel channels permts a degree of flexibility and
efficiency heretofore unavailable.

Inputs are 500hm impedance for NIM or TTL signals. Unused inputs need not be terminated. Inputs
may be driven with single or double amplitude NIM signals or TTL signals without affecting output am-
plitude. The three pairs of bridged outputs are direct-coupled current sources which deliver —32mA into
two 500hm loads. Output duration is equal to the logical OR of the input durations.

2.4 The Front-End Chip

The Front-End Chip that was used for the data acquisition was a 64-channel multiplexing frontend that
uses an integrated circuit called Gassiplex. Gassiplex was developed at CERN as an improved version of
the well known AMPLEX chip.

The Gassiplex chip has 96 input channels that consist of a charge sensitive amplifier (CSA), a switchable
filter, a shaper and a track and hold stage. These channels can be multiplexed to one output allowing a
sequential readout of all channels. In computer networks, multiplexing (also known as muxing) is a method
by which multiple analog message signals or digital data streams are combined into one signal over a shared
medium. The aim is to share an expensive resource.

2.5 The MicroMeGAS Detector

Micromegas (stands for MicroMesh GAseous Structure) detector which falls into the category of MicroPat-
tern Gaseous Detectors (MPGD) was created by J. Collar and G. Giomataris in the middle '90s. At first, it
was proposed to detect low energy photons (1 — 10keV’). Because of its high gain nature, Micromegas can
stand up alone without the need of an additional preamplification. The fact that its operational principle
follows the conventional one from MPGD provides the end user with a variety of benefits such as

e stability

e quick response

e great energy and spatial resolution
e high efficiency

e granularity

e radiation hardness

e usability in experiments with rare events if the background is relatively low.

The detector has already been used in numerous experiments such as COMPASS (COmmon Muon-
Proton Apparatus for Structure and Spectroscopy, CERN), NA48 (CP symmetry violation studies, CERN),
CAST (CERN Axion Solar Telescope, CERN) n-TOF (Neutron Time Of Flight, CERN) and it has been
proposed as a candidate for the upgrade of the ATLAS Muon Spectrometer and for the forthcoming ILC
as part of the hadronic calorimeter.

Micromegas is a gaseous parallel plate detector in which several innovative properties rely on a narrow
amplification space (typically 50 — 100um) between two parallel electrodes: the micromesh (cathode) and
the strips (anode). The challenge when constructing a Micromegas detector is to keep the gap between the
electrodes constant over the whole active area. This consistency of the gap is achieved by the means of
insulating pillars deposited on the cathode.

The volume of the detector is divided into two areas. The first area that a charged particle cross is the
drift gap passing through the drift electrode. After the electrode the particle is in the conversion region
which has a width of a few mm until the micromesh is reached. In this area, the voltage is around 1keV /cm
and is the region that the first interaction of the particle with the detector takes place and electron-ion
pairs are produced. The electrons are driven by the electric field to cross the micromesh and proceed to
the next region whereas the ions are collected by the micromesh.

The region between the micromesh and the anode is called amplification gap and its width is about
100um. The anode consists of conductive microelements (strips) which are printed on a printed circuit
board (PCB).

In order to get the maximum efficiency from the detector one should know the structure of the electric
field close to the mesh. The homogenous field that is required for the amplification gap is easily created
despite the small size of the area and consequently the desired electronic avalanche is generated. The main
issue for one to be aware is the distortion of the electric field around the gaps of the micromesh. The
potential lines starting from the drift electrode traverse through the mesh and end at the strips. However,
their density is massively distorted near the gaps, as it is seen in figure 2.9. What this actually reveals is

Micromégas

Figure 2.8: Graphical representation of an interaction of a charged particle with the detector.
The interior division into two regions is apparent.

Vygp~ =700V

MICRO-MES

Figure 2.9: The potential lines of the electric field when passing through a GEM foil.

the difference between the intensities of the field between the two areas. The amplification when a particle
crosses the mesh is negligible compared to the total one and is not taken into consideration, which is the
main difference between the MicroMeGAS detector and the rest of MicroStrip Gaseous Detectors. Finally,
in some cases it is convenient for the electric field in the conversion area to have increased intensity in order
to generate a kind of preamplification.

The fact that the distance between the gaps of the mesh is relatively small is the reason that the
longitudinal dispersion of a particle is small. Consequently, MicroMeGAS offers excellent time resolution.
Furthermore, in a non-vertical track event, because of the fact that the development of the electronic
avalanche is nominal to the strips and therefore the signal is conducted in a small region of readout channels
resulting to an excellent spatial resolution. The latter characteristic of the detector gives the end-user the
ability to use MicroMeGAS as a Time Projection Chamber by reading the strips that fired and the time
the signal was collected.

The signal at the anode or the cathode is generated by the relative motion of the electrons towards the
anode and of the ions towards the cathode. A typical ion signal has a response time of 100ns depending
on the amplification gap and the gas mixture. However, the electronic signal at the anode is a lot faster

Commen
h N
M X-strips x 96 X-strips
Y-shrip: I
—] 4

96 Y-strips

Bmm

Figure 2.10: The dual set of MicroMeGAS detectors (left) and a schematic of the active area
(right) of each station.

because of the high mobility p of the electrons. A MicroMeGAS detector, because of the fast collection of
ions, nullifies the effect of the space charge effect that reduces the amplification in most detectors when in
operation with high frequency interactions.

The MicroMeGAS detector and MPGD in general are resistant to radiation. As the electric field is
mostly homogenous in the amplification area, the development of unfortunate phenomenae, such as the
polymerism during the avalanche, have a small effect.

2.5.1 The RD51 MicroMeGAS Telescope

The RD51 collaboration aims at the development of advanced gas detector technologies and the associated
electronic readout system for applications in either basic or applied research.

The MicroMeGAS tracker consists of three identical double MicroMeGAS detectors that in each pair
both X and Y axis are read out. When mounted on the custom made table the distance between the first
and second station along beam is 338mm and between the second and the third 403mm. In each station
the two component detectors are mounted back to back on a common frame sharing a common drift high
voltage plane but having different mesh planes. Hence each station is in need of three high voltage lines.
In addition, each station is equipped with two PCB baring 10 x 10cm dimentions, one to provide data for
the X axis and the other, rotated by 90°, the Y axis. Each PCB accommodate 96 strips with 250um pitch
that translates into an active area of 2.4 x 10cm at each PCB and 2.4 x 2.4¢m? in total for each station.
As a particle travels through each station, it first crosses the X-plane and then the Y-planes.

2.6 Trigger Logic

Having presented all the parts of which the hardware consists of, as the last part of this chapter the trigger
logic is repeated in short.

The experimental setup consists of the rack that accommodates the NIM and VMEDbus crates, two
sets of two plastic scintillators, a MicroMeGAS telescope station and two Gassiplex cards. The beam
hits the first set of the plastic scintillators which produce a logic signal. Both these signals pass through
the discriminator unit. This unit produces a logic pulse signal if the input signal in each line is greater
than the preset threshold. If both scintillator signals are over the threshold the logic signals produced by
the discriminator are fed into a coincidence unit. If the two signals from the discriminator are in timing
considence the LeCroy 465 Coincidence Unit outputs the first reference logic signal.

296 strips x250um = 2.4cm.

uMx uMy

SCI1 scCi2 SCI3 sCl4

Trigger Signal
Figure 2.11: Trigger logic.

After crossing the two MicroMeGAS detectors, the beam collides with the second set of plastic scintil-
lators. Following the above procedure the second reference signal is produced. The two reference signals
are fed into the coincidence unit and the logic outcome of the unit is passed to the V551 Sequencer module
as the TRIGGER signal.

When fed with the TRIGGER signal the Sequencer module sends out the HOLD control signal to the front-
end chip after a preset t; delay and raises the BUSY signal. While the BUSY signal is raised the module
starts the CLOCK and CONVERT sequence of control signals storing the read values into the C-RAMS module
buffers. These control signals are part of the flat cable lines that starting from the sequencer module are
passed to the custom-made LAPP module that translates the flat cable lines into LEMO cable outputs.
These outputs are then passed to a Fan-In-Fan-Out unit that multiplies the number of outputs from one
(the one coming from the sequencer) to the desired number of output signals. The LEMO cables from
the Fan-In-Fan-Out unit are driven into the Gassiplex front-end chips. When the sequence ends, the HOLD
signal goes down and the DRDY control signal is raised which is the trigger for the read out system to start
reading the buffers of the V550 modules. Finally, after the buffers are read, they are cleared and the BUSY
signal is lowered in order to be ready for the next TRIGGER signal.

CHAPTER 3

The Software

3.1 Introduction

The main tools that used throughout the software that was developed are presented in this chapter. The
core of the software is a pure C' 4+ + code. This core includes the drivers for the modules as well as the
communication with the VME crate via the optical link of the CAEN Controller, for which the Interface of
the CAEN library of VME Bridges (CAENVMELib) is needed. The user interface of the software was written
in @Qt4 and for the histograms in the online display ROOT was used.

(O CAEN

Tools for Discovery

Figure 3.1: Logos of the Framework tools that were used throughout the development of the
software.

3.2 CAENVME Library

The interface of CAEN library for VME Bridges is free to download from the website of CAEN' and it
includes the main types and functions provided via VME and the modules of CAEN. The available software
contains a folder in which three C headers (./include/CAENVMELlb.h, ./include/CAENVMEoslib.h and
CAENVMEtypes.h) are included, as well as the shared library file (libCAENVME.so). Finally, some samples
and demo programs are included to be used for reference.

Ihttp://www.caen.it/csite/CaenProd. jsp?parent=43&idmod=689

o7

http://www.caen.it/csite/CaenProd.jsp?parent=43&idmod=689

3.2.1 CAENVMElib.h

This header file defines integer and unsigned integer types of 8, 16, 32 and 64 bits long as well as a new
pre-compiler macro in order for the developer to define if C or C++ will be used. Also the main CAEN
functions are defined in this file. The some of the functions included in this header file are presented in the
table below, the complete list of functions can be found in appendix 1002.

Function Prototype

Description

CAENVME _DecodeError(CVErrorCodes
Code)

Decodes the error returned by CAEN func-
tions.

CAENVME_SWRelease(char *SwRel)

Permits to read the software release of the
library.

CAENVME BoardFWRelease(int32_t
Handle, char *FWRel)

Permits to read the firmware release loaded
into the device.

CAENVME DriverRelease(int32_t Han-

dle, char *Rel)

Permits to read the software release of the
device driver.

CAENVME _DeviceReset(int32_t dev)

Permits to reset the device.

CAENVME Init(CVBoardTypes BdType,
short Link, short BdNum, int32_t *Handle

The function generates an opaque handle
to identify a module attached to the PC.

CAENVME _End(int32_t Handle)

Notifies the library the end of work and
free the allocated resources.

CAENVME_ReadCycle(int32_t ~ Handle,
uint32_t Address, void *Data, CVAddress-
Modifier AM, CVDataWidth DW)

The function performs a single VME read
cycle.

CAENVME_WriteCycle(int32_t Handle,
uint32_t Address, void *Data, CVAddress-
Modifier AM, CVDataWidth DW)

The function performs a single VME write
cycle.

CAENVME _FIFOBLTReadCycle(int32_t
Handle, uint32_t Address, void *Buffer, int
Size, CVAddressModifier AM, CVDataW-
idth DW, int *count)

The function performs a VME block trans-
fer read cycle. The Address is not incre-
mented on the VMEBus during the cycle.

CAENVME_FIFOBLT WriteCycle(int32_t
Handle, uint32_t Address, void *Buffer, int
size, CVAddressModifier AM, CVDataW-
idth DW, int *count)

THe function performs a VME block trans-
fer write cycle. The address is not incre-
mented during the cycle.

CAENVME_IRQCheck(int32_t ~ Handle, | The function returns a bit mask indicating
CAEN_BYTE *Mask) the active IRQ Lines.
CAENVME_IRQEnable(int32_.t Handle, | The function enables the IRQ lines speci-
uint32_t Mask) fied by Mask
CAENVME_IRQDisable(int32_t Handle, | The function disables the IRQ lines speci-
uint32_t Mask) fied by Mask.

CAEVME_TRQWait(int32_t Handle, | The function wait the IRQ lines specified

uint32_t Mask, uint_t Timeout)

by Mask until one of them raise or timeout
expires.

Table 3.1: The functions included in the CAENVMElIib.h file and are used throughout the

software.

This header file is used in the definition and declaration of the drivers of the modules that were written.

3.2.2 CAENVMEoslib.h

This header file is a simple pre-compiler command which if the programmer defines that the operating system
is Windows include a couple of headers that contain Windows-specific declaration for all the functions in
the Windows API? are included.

3.2.3 CAENVMEtypes.h

The last header file of the CAENVME library is a set of definitions of enumerated types® that are used
throughout the software. The enumerations that are defined are presented in the table below.

Enumeration Description

CVBoardTypes Selection of CAEN boards models.

CVDataWidth Masking for data modifier.

CVAddressModifier Masking for the address.

CVErrorCodes The return value of CAEN functions.

CVPulserSelect Selection of pulser A or B.

CVOutputSelect Selection of output line.

CVlInputSelect Selection of input line.

CVIOSources Selection of 1/O source (button, Input lines, coincidence,
VMEDbus signals, internal signals).

CVTimeUnits Time units.

CVLEDPolarity Selection of level in which the LED emits signal.

CVIOPolarity Selection between normal or inverted polarity.

CVRegisters Masking of the addresses of registers.

CVStatusRegisterBits | Masking of Status register bits.

CVInputRegisterBits Masking of Input register bits.

CVOutputRegisterBits | Masking of Output register bits.

CVArbiterTypes Selection between Priority and Round-Robit Arbiter.

CVRequesterTypes Selection between Fair and On demand bus requester.

CVReleaseTypes Selection between Realese-When-Done and Release-on-
Request requester.

CVBusReqLevels Masking of the bus request levels.

CVIRQLevels Masking of the Interrupt Request Levels.

CVVMETimeouts Selection between 50us or 400us timeout.

CVDisplay Masking of the front display.

Table 3.2: Enumerations in CAENVMEtypes.h header file.

3.3 Trolltech's Qt

Qt is a comprehensive C' + + application developmnent framework for creating cross-platform Graphical
User Interface (GUI) applications using a "write once, compile anywhere" approach. Qt let programmers

2The Windows APT is a Microsoft's core set of application programming interfaces (APIs) available in the Microsoft
Windows Operating Systems. It was formely called the Win32 API, however the name "Windows API" more accurately
reflects its roots in 16bit Windows and its support on 64bit Windows.

3In computer programming, an enumerated type is a data type consisting of a set of named values called enumerators.
The enumerator names are usually identifiers that behave as constants in the language. It is commonly used as a mean
to provide a user friendly mask for a variable of "unfriendly" type (i.e. bit masks).

use a single source tree for applications that will run on Windows 98 to 7, Max OS X, Linux, Solaris, HP-UX
and many other versions of Unix with X11. The Qt libraries and tools are also part of the Qt-Embedded
Linux, a product that provides its own window system on top of the embedded Linux.

The Meta-Object Compiler (moc) is the program that handles Qt's C' + + extensions. Each Qt class
should has in its definition the Q_.OBJECT macro, as the moc tool reads a C' 4+ + header file and if it finds
one or more class declarations that contain the Q_OBJECT macro, it produces a C + + source file containing
the meta-object code for those classes. Among other things, meta-object code is required for the signals
and slots mechanism, the run-time type information and the dynamic property system.

A graphical module of Qt is called widget. Each widget has its own header file, which should be included
in the source code and the name of the header is the letter @ followed by the name of the widget. For
example, if one would like to add a push button to a GUI, one should include the header QPushButton.h.

Cancel || oK

Figure 3.2: A simple main window. The widgets that are used are: QPushButons, QMainWin-
dow, QMenuBar, QToolBar and QStatusBar.

3.4 Graphical User Interface

For the software that was developed and it is presented in this thesis, Qt handles the graphical implemen-
tation of the configuration handler of the core program, as well as it provides the framework on which the
online display is build. The class responsible for the GUI is called Interface (Interface.h, Interface.cpp,
ui_interface.h) and the source code can be found under the src/ folder of the accompanying software
file tree.

Displayed in 3.4 is the main window of the GUI. Currently active tab is the configuration tab. One
can see that the main window seems plain and clean and most importantly the main widgets are self-
explanatory. It consists of a QTabWidget which is the tabbed environment that houses the four tabs of the
software (Online Display, Configuration, Log Viewer and About) and a set of QPushButtons that signal
a variety of functions to be called and communicate with the crate or close the program. All over the
GUI there are widgets whose name has an underlined letter. This would imply that there is a keyboard
shortcut to quickly use this widget without making use of the mouse. The current template of the keyboard
shortcuts mechanism is that the widget is activated (clicked(), selected(), etc...) when the key sequence
ALT+(Underlined Letter) is pressed. For example, the Initialize button has underlined the letter "i"
which means that it can be clicked using the sequence ALT+i.

3.4.1 Display Tab

Under the display tab a ROOT Canvas is embedded and if selected, a number of hitmap histograms that
equals the number of the detectors that are available *. In each data acquisition cycle (DAQ cycle) the end-
user can choose a number with which the histograms would be refreshed. This number is called Display
Refresh Rate and it is counted in events. In other words, if the end-user defines the configuration variable
Display Refresh Rate to be equal to 1000, at the first event the histograms would present themselves
and then every 1000 events it would be refreshed to the values of the current event.

4 Actually, the number of histograms is double the number of C-RAMS

Display | Configuration = Log Viewer =About

Chamber X Chamber Y

10° Chamber X 10° Chamber Y

Entries 1091086 Enies1114774

Mean 4865 Mean 39.57

5000 mws zssr| 10000H RMS 2867
4000~ 8000+
3000~ 6000

Initialize
2000 4000/
1000~ 2000+
G”H”ﬂ.ﬂ‘n...mﬂmlhﬁﬁ -ﬂﬂm Gﬁ\l\|\|\|||||||||||||||\|\| i mim Help
o 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Close

Figure 3.3: Snapshot of the display tab.

The embedded canvas is dynamically divided into pads whose number is equal to twice the number
of the C-RAMS available. This happens because each C-RAMS has two FIFOs, so the software assumes
that the number of the detectors is the same as the number of the FIFOs. The titles of the histograms
are also set dynamically according to the relevant placing into the FIFO channels. For example a detector
connected to the second FIFO of the third C-RAMS would be labelled as "Chamber 6".

3.4.2 Configuration Tab

Much attention was drawn to the fact that the end user should easily change the configuration of the
readout software according to the modules at hand, the way that the readout cycle would conclude or
even the markers of the output file in order to much their own framework, without messing with complex
configuration files or writing extra code.

The Configuration tab is divided into seven parts. Starting from the top left corner, the user can verify
or change the base address of the Sequencer and the time delays and duration for the multiplexing cycle.
Right next to the Sequencer configuration is the C-RAMS configuration. Here the end-user can verify or
change the number of C-RAMS that he is going to include, making use of the spin-box, as well as set their
base addresses. Next is the Gate Generator group box. If a Gate Generator is included in the VME setup.

Just below of these, there is the configuration of the readout markers. These special words specify the
start and the end of each block of readout format. Then the run number and the run type boxes are present
to configure the name of the run in a numerical way. At last, there is a misc section where the number
of readout channels of the front-end chip can be modified, select if the run would end when a predefined
number of events is reached, change the time in milliseconds that the VME bus will wait for an interrupt
during trigger awaiting, set the paths for the configuration and mapping file, set the refresh rate of the
display tab and finally if the end user wants a root file with the total hitmaps of his run.

The use and the meaning of each widget will be now explained separately.

{ V551 Sequencer:

e Sequencer Base Address: This line edit is filled with the base address of the sequencer module. The
base address can be set via four rotary switches on the board of the module. The master module
of the VME crate, which has its own base address, will recognize the sequencer with the set base

address as its slave and send commands directly to it. Also, as presented in the previous chapter
each register of the module is recognized via a preset value added to its base address. It is strongly
recommended to use the UNIX format for hexadecimal numbers to set the base address and it is
necessary the input to be in TCP/IP endianess (Big Endianess).

Trigger to Hold Delay: This spinbox sets the T'1 register of the sequencer module. The value that
is set does not evaluate to nanoseconds directly. It corresponds to the time between the rise of the
trigger pulse until the hold signal is raised. The spinbox is locked by default and only expert users
should edit it as it changes the timing configuration between your detector signals and the VME
control signals.

Hold to Sequence Delay: This is the delay between the fall of the trigger pulse until the first rise of
the clock pulses sequence. This spinbox is also locked.

Active Clock Duration: The T3 register corresponds to the width of the CLOCK pulses. This of course
means the time between the rise and the fall of the pulse. The spinbox is locked.

Period if Clock and Convert Sequence: This is the time interval between the rise of one CLOCK pulse
and the rise of the following. The spinbox is by default locked.

Clock and Convert Delay: This spinbox configures the T'5, which is the delay between the rise of a
CLOCK pulse and a rise of a CONVERT pulse. The widget is locked.

Readout Markers:

Header Begin Marker: This is the hexadecimal representation of a specific number that represents
the beginning of the header block in the output binary file. By default the value is set to 0x90000000,
which in decimal representation stands for 2415919104. The line edit is locked by default and only
expert users should modify its value.

Header End Marker: The value that marks the end of the header block in the output file. By default
it is 0x9ffff000 which is 2684350464 in decimal. The widget is also locked.

Event Data Begin Marker: Each event data block in the output file starts with this word. Its default
value is 0x80000000 or 2147483648 in decimal. The line edit is by default locked.

Event Data End Marker: The end of each event data block is marked by this word. Its default value
is 0x8ffff000 or 2415915008 in decimal. The modification of the value is locked.

Footer Begin Marker: Each file closes with the last block being the footer block. The footer block
starts with this word, whose default value is 0xa0000000 or 2684354560 decimal. The widget is locked.

Footer End Marker: The end of the footer is marked by the footer end marker. The default value
for this is Oxaffff000 or 2952785920 in decimal. The widget is also locked.

Run Information:

Run Number: The spinbox contains the number of the run that is about to start. It will mark
also the name of the file that is produced during the DAQ cycle. The spinbox is updated when the
program is launched and when a DAQ cycle is ended, when the number in the spinbox is incremented
by one.

Type of Run: This combo box defines the type of the run that is about to start. There are three
possibilities: Physics, Pedestal and Test. The type of the run is also apparent in the name of the
output file. Each data file that is produced is named as :

run[RunNumber][RunType].dat

If the run type is physics then the file name will be marked with a "D" character. If the type is
pedestal then that character is a "p". Finally if the end-user is about to start a test run the special
character is "T". This means that a physics run with number 9011 will produce an output file named
run9011D.dat.

CRAMS:

e Number of CRAMS: The spinbox holds the value of the number of C-RAMS the end user desires
to use. Whenever the spinbox value is changed a line edit from the list below is either enabled or
disabled accordingly.

e C-RAMS i: The line edit below each C-RAMS label is used to set the base address for the corre-
sponding C-RAMS module. It is recommended to use UNIX format when inputting the address and
use TCP/IP endianess. The number of the enabled (white background and editable) line edits is
equal to the number in the number of C-RAMS spinbox and this property is modified dynamically
via it.

{ Gate Generator:

o [s there a Gate Generator? : If the state of this checkbox is checked then the software will recognize
a V462 Dual Gate Generator module on the VME crate and will initialize it and use it properly.”®

e Base Address: This line edit is the modules base address, in order to be recognized as a slave to
the VME controller Master. It is strongly recommended UNIX format and TCP/IP endianess input.
The widget is enabled only if the checkbox is checked.

e Channel 0: Upper Display: This is to set the lower display of the first channel on the gate generator
that corresponds to the gate width of the first channel. The widget is enabled only if the checkbox
is checked.

e Channel 0: Lower Display: This is to set the lower display of the first channel on the gate generator
that corresponds to the gate width of the first channel. The widget is enabled only if the checkbox
is checked.

e Channel 1: Upper Display: This is to set the upper display of the second channel on the gate
generator that corresponds to the gate width of the first channel. The widget is enabled only if the
checkbox is checked.

e Channel 1: Lower Display: This is to set the lower display of the second channel on the gate
generator that corresponds to the gate width of the first channel. The widget is enabled only if the
checkbox is checked.

{ Misc:

o Number of Readout Channels: The value of the spinbox corresponds to the number of the detector
readout channels. It is used as an upper limit on the size of the readout vectors throughout the
software. The widget is by default locked, as the software was designed to work with Gassiplex front
end chip which houses 96 readout channels.

o Mazimum Number of Fvents: This checkbox defines the conditions under which the current run
will end. If it is checked then the spinbox next to it should be modified to point to the maximum
number of events that should be collected in order for the run to stop. For example, if the checkbox
is checked and the spinbox value is 5000, then the DAQ cycle will start and after 5000 events will
stop. If the checkbox is unchecked then the cycle will start and will not be ended until the Stop
Cycle button is pressed.

e Configuration File Path: This line edit holds the full path to the configuration file. The default
configuration file is placed inside the inputFiles folder in the installation folder tree and it is named
dag.conf.

o Mapping File Path: This line edit holds the full path to the mapping file. The mapping file contains
two columns of numbers. The first column represents the ADC Channel number, while the second
the strip number. The default mapping file is saved under the inputFiles folder in the installation
directory and is named Mapping. txt®

5A word of warning: If a gate generator is used, the timings of the Sequencer module should probably be modified.
6The default mapping file was provided by the group working on micromegas at LAPP (Laboratoire d' Annecy-le- Vieux
de Physique des Particules).

Display | Configuration | Log Viewer = About

Sequencer CRAMS Gate Generator
Sequencer Base Address 0xDD110000 Number of CRAMS | 1 N Is there a Gate Generator?
Trigger to Hold Delay C-RAMS 0: Baepl s
Hold to Sequence Delay 0x00170000 Channel 0: Upper Display
Active Clock Duration C-RAMS 1: Channel 0: Lower Display
Period of Clock and Convert Sequence Channel 1: Upper Display
Clock and Convert Delay RS Channel 1: Lower Display
Readout Markers C-RAMS 3: Misc
Header Begin Marker Number of Readout Channels
Header End Marker C-RAMS 4: & Maximum Number of Events | 1
Event Data Begin Marker Interrupt Request Timeout (msec)
Event Data End Marker C-RAMS 5: Configuration File Path _—
nitialize
Rester el e {inick/NTUADAQ_ALLTOP/inputFiles/dag.cont’ -
Footer End Marker C-RAMS 6: Mapping File Path:
ckINTUADAQ_ALLTOP/inputFiles/Mapping.txt
C-RAMS T: =
Display Refresh Rate 5000 ;
Run Information
Run Number w012 - C-RAMS 8: Save sample hitmaps to ROOT file?
Type of Run (physics =
S C-RAMS 9: Help

Unlock Reset Default Apply

Close

Figure 3.4: Snapshot of the configuration tab.

Display Refresh Rate: The number in the spinbox is the rate that the display of the histograms
under the display tab will be refreshed. This should be modified according to the current event rate.
A small number of refresh rate and a huge number of events will force the Graphical User Interface
to crash, as the thread controlling the display would fail to alter the graphics of the main thread too
fast as the ROOT plotter is an external library.

Save sample hitmap to ROOT file? : If the checkbox is checked when the run will end a root file
containing some histograms with a total hitmap on the events should be produced.

Buttons:

Unlock/Lock: If Unlock is pressed the locked widgets under the configuration tab unlock, becoming
enabled and editable, while the label of the button changes to Lock. If pressed again the same widgets
will lock and the label will change back to Unlock.

Reset Defaults: If this button is pressed the software will read again the default configuration file
and reset all values of the widgets to their default settings.

Apply: If any change to any widget under the configuration tab is made will not be applied if the
Apply button is not pressed. When this button is pressed the software sets the user-defined values
to the parameters needed by the DAQ cycle.

3.4.3 Log Viewer

The log viewer tab holds tracking information of the conditions and the warnings of the software. Each
entry in the log is tagged by a timestamp and a qualifier to assert the importance of it. There are three
types of qualifiers: INFO, which is information about the process of the graphical interface, WARNING, that
holds information of issues that may or may not be crucial to the execution of the software and FATAL,
which is the most serious type of qualifier and an entry of this type usually means that there is a problem
with the connection to the hardware or the hard disk of the system.

To put it simply, an INFO entry is set when the software starts called

Display | Configuration | Log Viewer | About

[6/10/2011-17:43:48]->>[INFO] Program has started
[6/10/2011-17:43:46]-->>[INFO] Configuration locked for non-expert users.
[6/10/2011-17:43:46]->>[INFO] Configuration file read.

Initialize

Help

Clear Close

Figure 3.5: Snapshot of the log viewer tab.

[INFO] Configuration locked for non-expert users.
A possible warning entry is

[WARNING] Error while generating Event Data Bottom Header. Possibility of corrupted file.
while a fatal entry is

[FATAL] Error while initializing controller.

Finally, the widget houses a Clear button that clears the history off the log viewer if pressed.

3.4.4 About

The About tab provides information on the creator of the software and its version.

3.4.5 Cycle Buttons

The cycle buttons are the six buttons placed at the right end of the graphical interface, used to control the
operations of a DAQ cycle.

e Initialize: When the Initialize button is pressed the connection between the hardware on the
crate is established, the input files are read and processed and the output file is opened for writing.
If the initialization is successful the checkbox next to the button changes state from unchecked to
checked, a log entry is set to inform the user of the success of the operation and the Start Cycle
button is enabled. If the initialization is unsuccessful the checkbox remains unchecked and a fatal
error appears in the log viewer. There is a keyboard shortcut for this operation and it is the sequence
ALT+I.

Display =Configuration = Log Viewer | About

NTUA DAQ SOFTWARE

v. 1.0beta

Created by: Nikolaos D. Karastathis
2011

Initialize

Help

Close

Figure 3.6: Snapshot of the about tab.

Cancel Init: If for any reason the end-user would like to cancel the initialization of the modules
and files, for example if there was a typographic mistake in a widget under the configuration tab, the
cancel init button could be pressed. This would release the system memory of the allocated space for
the modules and close every open file. If the operation is successful the checkbox should be unchecked
and the Start Cycle button should be disabled. The shortcut sequence for this button is ALT+N.

Start Cycle: This is the button to press in order to start the DAQ cycle. The cycle spawns a
new thread to the software and proceed to start the readout sequence for the current run. Various
information messages are printed in the log viewer while the run is in progress. When the Start
Cycle button is pressed the Stop Cycle button becomes enabled. The shortcut sequence for this
operation is ALT+T.

Stop Cycle: If the maximum number of events is checked the run will stop when this number is
reached, otherwise the end-user must use the Stop Cycle button to end the run. The Stop Cycle
button enables the Start Cycle button. The keyboard sequence for this operation is ALT+P.

Help: The Help button opens the default web browser of the operating system presenting the
user to a quick documentation that provides information about the run process, the widgets of the
graphical interface and some common error messages and how to face them. It is a short and practical
version of this thesis available to all platforms as it is written in HTML. The main window of the
documentation can be seen in Figure 3.7. The shortcut sequence for this operation is ALT+H.

Close: This button closes the program. The keyboard shortcut sequence is ALT+C.

About Contact

Welcome

Home This is the online documentation of the NTUA DAQ Software for the Gassiplex front end chip.

Fun Process The software was developed by Nikolaos Karastathis and uses Ot as its graphical end framework and RODT

Graphical User Interface as the plotter framework for the online display. It is built using Qt4.7 and gcc 4.5 under Linux Kernel 4.6
Files enviroment.

Error Messages

You can run the software using the desktop icon. A terminal should run alongside with the graphical user
interface of the DAQ software. In the terminal, if the software is not set in debug mode, should appear (if
there are any) warnings and errors concerning either the initialisation of the modules, or the data taking
ycle. Please pay attention to this screen when starting a run. The Log Viewer may not contain all the
generated errors.

When program is started, press the Initialize butto to initialize the modules. If the initialization is
successful then the checkbox next to the button would be checked and the Start button should be enabled.
Start the run by pressing the Start button. You can stop the run either by pressing the Stop, either it will
stop itself if the maximum number of events is reached. More on GU| widgets.

Copyright © 2011, Created by Nik

Figure 3.7: Snapshot of the documentation page.

3.5 The Source Code

The installation directory of the software has the structure that is presented in Figure 3.8.

3.5.1 src/V550_ CRAMS

The two files (V550_CRAMS.h andV550_CRAMS.cpp) are the definition and the declaration of the driver
functions written for CAEN V550 C-RAMS module.

e V550_.CRAMS(int32_t ctrlHandle, uint32_t bAddress)
This is the constructor function for a V550 module. It takes as arguments the controller ID to
recognize it as its own Master and the base address of the module.

e CVErrorCodes ReadModuleFixedCode(uint16_t &moduleFixedCode)
This function reads the Fixed Code register of the V550 module and stores it in a 16bit word. Its
return type is CVErrorCodes which is an enumeration provided by CAEN VME library.

e CVErrorCodes ReadModuleManufacturerSpecs(uint16_t &moduleManufacturerSpecs)
It is used to store in a 16bit word the specifications of the manufacturer as they are imprinted in the
register of the module.

e CVErrorCodes ReadModuleVersionSerial(uint16_t &moduleVersionSerial)
It reads the version and serial number of the module and stores it in a 16bit word.

e CVErrorCodes WriteTestPatternRegister(bool whichFIFO, uintl6_t testPattern)
A write function to the module's Test Pattern Register. Each C-RAMS V550 module houses two
separate FIFOs named FIFO 0 and FIFO 1. We pulled a programming trick by defining the value
that points to a FIFO as a boolean type parameter. C++ evaluates every number except integer
zero to TRUE, so the programmer can easily separate the two FIFOs via an if-else statement.

v ! | demux
B Makefile
B Makefile.arch
n Mapping.bxt
presenter

presenter.cpp

¥ ! |inputFiles
B daq.conf
n Mapping.bxt
B runNumber.conf

v £ misc
® pyrforos.gif

b ! | outputFiles

¥ Psic
ConfigFile.cpp
ConfigFile.h
B interface.ui
Interface.cpp
Interface.h
Interface (nkarast's conflicted copy 2011-09-25).cpp
main.cpp
V462 _GateGenerator.cpp
V462_GateGenerator.h
V550_CRAMS.cpp
V550_CRAMS.h
V551_Sequencer.cpp
W551_Sequencer.h

B Makefile
NTUADAQ_ALITOP

7 NTUADAQ_ALITOP.pro

Figure 3.8: Snapshot of the file tree of the installation directory.

CVErrorCodes ReadWordCounterRegister(bool whichFIFO, int &words)
Reads the number of words that exist in each FIFO. This function is used during readout to define
the number of words that are to be read from each buffer.

CVErrorCodes ReadFIFOBLT (bool whichFIFO, uint32_t *data, int size, int *count)
Reads a FIFO in Block Transfer Mode and stores the block of data in a vector of unsigned 32bit
integers. The address that is to be read during a BLT read access increments automatically and its
upper limit is set via the size argument.

CVErrorCodes ClearModule()
A call for this function clears the module returning each of its registers to its default set up.

CVErrorCodes ReadNumberOfChannels(unsigned int &numOfChansADCO0, unsigned
int &numOfChansADC1)

A read access to Number of Channels register of the module. The values returned are the number
of channels divided by 32. So if both channels return that the number of channels is 3 it means that
the actual number of readout channels is 96, as it is in the case of the Gassiplex front-end chip.

CVErrorCodes WriteNumberOfChannels(unsigned int numOfChansADCO, unsigned int
numOfChansADC1)

Write the number of readout channels of the module. The number provided must be the number of
readout channels divided by 32.

CVErrorCodes ReadStatusRegister(bool &testMode, bool &memOwner, bool &DRDY-
Chan0, bool &DRDY Chanl, FIFOStatus &fifoOstatus, FIFOStatus &fifolstatus)

Reads the status register of the V550 module. FIFOStatus is an enumeration that the writer created
having the values of 0, 1, 2, 3, —1 for the cases that the current FIFO is empty, not empty, half-full,
full or if it is in an undefined state, accordingly.

CVErrorCodes WriteStatusRegister(bool testMode, bool memOwner)

Write access to the status register of the module. Only the first two bits can be accessed in write
mode.

CVErrorCodes WriteInterruptRegister(unsigned int statusId, unsigned int interruptLevel)
Writes the interrupt register of the module providing its own STATUS/ID code and the level of the
interrupt that it is able to raise.

CVErrorCodes ReadPedestalThreshold (bool whichFIFO, unsigned int channel, unsigned
int &pedestal, unsigned int &threshold)

Reads in sequential mode the buffer provided for storing the pedestal and threshold values of each
channel.

CVErrorCodes WritePedestalThreshold(bool whichFIFO, unsigned int channel, unsigned
int pedestal, unsigned int threshold)
Writes the pedestal and threshold values in the buffer of the module.

3.5.2 src/V551 Sequencer

The two files V651_Sequencer.h and V551_Sequencer.cpp are the driver routines for creating and control-
ling a CAEN V551 Sequencer module.

V551_Sequencer(int32_t ctrlHandle, uint32_t bAddress)
This is the constructor for a V551_Sequencer object. It takes as arguments the controller ID in order
to be its Master and the base address of the module on the crate.

CVErrorCodes ReadModuleFixedCode(uint16_t &moduleFixedCode)
Read access to the fixed code of the module which is stored to the second argument .

CVErrorCodes ReadModuleManufacturerSpecs(uint16_t &moduleManufacturerSpecs)
Reads the manufacturer specifications imprinted in the respective register of the module and stores
it in a 16bit long integer passed as argument.

CVErrorCodes ReadModuleVersionSerial(uint16_t &moduleVersionSerial)

Reads the version and the serial number of the module and stores both of them in a 16bit long integer
passed as argument.

CVErrorCodes WriteInterruptVectorRegister(unsigned int statusId)
Performs a VME write cycle, setting the STATUS/ID value of the interrupt register of the module.

CVErrorCodes WriteInterruptLevelRegister (unsigned int interruptLevel)
Sets the interrupt level that the module would generate.

CVErrorCodes ClearModule()
A call of this function clears the module.

CVErrorCodes SoftwareTrigger()
The V551 module is capable of generating by software request a trigger signal and this function gives
to the end user this capability. It is mostly used for testing and debugging purposes.

CVErrorCodes ReadStatusRegister(bool &internalDelay, bool &veto, bool &autoTrig-
ger, bool &dataReady, bool &busy, bool &activeSequence)

Reads the pattern of the status register of the module. Then assigns each bit of the pattern to its
corresponding attribute and stores them in the arguments passed during calling.

CVErrorCodes WriteStatusRegister(bool internalDelay, bool veto, bool autoTrigger)
Sets the values of the status register of the module to the ones passed through its arguments.

CVErrorCodes ReadTestRegister(bool &testMode, bool &clockLevel, bool &shiftIn-
Level, bool &testPulseLevel)

Reads the pattern of the test register of the module. Then assigns each bit of the pattern to its
corresponding attribute and stores them in the arguments passed during calling.

e CVErrorCodes WriteTestRegister(bool testMode, bool clockLevel, bool shiftInLevel,
bool testPulseLevel)
Sets the values of the test register of the module to the ones passed through its arguments.

e CVErrorCodes ReadNumberOfChannels(unsigned int &numberOfChannels)
Reads the number of channels assigned to the sequencer and stores the output to the variable passed
into the function.

e CVErrorCodes WriteNumberOfChannels (unsigned int numberOfChannels)
Writes the number of channels in the according register.

e CVErrorCodes ReadT1Register(unsigned int &T1)
Reads the T'1 register that corresponds to the delay between TRIGGER signal and HOLD control signal
and stores it to the parameter passed into the function.

e CVErrorCodes WriteT1Register(unsigned int T1)
Writes the T'1 parameter of the time delay between the TRIGGER and HOLD signals. 7’1 must be a
positive integer less than 255.

e CVErrorCodes ReadT2Register (unsigned int &T2)
Reads the T2 register that corresponds to the delay between HOLD signal and the sequence of CLOCK
control signals and stores it to the parameter passed into the function.

e CVErrorCodes WriteT2Register(unsigned int T2)
Writes the T2 parameter of the time delay between the HOLD and the sequence of CLOCK control
signals. T2 must be a positive integer between 10 and 511.

e CVErrorCodes ReadT3Register(unsigned int &T3)
Reads the T'3 register that corresponds to the width of the CLOCK pulses and stores it to the parameter
passed into the function.

e CVErrorCodes WriteT3Register(unsigned int T3)
Writes the T3 parameter of the width of the CLOCK pulses. 7'3 must be a positive integer between 1
and T4.

e CVErrorCodes ReadT4Register(unsigned int &T4)
Reads the T'4 register that corresponds to the period of the CLOCK control signals and stores it to the
parameter passed into the function.

e CVErrorCodes WriteT4Register(unsigned int T4)
Writes the T4 parameter of the time period of the CLOCK control signals. T4 must be a positive
integer between 1 and 511.

e CVErrorCodes ReadT5Register(unsigned int &T5)
Reads the T'5 register that corresponds to the time delay between CLOCK and CONVERT control signals
and stores it to the parameter passed into the function.

e CVErrorCodes WriteT5Register(unsigned int T5)

Writes the T'5 parameter of the time delay between CLOCK and CONVERT control signals. T'5 must be
a positive integer between 2 and 511.

3.5.3 src/V462 GateGenerator

The two files V462 _GateGenerator.h and V462 _GateGenerator.cpp are the driver routines for creating
and controlling a CAEN V462 Dual Gate Generator module.

e V462_GateGenerator(int32_t ctrlHandle, uint32_t bAddress)
This function is the constructor of the V462_GateGenerator class, creating an object requesting as
arguments the controller ID and the base address of the module on the VME crate.

e CVErrorCodes ReadModuleFixedCode(uint16_t &moduleFixedCode)
Reads the fixed code of the module and stores it to the 16bit-wide integer variable passed through
calling.

e CVErrorCodes ReadModuleManufacturerSpecs(uint16_t &moduleManufacturerSpecs)
Reads the specifications of the module as stored by the manufacturer in the respective register of the
module and stores it in the variable passed through calling.

e CVErrorCodes ReadModuleVersionSerial(uint16_t &moduleVersionSerial)
Reads the version and the serial number of the module as stored by the manufacturer in the respective
register of the module and stores them in a pattern form in the variable passed through calling.

e CVErrorCodes SetChannel0UpperDisplay(unsigned int upperDisplayChO0)
Sets the upper display of the first channel (channel 0) of a V462 Dual Gate Generator module to the
integer value passed through calling.

e CVErrorCodes SetChannelOLowerDisplay (unsigned int lowerDisplayCh0)
Sets the lower display of the first channel (channel 0) of a V462 Dual Gate Generator module to the
integer value passed through calling.

e CVErrorCodes SetChannellUpperDisplay(unsigned int upperDisplayCh1)
Sets the upper display of the second channel (channel 1) of a V462 Dual Gate Generator module to
the integer value passed through calling.

e CVErrorCodes SetChannellLowerDisplay (unsigned int lowerDisplayCh1)
Sets the lower display of the second channel (channel 1) of a V462 Dual Gate Generator module to
the integer value passed through calling.

e CVErrorCodes GenerateTestPulse()
A call to this function generates a test pulse that is most commonly used for test purposes.

3.5.4 src/ConfigFile

The two files ConfigFile.h and ConfigFile.cpp are the definition and declaration of the functions that read
the configuration file of the software and sets the predefined values to most of the variables needed by the
DAQ cycle. The class has as its member variables (see ConfigFile.h) all the variables configured in the
configuration file and two functions that create a configuration file parser object and read the file.

e ConfigFile(const char* filename= 0)
The constructor of the class. Creates a configuration file parser using as input source the filename
provided through calling.

e ~ ConfigFile()
The destructor of the class. Frees the memory of the parser created and its variables and closes the
input file.

e int loadConfiguration()
Creates a TEnv object (ROOT class) and reads the configuration file that was set through the con-
structor of the class passing the values from the file to the member variables of the class.

3.5.5 src/Interface

The two files Interface.h and Interface.cpp consist the core of the software. They implement the class
that creates and presents the graphical user interface and executes a DAQ cycle binding all the features of
the software under one robust interface. One can easily see that in the header file of the Interface class
there is also another class called QRootCanvas which creates an embedded ROOT canvas in the application
and handles the events to and from it. Therefore, as far as the QRootCanvas class is concerned, it contains
the following functions.

¢ QRootCanvas(QWidget *parent = 0)
This is the constructor of a QRootCanvas object. It takes as an argument a QWidget of the Qt
application, where the TCanvas of ROOT would be embedded. In particular, it gets the window id
of the QWidget passed through calling and registers it to the VirtualX, which is ROOT's generic
interface to the underlying, low level graphics system (X11, Win32, MacOS). Then a TCanvas object
is created having as parent the QWidget that was just registered as a child to VirtualX.

virtual QRootCanvas()
The destructor of the class. Deletes the objects created by the constructor and frees the respective
heap memory.

mouseMoveEvent(QMouseEvent *e)
Handles the mouse movement events used on the embedded TCanvas. It passes the Qt events con-
cerning the mouse movements to the ROOT event handler.

mousePressEvent(QMouseEvent *e)
Handles the mouse clicks used on the embedded TCanvas. It passes the Qt events concerning the
pressed state of the mouse buttons to the ROOT event handler.

mouseReleaseEvent(QMouseEvent *e)
Handles the mouse clicks used on the embedded TCanvas. It passes the Qt events concerning the
released state of the mouse buttons to the ROOT event handler.

resizeEvent(QResizeEvent *e)
Handles the resize events of the embedded TCanvas. Upon a raised event via Qt the ROOT event
handler resizes the canvas and then updates it.

paintEvent(QPaintEvent *e)
Handles the paint events of the embedded TCanvas. Upon a raised event via Qt the ROOT event
handler updates the canvas.

Then the main class description in those two files concern the Interface class. As it is a GUI class it
contains both conventional functions and slot function for the widget it contains. The list of the function
members of the class is the following.

explicit Interface(QWidget *parent = 0)

This is the constructor of the class. It builds and sets up the graphical interface, reading the con-
figuration file and loading its values to the widgets of the main window. Additionally, it sets the
TCanvas and its timer, initializes a variety of global variables to their respective values and connects
the various signals of the graphical widgets to their respective slot functions.

Interface()
The destructor of the class. It deletes the user interface in its whole freeing the memory allocated
for it.

void demux(uint32_t, int &debugChan, int &debugData)

Takes a 32bit wide unsigned integer that corresponds to the FIFO register pattern and decyphers the
channel number (ADC channel number) and its respective ADC value storing them in the two last
variables passed through calling.

void lockExpertMode()
Locks the sensitive configuration parameters disabling the respective modules. The modules are
enabled when the Unlock button is pressed.

void lockGateGeneratorConf()
Locks (disables) the graphical widgets that correspond to the Dual Gate Generator module, if the
checkbox is unchecked. The modules are enabled when the state of the checkbox is Qt: :Checked ().

void readConfFile()

Reads the configuration file creating an object of the ConfigFile class. The default configuration file
is called daq.conf and is under the inputFiles/ subfolder. This function is called when the UI sets
up, so all the widgets will be filled with the values from the default configuration file at first. In order
to change the configuration file, the user may edit the file or choose another path to the configuration
file.

void setUpConfigurationTab()
Fills the configuration widgets with the values read from the configuration file.

void setUpCRAMSLineEdits()
Sets dynamically the line edits for the base addresses of the C-RAMS modules.

std::string getTimeStamp()
Returns a string with the current date and time in the format DD/MM/YYYY—hh:mm:ss.

void setLogEntry(const char* entry)

Appends to the log viewer the timestamp given by the above funtion followed by the argument of
the current function.

int initialize()

Performs the initialization of the DAQ cycle. In detail, it commences the connection with the con-
troller (Master of the VME crate). Afterwards, if the connection was established successfully it opens
the input files (configuration and mapping), creates the output data file, initializes the rest of the
hardware. During these operations the log viewer is updated with information or error messages and
the flow of the program is either continued or stopped according to the existance and the severity
of the errors. The function is an integer type in the sense that a return integer of zero value signs a
successful operation where a negative value signs an occured error. This notation is used throughout
the software.

int initializeHardware()

Initializes the hardware (C-RAMS, Sequencer and Gate Generator) according to the values and
options selected via the configuration file or the graphical interface. The function is called by the
initialize() function and during its execution a variety of validity checks on either the connection
or the successful initialization of the registers is performed.

int initializeOutputFiles()
Opens the output file in binary mode. If the output file cannot be opened an error is flagged and the
run stops.

int initializeInputFiles(const char* mapFilename)

Initializes the input (mapping) file. Mapping file is a two-column ASCI file in which the first column
represents the ADC channel number and the second the respective strip number. This function
creates a map structure between ADC channel values and the strip numbers.

void startDAQCycle()
Starts a DAQ cycle waiting for a trigger to arrive. If the trigger arrive before the predeterminded
timeout interval it starts the readout cycle reading the components of the FIFOs of the C-RAMS.

int waitForTrigger(command &curCommand)

Masks a VME interrupt line and sets a timer on it. If an interrupt signal is raised before the timeout
of the interval then the variable passed through calling changes into TriggerArrived and the readout
cycle starts. Otherwise the variable is changed to Timeout and the cycle of masking a line and waiting
starts again.

int readout()

Reads dynamically the FIFOs of all the C-RAMS on the setup. The function uses a BLT mode for each
FIFO and stores their data in a temporary vector that is written into the output file in hexadecimal
form. Furthermore, this function fills the histograms in the Display tab with the hitmaps of selected
events. Finally, if selected by the user, this function also produces the ROOT files of total hitmaps.

int finalize()
Finalizes the DAQ cycle by stopping the loop, writing and closing the output files, incrementing run
number index and refreshing the GUI with the new values.

int generateHeader()
Writes the header of the output file. The header consists of six 4-byte words:

— Header begin, a preset unique bit sequence that marks the start of the header.
— Run number

— Date the run started in integer form (e.g. if the date was 12th of December 2011 the number
would be 12122011 in decimal base).

— Time the run started in integer form (e.g. if the time was 12:13:14 the number would be 121314
in decimal base).

— Type of run. This is an integer identifier that specifies if the run is Physics run, Pedestal run
or Test Run.

— Header end, a preset unique bit sequence that marks the end of the header.

int generateEventDataTop()
Writes the top part of the Event Data block of the output file. The event data blocks in a file should
be numerically equal to the total number of events, meaning that there is one event data block per
event. The top part of the Event Data block consists of three 4-byte words:

— Event begin, a preset unique bit sequence that marks the start of the event data block.

— Event number, an integer that identifies the event in the run.

— Start time of the event in the usual integer form as described above.
The block of Event Data consists of the top part and then for each FIFO a number identifying the
C-RAMS module, one identifying the FTFO in the C-RAMS, one stating the number of 32bit words

the FIFO consists of and finally the vector of multiplexed words in the fifo. Then the Event Data
block is finalized by the Event Data end marker.

int generateEventDataBot()
Writes the final part of the Event Data block in the output file. This part consists of the Event Data
end marker, a preset unique bit sequence that marks the end of the Event Data block.

int generateTrailer()
Writes the trailer block in the output file. This block consists of five 4-byte words:

— Trailer begin, a preset unique bit sequence that marks the start of the trailer block.

Number of event in the run.

— End date of the run in the usual integer form.
— End time of the run in the usual integer form.

— Trailer end, a preset unique bit sequence that marks the end of the trailer block.

void handleRunNumber()

A utility routine that reads the current run number and displays it on the GUI of the software and
when each run is concluded the run number is increased. The need of this function is apparent if
one wonder how one could keep track of a running number during the whole time that the software
is installed on the system.

void handleOutputFilename()

Another utility function that generates the complete name of the output file. As mentioned above,
the filename consists of the constant string run, the number of the run and a character identifier
discriminating between physics, pedestal and test runs.

void getReadoutVectorValues(uint32_t inputVector]])

Gets the values of the readout vector for the current event and for each FIFO. This function is used
in order to pass the information of the current event to the display functions.

void HistoFill()

Creates and fills the histograms displayed in the Display tab with the information passed via ge-
tReadoutVectorValues() function.

void displayCycle(std::vector<uint32_t> vec, int whichFifo)

Runs a parallel thread (QtConcurrent::Run(), asynchronous thread) for the display cycle getting as
input the vector of the data for the current event and an identifier for the current FIFO.

void startDisplayThread(std::vector<uint32_t> vec, int whichFifo)
Spawns the parallel thread (QtConcurrent::Run(), asynchronous thread) for the display cycle.

e SLOT: void unlockExpertMode()
Public slot that responds to the signal that the Unlock push button emits. Enables the disabled
widgets on the configuration tab and changes the name of the button from Unlock to Lock, so that
if the button is pressed again the widgets would restore their previous state.

e SLOT: void unlockGateGeneratorConf(int state)
Public slot that responds to the signal that the Is there a Gate Generator checkbox emits. If the
state of the checkbox is Qt::Checked() then the widgets that correnspond to the Gate Generator
module become unlocked and the driver routines for the module are loaded.

e SLOT: void resetDefaultConfig()
Public slot that responds to the signal that the Reset Default push button emits. If the button is
pressed the GUI reads again the default configuration file and restores the values of the widgets.

e SLOT: void enableMaxNumberEvents(int state)
Public slot that responds to the signal that the Maximum Number of Events checkbox emits. If the
state of the checkbox is Qt::Checked() then the spinbox next to it is enabled and the future run
will conclude when the predefined number of events is reached.

e SLOT: void applyConfiguration()
Public slot that responds to the signal that the Apply push button emits. If the push button is
pressed the values set to the widgets of the configuration tab are stored to the variables of the DAQ
cycle. This step is required in order to initialize the modules and start a run.

e SLOT: void loadConfifuration()
A slot function that is called throughout various cases during the software GUI setup. This is actually
the function that fills the widgets of the configuration tab.

e SLOT: void changeNumberOfCrams(int newVal)
Public slot that responds to the signal that the Number of C-RAMS spinbox emits. If the value of
the spinbox is changed into a new value the equal number of C-RAMS addresses widgets are only
enabled, protecting the validity of usage of pointers towards object of the classes of the modules.

e SLOT: void startDAQThread()
Public slot that responds to the signal that the Start Cycle push button emits. The slot spawns a
parallel asynchronous thread that handles the DAQ cycle in such a way that the GUI would not freeze
when the data acquisition algorithm is in progress. Furthermore, this slot disables the Initialize
and enables the Stop Cycle push button.

e SLOT: void initializeDAQ()
Public slot that responds to the signal that the Initialize push button emits. The slot initializes the
connection of the system with the VMEbus crate, the modules of the crate and the input and output
files. In addition, it enables the Cancel Init and Start Cycle push buttons. If the initialization is
successful the checkbox next to the push buton changes its state to Qt: :Checked().

e SLOT: void cancellnitialization()
Public slot that responds to the signal that the Cancel Init push button emits. The slot cancels
the initialization of the modules and output files by deleting the pointers assigned to the modules
and the newly created output data files.

e SLOT: void stopDAQCycle()

3.5.6 src/main.cpp

This is the main function of the software. It creates both a TApplication for the event handler of ROOT
and a QApplication for the one of Qt's. It finally creates an object of the Interface class and presents it
to the end user.

3.5.7 inputFiles/daq.conf

This is the default configuration file that holds the values needed by the DAQ cycle algorithm. The values
are set in an easy to read form for the end user separating a key from its coresponding value with the use
of a colon. This file is recommended to be edited only by adapt users and only if the default configuration
is changed permanently to another.

3.5.8 inputFiles/runNumber.conf

This file holds the run number for the current system. By default the first run is identified as run 1. If for
any reason, one desires to change the run number, one should change this number from the GUI and not
from the specific file. A manual change to the file does not produce any logical errors for the software as it
is set for the archiving purposes of each end-user.

3.5.9 inputFiles/Mapping.txt

This file holds a mapping table between strip number and ADC channel number in the ADC module.
The channels in the FIFO of the C-RAMS do not correspond one-to-one the readout channels (strip) and
therefore a transformation between them should be performed.

3.5.10 demux/

This folder contains a short script that reads the output file in a serial way and plots some basic histograms
containing the ADC values per strip with or without a user-set cut, as well as some strip efficiency plots.

3.5.11 outputFiles/

This is the folder that the produced output files of raw data are saved.

3.6 Typical Run Process

The typical run procedure to acquire the raw data of a run should be described in short in this section.
First of all, the end-user should start the software by executing the command

./NTUADAQ

Then the configuration of the run should be processed. Check the validity of the default configuration,
mainly the base addresses of the modules, the type of run and the way that the run should end (either by
reaching a maximum number of events or by pressing the Stop Cycle push button.

If the configuration is valid, the user should press the Apply button to store the values of the widgets
to the variables of the DAQ cycle. Next in line is the connection with the modules by pressing the
Initialize button. When pressed the connection with the controller module (master) of the VMEbus
crate is established, the modules are initialized and the output files are opened. In each and every of the
afforementioned steps validation checks are performed. If the initialization is successful the checkbox next
to the push button should change state into Qt::Checked and the two buttons below should be enabled.
The first one if pressed would cancel the current initialization and load the configuration without making
any changes whatsoever. The second would start the DAQ cycle. When the cycle is running the VMEbus
waits for an interrupt generated by the C-RAMS signaling that there are data converted and ready to be
read out. When the interrupt is assessed the readout procedure begins, writing an event data block for each
FIFO of each C-RAMS module in the output raw data file. The run should end either when the maximum
number of events is reached or when the Stop Cycle button is pressed. Whichever the case might be,
when the run ends the output file is closed, the modules are reset back to their default settings and the
configuration tab updates itself to the new configuration (as the run number changes) being ready for a
new run.

CHAPTER 4

Results

In order to test the functionality and validate the smoothness of the data flow of the software, a real
conditions stress test should have taken place. In this consensus, the software was tested in the test beam
of RD-51 set up to read out a sole station (two MicroMeGasS detectors) of the whole MicroMeGaS telescope.

4.1 The Set-Up

The double MicroMeGasS station was accommondated on the solid frame of GEM Tracker and used a shared
TRIGGER signal with it. The station was placed down-beam, near the end of the solid table. After further
analysis, it was proved that the station was a bit off of the center of the beam, so the wanted beam profile
would be shifted in a direction off center.

In detail, the setup was using a VMEbus crate as was described in a previous chapter, accomondating
a CAEN V2718 Controller Unit as the Master of the VMEbus crate, a CAEN V551B Sequencer and a
CAEN C-RAMS V550 module. The Master module of the crate was connected to a pc via an optical link.
As far as the trigger signal is concerned, for the experiment at hand, it was taken externally as the whole
telescope was using a shared trigger with two scintillators at the beginning of the set-up and two scintillators
at the end, while using coincidence logic. A NIM crate with a Dual Timer used as test trigger signal, a
Fan-In-Fan-Out unit and the custom made LAPP module translating the control signals of the sequencer
through its flat cable to LEMO cables that are the inputs of the Gassiplex front-end chip, was also used.
Finally, a main frame was used housing power supply units for powering the MicroMeGaS station and the
GEM tracker was used.

During the test beam two sets of Gassiplex front-end chips were tested. One coming from LAPP, being
the latest series of this chip and one coming from CEA Saclay that belonged in the previous series. A table
containing the runs taken at the test beam area is presented in table 3.1.

The goal of the test beam was to reproduce using the new software the beam profile. Using the double
MicroMeGaS, one can reproduce the profile of the oncoming beam on both axis, X and Y, since the strips
on the two chambers are rotated 90° with respect to eachother. Since the goal of the software is not to
produce a full analysis ROOT file but merely the raw data of the run taken, the only plots that are going to
be presented are hitmaps of the two chambers constructed by a script written in the software, and actually
is a feature of it (see <<Save sample hitmap to ROOT file?>> checkbox). For that matter, two runs where
chosen to be presented: one taken with a pion beam and one with a muon beam. The difference between
those two is the spread of the beam in the vertical axis. While a pion beam is well focused on both axes,

7

Figure 4.1: A long shoot of the whole set up consisting of the movable table, the solid frame, the
GEM tracker and at the end (far right) the double MicroMeGaS station.

Figure 4.2: A closer shoot of the part of the set up where the double MicroMeGaS was placed.
In picture the scintillators formation for the trigger is also apparent.

!
|

W
*‘\ ,Aﬂ

Figure 4.3: The complete rack of the Test Beam setup. The trigger signal is external so no units
are used for it.

Run Number | Type | Events | Beam | Chip
5000 Physics | 20000 | Muons | LAPP
5001 Physics | 50000 Pions | LAPP
5002 Physics | 100000 | Muons | LAPP
6001 Test 1000 — Saclay
6002 Test 1000 — Saclay
6003 Test 1000 — Saclay
6004 Test 1000 — Saclay
6005 Test 1000 — LAPP
8000 Physics | 10000 | Muons | Saclay
8001 Test 1000 Muons | Saclay
8002 Physics | 10000 | Muons | Saclay
8200 Physics | 50000 | Muons | Saclay
8201 Physics | 20000 | Muons | Saclay
9003 Physics | 50000 | Muons | Saclay
9004 Physics | 20000 | Muons | Saclay
9005 Physics | 50000 | Muons | Saclay
9006 Physics | 20000 Pions | Saclay
9010 Physics | 50000 Pions | Saclay
9011 Physics | 20000 Pions | Saclay
9012 Physics | 100000 | Muons | Saclay

Table 4.1: Runs taken during test beam.

NetBeans IDE 3.5 - H4 Delay Wire Chambers Profile
status Files Tune Detectors Access EA Wiew Window ¥ E

[aligrapmreel| zsnarei| kewn= ggin s oa|izrare

Hd

Beam: H4 / HaA 03.10.2011 1510553
File: H4A 102 Mamentum: +150 GeV/fc Commen : P+PI-+HI-FM,FOCUIS CB(OMR) tgem-Ill narro w5000

HORIZONTAL

KDWC 022 450
4.5€02 DYeon)
i

4.0E02
3.5E02

3.0E02

25602+

20802+

15602+

10802+

S0E01 I ,I I

00E 7 T T 7
-40 -20 0 20 a0

Counts:5.090E03; Spills:L. Mean: 3.07 +/- 13.38 [mm] yol

VERTICAL
B.0E0L HDVCizasL
(xD¥do2)

7.0E01 B t =

6.0E01

5.0E01

40E01

30E01

20801

1.0E01

0.0E T ?
-40 -20 0 20 an

Counts:4.981E03; Spills:1. Mean: 0.76 +/- 27.06 [mm] yol

Waiting End of Extraction...

R
g H“Tﬂ 4 feresh | O Accumulate | [Counts
o

|A° H4 Delay tifire Chambers Profile < |

Figure 4.4: Beam profile for muons run as provided by SPS.

a muon beam is focused on the horizontal axis, but widely spread on the vertical one. A data taking event
rate maxing at around 7000 events per spill was recorded.

4.2 Muon Beam: run9005P.dat

As the filename reveals by itself the run with run number 9005, a physics run, is the first to be presented.
This is a muon beam run and in figure 3.4 is the beam profile as provided by SPS. The voltages on the
chamber were 560V and 820V for the drift and mesh accordingly. The gas mixture used was Ar : CO2—(85 :
15).

A script was created that takes as input the raw data file of the run and creates a histogram, on which
the horizontal axis is the strip number, and fills it according to how many times each strip fired. In addition,
in order to clear up some background a threshold was manually implemented. The result is presented in
figure 3.5. One can easily see that there are some noisy strips (e.g. strip 16, 28, 32 etc) which give signal
almost in each event as well as some dead strips that generate no signal at all (or the signal is below th e
threshold, e.g. strip 8, 42, 95 etc.). In figure 3.6 is presented a closer look on the area of the beam profile,
though only for X axis, as the profile on the vertical axis is widely spread and there is no need for closer
look

Taken into consideration that the alignment of the chamber was a bit off center, the two beam profiles
match, however the precision would be even more apparent in the pion beam results. In addition, if one
fills the plot with a unit block for each strip that fires without a threshold, one may acquire a way to see
graphically the efficiency of the chamber at these voltages. In other words, if there is no threshold and

Chamber X (Weight/Cut)

x10° Chamber X (Weight/Cut)
£ F Entries 196750
1000 Mean 49.83
RMS 25.07

800

| 0 [T
0 10 20 30 40 50 60 70 80 90
Strip Number

Chamber Y (Weight/NoCut)
10* Chamber Y (WeighUNoGul)
Entries 1878961
Mean 45.32
RMS 29.53

X

Hits

2200

2000

1800
1600
1400
1200
1000

0 10 20 30 40 50 60 70 80 90
Strip Number

Figure 4.5: Beam profile for muons run as taken by the software.

Chamber X (Weight/Cut)

x10° Chamber X (Weight/Cut)

120 — Entries 196750

C Mean 30.61

C RMS 2.344
100 —
80—
60 —
40—
20—

Figure 4.6: Closer look on beam profile on X axis for muons run as taken by the software.

Chamber X (NoWeight/NoCut) Chamber X (NoWeightNoCul)
Entries 1786601

Mean 48.7
RMS 27.28

20000

18000
16000
14000
12000
10000
8000
6000
4000

2000

30 40 50 60 80 90
Strip Number

Chamber Y (NoWeight/NoCut)

Chamber Y (NoWeight/NoCut)
Entries 1878961
Mean 47.7
18000 RMS 27.53

20000 |

16000

14000

12000

10000

8000

6000

4000

2000

0 80 90
Strip Number

Figure 4.7: Efficiency plot for the chambers.

taken into consideration that all channels (strips) have a pedestal value, using a 100% efficient chip for a
10000 events run one should expect a plot with a flat distribution at the point of 10000 hits. Creating this
plot for the current run one acquires the plots in the figure 3.7.

4.3 Pion Beam: run9012P.dat

Run 9012 is a physics run taken with a pion beam. The pion beam was well focused on both axes having a
size of 4mm on the horizontal axis and 6mm on the vertical axis. This information was provided by SPS
and can be seen in figure 3.8. The voltages and the gas mixture were the same as the muon beam test.

The result taken by software can be seen in figure 3.9. By taking the strip number difference of the
start and the end of the bumps and multiplying by the strip pitch (250um), one can find exactly the size
of the beam spread. Furthermore, in figure 3.10 it is presented a closer look on the strips consisting the
beam profile on both axes.

In addition the efficiency plots for the pion beam run are presented in figure 3.11. By efficiency here
one means the successful strip fire rate. Since in this plot one would expect for a 100% efficient front-end
chip to raise for each strip to the height of the total events, meaning that all the readout channels function
well. However, one can easily see that some strips are inefficent.

NetBeans IDE 3.5 - H4 Delay Wire Chambers Profile

is] @renavees (zinsrvacewns[ae alizse pulsers

Beam: H4 / HaA 03.10.2011 14:51:08
File: H4A.102 Momentum: +150 Gev/c Comment: P+PI-+HI-FMFOCUS CBIOMR) tgem-Ill narrow 5000

Figure 4.8: Beam profile for pions run as provided by SPS.

Hits

Hits

100

80

60

40

20

100

80

60

40

20

Chamber X (NO.W)

x10° Chamber X (NO.W)
[Entries 1091086
L Mean 49.95
L RMS 25.23
0 10 20 30 40 50 60 70 80 90
Strip Number
Chamber Y (NO.W)

x10* Chamber Y (NO.W
L Entries 1114774
L Mean 40.94
L RMS 27.13

30

40 50 60

70

80

90
Strip Number

Figure 4.9: Beam profile for pions run as taken by the software.

Chamber X (Weight/Cut)

X
=)
T

Chamber X (Weight/Cut)
Entries 1091086
Mean 30.26
RMS 2.538

900

800

700

600

500

400

300

200

100

28 30 32

Chamber X (Weight/Cut)

%
o
T

Chamber X (Weight/Cut)
Entries 1091086
Mean 30.26
RMS 2.538

900

800

700

600

500

400

300

200

100

Figure 4.10: Closer look on the beam profile for pions run as taken by the software.

Hits

Hits

100

80

60

40

20

Chamber X (NWNC)
[Chamber X (NWNG] |

Entries 8727900
Mean 49.06
RMS 27.36

30 40 50 60 80 90
Strip Number

Chamber Y (NWNC)
[Chamber Y (NWNG]_|

Entries 9280061
Mean 47.83
RMS 271.77

80

90
Strip Number

Figure 4.11: Efficiency plots for the pion beam test.

4.4 Conclusion

As a conclusion to this thesis, one should recapitulate the main features and advancements of the software
that was developed in relation to its predecessor.

First of all, the core of the software handling the DAQ cycle is written in pure C++ exploiting its virtues
concerning the memory handling and thread capabilities instead of a control language such as LabView,
PVSS, etc. This provides the total system to handle data flow at a speed closer to the one that VME
is capable of, alleviate the pain of the constant polling of control languages. During the test beam the
total system reached a data rate of 7T00H z which is already 10 times higher than its predecessor. However,
through meticulous editing of the code the total rate can easily exceed the barrier of 1kH z.

In addition, the new software is easy to be used by the end-user. The graphical interface includes all
the information needed by a shifter and are essential for the expert to proceed to a successful run. It can
be easily customized to the needs of each researcher via the interface, without having to swim to an endless
sea of code or edit complex files endangering the final output. Finally, as an extra touch of facilitation, the
user is able to open a short, categorized documentation by just pressing a button on the interface of the
software, even when the DAQ cycle is active.

And last but not least, it just works. As prooved by the tests in the area, the new software was able to
reconstruct the beam profile as provided by SPS. Also, the log viewer provides the expert user with some
hints in case of failure or data corruption in order to minimize any possible data loss. Moreover, the output
file is reduced in its size by almost an order of magnitude in relation to the previous software making easier
the process of saving multiple run files of raw data even in smaller hard disks.

Bibliography

(1]
2]
3l
(4]
]
(6]

(7]
(8]
191

(10]
(1]

[12]

American National Standard for VMEG.
Technical Information Manual Mod. V2718/VX2718/VN2738 VME-PCI Optical Link Bridge.
Technical Information Manual Mod. V462 Dual Gate Generator.
Technical Information Manual Mod. V550/V550B 2 Channel C-RAMS.
Technical Information Manual Mod. V551 C-RAMS Sequencer.
IotooeXidec dnwc:
e http://public.web.cern.ch/public/
https://twiki.cern.ch/twiki/bin/view/atlas/webhome

https://twiki.cern.ch/twiki/bin/view/atlas//muonmicromegas

http://rd51-public.web.cern.ch/rd51-public/

http://mpgd.web.cern.ch/mpgd/

http://www.caen.it

Samuel A Andriamonje, S Aune, H Brauninger, and T Papaevangelou. A new micromegas line for the
cast experiment. Nucl. Instrum. Methods Phys. Res., A, 581(1-2):217--220, 2007.

Elena Aprile, Aleksey E Bolotnikov, Alexander I Bolozdynya, and Tadayoshi Doke. Noble Gas Detec-
tors. Wiley, Weinheim, 2006.

G. Charpak, J. Derré, Y. Giomataris, and Ph. Rebourgeard. Micromegas, a multipurpose gaseous
detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 478(1-2):26 -- 36, 2002.

R C Fernow. Introduction to experimental particle physics. Cambridge Univ. Press, Cambridge, 1986.

P Fonte, P Martinengo, E Nappi, R Oliveira, V Peskov, F Pietropaolo, and P Picchi. Advances
in the development of micropattern gaseous detectors with resistive electrodes. Technical Report
arXiv:1005.1477, May 2010.

I. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, G. Fanourakis, E. Ferrer,
A. Giganon, Ph. Rebourgeard, and P. Salin. Micromegas in a bulk. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
560(2):405 - 408, 2006.

89

[13] Y. Giomataris, Ph. Rebourgeard, J. P. Robert, and G. Charpak. Micromegas: a high-granularity
position-sensitive gaseous detector for high particle-flux environments. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
376(1):29 -- 35, 1996.

[14] Claus Grupen, Armin Bohrer, and Ludek Smolik. Particle detectors. Cambridge monographs on
particle physics, nuclear physics, and cosmology. Cambridge Univ. Press, Cambridge, 1996.

[15] Mark Summerfield Jasmin Blanchette. C++ GUI Programming with Qt4; 2nd edition. Prentice Hall,
Upper Saddle River, USA, 2008.

[16] Scott J. Kleper Nicholas A. Solter. Professional C++. Wiley Publishing, Inc, USA, 2005.

[17] R Oliveira, V Peskov, F Pietropaolo, and P Picchi. First tests of gaseous detectors made of a resistive
mesh. Technical Report arXiv:1002.1415, Feb 2010.

[18] Herbert Schildt. C++ The Complete Reference; 2nd ed. McGraw-Hill, USA, 2003.
[19] Mark Summerfield. Advanced Qt Programming. Addison-Wesley, Upper Saddle River, USA, 2010.

[20] Nicholas Tsoulfanidis. Measurement and detection of radiation; 2nd ed. Taylor and Francis, USA,
1995.

	Εισαγωγή
	Ο Ανιχνευτής MicroMeGaS
	Το Τηλεσκόπιο MicroMeGaS του RD51
	Πειραματική Διάταξη
	VMEbus Crate
	CAEN V2718 VME-PCI Optical Link Bridge
	CAEN V551B C-RAMS Sequencer
	CAEN V550 C-RAMS
	CAEN V462 Dual Gate Generator

	Λογισμικό DAQ
	Γραφικό Περιβάλλον
	Τυπική Διαδικασία Λήψης Δεδομένων

	The Hardware
	Introduction
	The VME Crate
	The Crate
	CAEN V2718 VME-PCI Optical Link Bridge
	CAEN V551B C-RAMS Sequencer
	CAEN V550 C-RAMS
	CAEN V462 Dual Gate Generator

	 The NIM Crate
	Quad Discriminator LeCroy 821CS
	Coincidence Unit LeCroy 465
	LeCroy Fan-In-Fan-Out Logic 429A

	The Front-End Chip
	The MicroMeGAS Detector
	The RD51 MicroMeGAS Telescope

	Trigger Logic

	The Software
	Introduction
	CAENVME Library
	CAENVMElib.h
	CAENVMEoslib.h
	CAENVMEtypes.h

	Trolltech's Qt
	Graphical User Interface
	Display Tab
	Configuration Tab
	Log Viewer
	About
	Cycle Buttons

	The Source Code
	src/V550_CRAMS
	src/V551_Sequencer
	src/V462_GateGenerator
	src/ConfigFile
	src/Interface
	src/main.cpp
	inputFiles/daq.conf
	inputFiles/runNumber.conf
	inputFiles/Mapping.txt
	demux/
	outputFiles/

	Typical Run Process

	Results
	The Set-Up
	Muon Beam: run9005P.dat
	Pion Beam: run9012P.dat
	Conclusion

