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ITepiAndm

Avth) n Simhwuati epyaoio mpoypatedetow AVoeE peAovev omev otn T'evixry Oewplo tne
Yyeuxdétnrog tou Einstein xou otnv tpononowmuévn f(R) dewpla Baplnrac. Xto mpdto
XEQAALO YIVETAL Uit ELCAYWYY) OTNY dpyn TNG EALYLOTNG Opdong xat e&dyovTon OLdpopes Te-
dlorée e€lowoelg. 2To BeUTEPO XEPAAALO, cLlNTOLVTAL SLAPOREEC AUCELC UEAAVODY OOV GTNV
(3 + 1)-dudortatn Teviny Byetxdtnra. e autée oupmepthopfdvovior pehavés omée ouleuy-
uéveg pe Podunmtd media, o omola etvan oulevypéva pe TN PopbTnTo Ye Bidpopoug TeOToUC. MTT
oLVEYELL, 6TO TPiTO XePEAao Tapbpoles Aooelg oe (2 + 1)-Bidotatn Nevind Byetixdtnra ouln-
To0VTOL. 210 TETOPTO XePAao Yiveton wa etlcaywyh oty f(R) dewpla xa oe Rdn yvowotég
Ao HEAAVOY OTKVY Tou €youv culntniel péypel oTiyurc oty undpyovoa BiBAoypapia. Ta
Tplo TeheuTalar xe@dAona amoTEAOLY Xavoavy) BoUAELd Tou yedgpovtog. Méyel 0 oTiyur| mou
yedpovtan autés ot yeopuée (06/06,/2021), n douleld Tou TEUTTOL Xeuhaiou Eyel dnuooteuTel
[40], Tou éxtou Beloxeton und aZlohdynon xo Tov eBdouou Peioxeton ota TeEheuTaio o T TNS
mpodnuooieuone. Xe avtée Tic Tpelg douletés Yewpolue f(R) Bapbtnta oe (3 + 1) xou (2+1)
oo tdoelc ouleuyuévn ue BodumTd medla xon oulntdue Tic AOOELC TOU TEOXUTTOUY.
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Preface

In this thesis, i derive several black hole solutions and present novel results regarding the
case of f(R) gravity coupled to scalar fields. For calculations involving the princple of
least action, there are several standard calculations in the first chapter and for non-trivial
calculations the reader should check the f(R) Gravity chapter. Calculations involing the
computation of the Ricci Tensor and the Christoffels are also presented in chapter f(R)
Gravity.

During the preparation and writing of this thesis, I found very useful the folowing text-
books:

e "Gravitation" by Misner, Thorne and Wheeler [2]
e "The Variational Principle of Mechanics", by Lanczos [3]

e "Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods
and Perturbation Theory", by Bender and Orszag [4]

Many of the calculations presented in the thesis have been done with the help of Wolfram
Mathematica [1].
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Chapter 1

Classical Field Theory/General
Relativity

1.1 The Principle of Least Action/Euler-Lagrange Equations

To derive the Euler-Lagrange equations, consider a Lagrangian: £ — L(q,q,t), where ¢ is
a generalized coordinate and the dot represents derivative with respect to time. The action
reads:

— [ atL(g.d,0
The principle of least action states that 6.5 = 0. So we have:
oL d oL doL
5 [ dtc(a,qt)=0= fdt(—5q+a—5q> = dt( 0+ (500~ 8q(5q)
oL doL M doL

[ (500 5ige%0) + fdt(—éq Gigte) =0 =
oL doL
T (1.1)
dq dtdq

,which is the Euler-Lagrange equation for the generalized coordinate q.

1.1.1 Higher derivative Lagrangian

If the Lagrangian depends for example on the second derivative of the generalized coordinate
q we have:

L= L(g:4,4)

The action will be:

5= / dtL(q, 6, i)

9



Chapter 1. Classical Field Theory/General Relativity 10

We vary with respect to the generalized coordinate ¢:

scaii) - Pogs PLsgy Lsg_ oo 4 (05Y _ 2 (05)
(q,q,q—aqu 0¢00+ 5500 = 00+ Lm0 — | =] dq

d (oL dfoc)  oc  dfoc\ . dfor\ . oL
—i—df 8(.].(1 T n 87(] Q—aqu—% 87q q_ﬂ 87q Q—aqu

d (0L 5 d(d{[0oL 5 d28£6

at\9q )% a\artag ) %) T az o’
s (0L _d (oL a2 oL 0 12)
Nog at\aqg) 1 a2ag) = '

In the above calculation we discarded total derivative terms keeping in mind that the bound-
ary conditions are: d¢;, = 0gin, = 6qy = dqgy = 0. In order for the above variation to be zero
for arbitary dq we obtain the Fuler Lagrange equations:

(1.3)

iy ot I
9q ) T a2 oq

oL d (oL d? oc
dq dt

1.2 The Scalar Field Lagrangian/Klein-Gordon Equation

A scalar field is a spin zero particle, a particle that is coverned by the Klein-Gordon equation.
To derive the Klein-Gordon equation one begins from the following action:

S = / d*z/—g <—;v“¢v#¢> (1.4)

1
, so the scalar field Lagrangian is: £ = —§V“¢Vu¢. In the acton above there is only one

term, a kinetic term for the scalar field, no potential term or coupling term to a gravitational
curvature invariant. The action with a potential term will take the form:

1
5= [ dtav=g|-39"6%,06 - V(@) (15)

The least action principle states that: S = 0. I will derive the Equations of Motion by
"brute force" variation, one can of course use Euler Lagrange equations. Note that we are
talking about a curved spacetime and this means V¢ is a dual vector so V¥V ¢ is not just
0"0,¢ but we will have corrections from the Christoffel symbols.



11 1.3. The E/M Lagrangian/Maxwell’s Equations

- e S50,V ] — 0V (6)] =

— [ el (V,00)V6 + V,69,60] - —¢5¢} 0

- [ dte a2 (9,507 m}—wmﬂ—o
— f d*z/—g[(VY6¢)V, 0] — f d%ﬁ 75¢> 0
—fd%\ﬁw[(éqs V. 9] +fd4xf5¢vvv,,¢ fd%\ﬁ—agb—o

f Az /=g8¢[g"'V V] — f d%:f —5¢—0

av
J atev=gs0lg 9,90 - 221 =0
In order for this to be zero for arbitary scalar field configurations we have:
dv(¢)
I R S
VIV .0 i

1.3 The E/M Lagrangian/Maxwell’s Equations

(1.6)

To derive Maxwell’s equations we have first to construct the appropriate Lagrangian. So,

the Lagrangian is:

1
£: —ZFM F/J,I/

(1.7)

where, F,, = 0,A, — 0, A, is the the field strength (the Faraday tensor) and A, is a U(1)

gauge field (the electromagnetic four-potential). The action will be:

1
S =— / d%Z/—gFWFW

(1.8)

Using the Principle of Least Action and imposing Dirichlet boundary conditions (§A” = 0

at the boundary) we have:

58S =0= —ifd%\/fga Fyy F1 ——ffd‘*mf [0(Fuw) ™ + 0(F*) Fuy)] =

[ e g F 4 3 )] =
_zllfd‘Lx\/jgb(Fo"B)Faﬂ +0(FM)Fu)] =
_ifd‘l:c\/ng [6(FH)Fp )| = _;fd‘l;g\/jg[(V"(SA” — VY6AM)F] =
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- f dizy/=g[(~V"6 Ak — V6 AN E] = [ diey=g[(V*6AME,,] =
— [ dtay=g[(64")vF] + [ dtey=gv"[(0AM)F] =0

In order the above expression to be zero for arbitary vector field configurations at the
boundary the second term vanishes. So we get:

VYF,, =0 (1.9)

1.4 The Einstein-Hilbert Action/Einstein’s Equations

The Einstein-Hilbert action is the action from which Einstein’s equations can be derived(ignoring
boundary terms). The action reads:

S = /d4x\/ng (1.10)

5S:O:>5fd4m\/—gR:fd4x5(\/— R) fd4 RO(\/=g) + V/—g0R) =
[ di2(R6(y=3) + v=909" R + /=59"6Ryu) = 0

1
The variation of the determinant of the metric is: §/—g = —5\/—ggu,,5g“”. So the above

equation becomes:

[ (R0 + V=580 B+ /=59 5F) = (1.11)

It seems that the first two terms will yield Einstein’s equations. So, somehow, the last term
vanishes. Well, the last term turns out to be a total derivative. The Ricci tensor is defined
as:

Ry = 0,15, — 9,10, + rgﬁrfw - rgﬁrgu (1.12)

The variation of the Ricci tensor is: 6R,, = 8a(51“f}u — 81,(51“3“ + 5Fgﬂfg,, + Fgﬁéfﬁy -
0T8T 5y — T250T0, = Va(0T%,) — V, (0TS,
o Va(dT,) = 8,018, + T2, 015, — %679, — 5,074,

. Vy(él“gu) = 0,0y, + 17,015, — 0,00, — T'g, 0L,

We can now write:

/ dr\/—gg" SR,y = / d*zy/=gg" [Va(6TS,) — Vi (T2 ,)] (1.13)
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[ dizy=g[algor5,) - Vo (gors,)] = [ dizy=g[Valg"oTs,) — V#(6TE,)]
[ di2y=5[Valg"6T5,) - Valgors,)] = [ diey/=gVa[(goTs,) — (9oT%,)]
f d*z\/—gV 4P = boundary term

So we have indeed:

f 4 1 v 4 v 1
d a:(R(—?/—ggW) + /—gogH RW) = fd x\/—gogh (RW — igWR) =0=

1
R, — igw/R =0, (1.14)

which is Einstein’s equation in the sbsence of matter.

1.4.1 ¢"™oR,, = (¢"*0—V,V,)ég"
We’ve seen previously that:
G5 Ry = (Va(0%,) — Vo (8T5,)) g

We will now proove an extremely useful identity, when ones dealing with higher than first
order derivatives. First we should note the fact that Christoffel symbols are not tensor,
but the variation(difference) of the Christoffel symbols is. Therefore we are dealing with
a tensor here, hence one co-ordinate system is as good an any other! Thus, we pick a
coordinate system where the Christoffel symbols vanish, a coordinate system where the
covariant derivatives equal the partials. We have:

1
5F3u = §gao (Vy(sgau + vuégua - Vaagy,u)

1 1
61—‘3“ = 5gOtO' (Vadga"u + Vudgag - Vgégau) — §ga0v#(sga07

since the first and last term are the same. Then, the whole term becomes:

1
GVSR,, = gwi(vavyaggu + VOV 18006 — Vo Valdguu — g“"vyvuagao) _
1
5 (VI g0+ VTV 0005 = 9 VoV o8gus — 9°7 VIV 00ar ) =
1 oI KA oV KA N KA QoI KA
§(V VH*(=95k9un09"")+V V" (= 95k 9u009" ") = 9"V 6 Vo (= 9ok 9urdg9™") =g V'V 1 (= gor 9urdg )) =
1
5( — V.V — V.V 60 + 06 + gmmag“) N

<gﬂ,,m - vuv,,) Sgh = ¢ OR,,, (1.15)

This relation holds for every co-ordinate system. We will use this equation to derive the
f(R) Gravity field equations later on. This is sometimes called the Palatini identity.
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Chapter 2

Black Hole Solutions in 4-dimensional
General Relativity

2.1 The Schwarzchild Solution

The action for the Schwarzchild solution is:
S—/d4a:\/—gR (2.1)

and the resulting field equations:

1
G#V = R#V — ig'ul/R =0 (22)

In the action above there is no term that will yield a stress energy tensor: The Schwarzchild
solution is the vaccum solution, the static spherically symmetric solution of the Einstein’s
equations in the abscense of energy. The words static and spherically symmetric mathemat-
ically take the form:

1
b(r)

,where b(r) =1 —2M/r, M being an integration constant related to the mass of the Black
Hole. This metric ansatz has no cross terms (dtdr,dtdf, dtd¢) and the metric function b
depends only on the radial co-ordinate r (static spacetime) and no cross terms in the form
of d¢df, (spherically symmetric) since in a spherically symmetric spacetime we should not
be able to distinguish between the angles 6 and ¢.

There exist two singularities in the Schwarzchild solution. One for r = 2M and one
for r = 0. The first one is a co-ordinate singularity. This means that there is some other

ds? — —b(r)dt2 + dr? + r? (d92 + Sin29d¢2) (2.3)

15



Chapter 2. Black Hole Solutions in 4-dimensional General Relativity 16

co-ordinate system where this singularity does not exist. The r = 0 is a real spacetime
singularity. In order to identify singularities we have to compute curvature invariants (all
observers should agree if there exists a singularity), such as the Ricci Scalar: R = g"" R,
, the norm of the Ricci tensor: R* Ry, (does not have a symbol, neither a name), and the
"most powerful" one, the Kretschmann Scalar: K = R‘IBV‘SRQM(;. In an empty spacetime
the Ricci Scalar is zero, the Ricci-norm is also zero (since R =0 = R, = 0 in the vaccum
case only!) and we're left with the Kretschmann which is not zero:
48M*
K= (2.4)

r6

It is obvious that while » — 0, K — oo, which indicates a curvature singularity there.

20F ]

05F .

0.0 : b(r)
-05F -

: RapysR™PY2(r)
-1.0F ]

0 2 4 6 8

Figure 2.1: The Kretschmann scalar (red) and the metric function (blue) for M = 1.

2.1.1 Derivation

The Schwarzchild Black Hole metric is the simplest one and can be very easily derived by
hand. One has to consider a spherically symmetric metric ansatz, calculate the Christoffel
symbols, the Ricci tensor and finally solve: R,, = 0 (in empty space the Ricci scalar is
zero). Consider the metric ansatz:

ds®* = —A(r)dt* + B(r)dr? + r?dQ? (2.5)

Now the Ricci tensor is computed using the ansatz and the equations will read:

Al(r)? Al(r A (r
O st i () LN 20)
= B(r) 4B(r)2 '

A(r) (rA'(r) + 4A(r)) B'(r) + rB(r) (A'(r)2% — 2A(r) A" (r
Ry = ADCHO T PO BOWER 2N g g




17 2.1. The Schwarzchild Solution

rA’(r)
1 amy T2 rB(r)
= — —_ 2 = 2.
Ryy 5 B(r) + B(T)2 + 0 (2.8)

We solve the rr component for A”(r):

rA(r)A' (r)B'(r) + rB(r)A'(r)? + 4A(r)?B'(r)

A'(r) = 2.9
(r) 2r A(r)B(r) (2.9)
and plug the result into tt equation to obtain:
B(r)A'(r) + A(r)B'(r)
= 2.1
rB(r)? 0 (2.10)
which we can immediately integrate to obtain one of the functions:
C
= 2.11
)= 53 (211)
Now we can finally solve for B(r) from 66:
B(r)= — (2.12)
YV, '

where 20 is a constant of integration related to the Black Hole mass and now A(r) =
1 —2M/r. Setting C' =1 we obtain the Schwarzchild metric:

2M 1
2 _(1_ 2 2 2702 91
ds (1 - )dt® + 1—2M/rdr + r°dQ (2.13)

2.1.2 Birkhoff’s Theorem

The Birkhoff Theorem states that the geometry of any spherically symmetric vaccum region
of spacetime is a piece of the Schwarzchild geometry. [2] It was proven by Birkhoff in 1923.
Here i will present a simple derivation from a physicists point of view (not the most rigorous
derivation). Consider a time dependend spherically symmetric spacetime of the form:

ds* = —A(t,r)dt* + B(t,r)dr* + r*dQ? (2.14)
where dQ? is the two sphere line element. The components of the Einstein tensor follow:

A(t,r) (rBy(t,r) + (B(t,r) — 1)B(t,r))

Gy = ST TRSE (2.15)
. . Bt(t, 7")
Gir = Gr = Bt (2.16)
rd- &) Bty +1
G,, = Atn (t.7) (2.17)

r2
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Goo = sin®0G (2.18)

The 06 equation is complicated thus i did not write it, since this will not be the component
from which i will start the proof. Of course the above components do equal zero, since we
are in vaccum. From the tr component we can instantly deduce that B(t,r) = B(r). Now
plugging this result back to t¢ equation we can integrate for B(r):

r

B(r) = r—2M

(2.19)

,where M is the Black Hole mass. Now plugging this result into rr component we can obtain
A(t,r):

2M .,
At,r) = (1 — —)K*(t) (2.20)
r
where K (t) is an aritary function of time. Now the line element reads:

,
r—2M

) 2M
ds? = —(1 - ——
.

VE2(t)dt? + ( )dr? + r2dQ? (2.21)

We can redifine the time co-ordinate and then drop the hat:

b= /K(t)dt (2.22)

Now, the metric has it’s final form:

ds®> = —(1— %)dﬁ + L e + r2dQ? (2.23)
r 1—2M/r '
The above solution satisfies all of Einstein’s equations: G, = 0. This means that when
the spacetime surrounding any object has spherical symmetry and is free of energy and
momentum, then one can indroduce co-ordinates in which the metric is the Schwarzchild
metric.

2.2 The Reissner-Nordstrom Solution

The Reissner - Nordsrtrom solution describes a charged spherically symmetric object. It is
named after Gunnar Nordstrom (the "Finnish Einstein", the first to come up with a metric
theory of gravitation, a very important figure in gravitational physics) and Hans Reissner.
The solution can be easily derived by hand. For this solution we begin with the action:

S = /d%\/fg(g— ; QBFW) (2.24)

Everything is dimensionless for simplicity. Varying the action the field equations are ob-
tained:
Gap = 218 (2.25)



19 2.2. The Reissner-Nordstrom Solution

VeF,5 = \/1_798‘1(\/?91%) =0 (2.26)

F,,, is of course the Faraday strength tensor defined as:

Fu = 0,4, — 0,A, (2.27)

where A, is the electromagnetic four-potential. Here we make an ansatz for the electromag-
netic four-potential:
A# = (7¢(T)>0’070) (228)

which means that we allow only radial electric fields. We consider the following metric
ansatz:

ds®* = —A(r)dt* + B(r)dr? + r?dQ? (2.29)

The electromagnetic energy momentum tensor is:

1 2
*gaBF (230)

Tap = FanFj —

2.2.1 Derivation of Energy Momentum Tensor from Principle of Least
Action

The Electromagnetic action reads:

5= [ atoy=g(~ 5Fusr) (231)

We vary with respect to the metric tensor:

S=0= /d4x5<Jjg(— ;FaﬁFaﬁ)) =

/ iz (5@( ; W F0) 4 8 ; WM))

1
The variation of the determinant is §,/—g = —5\/—ggu,,5g“”. The variation of the second

term is:

1 1
5(—§Fa6FQB):5(—§Fﬂg g™ Fl) =

1 1
(= 5Fasd(9™)g™ Fuw) + (= SFasg™ (9™ ) Fuw) = (= Fagd(9™)g™ Fov)

where the terms are the same, because we’re dealing with dummy indices. Now we have:

/d4x\/ ( —Guv OéngO‘B(SgW —Fagd(g““)gﬁ”Fuy)
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After renaming some indices in the second term we obtain:

1
58 =0= /d4x\/fgég‘“’ <4g,wFa,3FO‘B — Etan?) =0
which yields the energy momentum tensor:
« 1 af
Ty = FuoF) — ZQWF&BF (2.32)

We calculate F? (keeping in mind that only the Fj, = —F,; components of the faraday
tensor survive):
F2—F ,Fo8 — | gliag)\BF \=F gttgrrFt +thrrgttFt _ 2¢/(7')2
af af K T T T T A(T)B(T)
I will show how one of the components of the electromagnetic tensor is computed. Take for
example the Ty term: The FMFE part is:

,7”2
ﬂﬂ“ﬂ#%wwméﬁwm—g$

And the component as a whole is:

¢'(r)? 1 2¢/(r)> _ ¢/(r)?

Thy=—-—-4 = 2.
“=Bey A AWBG) T 280 (2:33)
In the same manner the other components are calculated:
¢'(r)?
T, = — 2.34
2A(r) (2:34)
702(1)/(”2
Too = ——— 2.
% 2A(r)B(r) (2.35)
Ty = sin®0Tyy (2.36)

Contracting Finstein’s equation it is trivial to see that the Ricci scalar equals zero, since the
electromagnetic stress tensor is traceless. Note that this happens only in four dimensions.
So the equations we are solving are:

Ry, = 2T, (2.37)

We are now ready to write Einstein’s equations in differential form, the tt, rr, 00 components

follow: AGE A AT
CAW@B) a5 0 (2.38)
4B(r)? B(r) B(r) '
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A(r) (rA'(r) +4A(r)) B'(r) + rB(r) (A'(r)? = 2A(r)A"(r))  ¢/(r)?

1 A)2B(r) Ty 0 @39
rA’(r)
+ 2 / 2 41 ()2
L 0 rBr) o) - ) (2.40)
2 B(r) B(r)? A(r)B(r)
We solve the second of these equations for A”(r):
woy L (A (r) +4A(r) B'(r)  A'(r)*
A'(r) = 5 < B0r) + A 4¢' (1) (2.41)
and substitute into the first one to obtain:
B(r)A'(r) + A(r)B'(r)
B(r)? =0 (2.42)
which means that:
1
B(r) = A0 (2.43)

Substituting this into the third equation we will obtain the relation between the scalar
potential and A(r). We can now solve Maxwell’s equation for the scalar potential: We have:

1
AVam')
We have:

0°(V=9Fap) = 0= 0°(v=gFap) = 0= 0°(V=9)Fag + V=90 Fap = 0

g"" 0y (r?sind) (0, Ar) + r2sinfg" 0, Fy = A(r)2rsind¢’ (r) + r?sinfA(r)0,0, Ay = 0 =

280) +1(0) = 0% S =~ Z gl () = —har e ) = Oy =
o(r) = —f+K (2.44)

where C'is an integration constant related to black hole charge and K is a contant that we
can set to zero, since we want the potential to vanish at large distances. Now we can go
back to the third equation and finally obtain the metric function. The equation reads:

C?
—rA'(r) — A(r) — o) +1=0 (2.45)
which is trivial to solve and obtain:
C?
Ay ==+ 41 (2.46)
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where ¢; is a constant related to the Black Hole mass. The metric takes it’s final form:
) Q> oM , (@2 2M o,
ds® = — (2—+1>dt+<—+1) dr + r°dQ) (2.47)
r T T

and the electromagnetic four potential is:

At = (Z.0.0.0 (2.48)

We can now go back to the full system of equations to see that indeed this is a solution of
the full system.

2.3 (A)dS-Schwarzchild Solution

For the (A)dS-Schwarzchild Solution we begin from the action:

S = / d*z/—g| 16 G(R 2A)] (2.49)

Einstein’s equations read:
G,u,u + Aguy =0 (250)

and the metric ansatz:
ds? = —**0)dt? + X dr? 4 1240

The resulting tt, rr, 00 equations are the following:

—2(®(r)+X(r)) Ar2 -1 2X(r) _ 0 X! 1
((Ar 2) ¢ X +1) (2.51)
r
—4X(r) 1—A 2\ 2X(r) _ P’ -1
il (Gt )62 Al (2.52)
T
O (or (A () V) X)) VP X)

3
r
The first of the above equations is a differential equation of X (r) which we can immedi-
ately integrate:

X(r) = —%ln (—C?} - A;: + 1> (2.54)

where c; is a constant of integration. Plugging this in the second equation we can obtain

a differential equation for X (r):

(301 + Ar3 — 3r) (2r (301 + Ar3 — 3r) ®'(r) + 3c1 — 2Ar3)
- 9rd

=0 (2.55)
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and the solution is:
1
d(r) = 5 (In (3c1 + Ar® = 3r) —In(r)) + ¢ (2.56)

Plugging the results in the third equation we can see that X, ® satisfy the equation. The
line element will read:

e2e2 (301 + Ar3 — 3r) )dt2 +( 3r

ds? = — .
5 ( r 3¢ + Ar3 — 3r

Ydr? + r2dQ? (2.57)

We will compare this with the (A)ds spacetime and the Schwarzchild solution in order to
n3

define the constants of integration. By inspection we can see that cg = - and ¢ = —2M.
Then the line element takes it’s final form:
9 oM Ar? 9 oM Ar?\ -1 9 9.9
ds :—(1———T>dt +(1———T) dr® + r2dQ (2.58)
r r

which is the (A)dS-Schwarzchild metric. We can compute scalar curvature quantities now
in order to have a look at the singularities of the black hole. The Ricci Scalar, the Ricci
Norm, the Kretschmann scalar and the Weyl invariant are listed below:

R=4A (2.59)
Ry R™ = 4A? (2.60)
wbed 48M?  8A?
K=R Ropea = 3 + — (2.61)
r 3
48 M2
CapeaC*"*! = —o— (2.62)

As one can see from the Kretschmann scalar, there exists a curvature singularity: For
r—0— K — oco. So, at r = 0 we have a spacetime singularity. Also, as r approaches oo
we observe that the Kretschmann scalar does not go to 0 but it takes some fixed value.

The Weyl invariant seems to possess an important feature. As one observes, the cos-
mological constant does not appear in this invariant... The Ricci tensor is obtained tracing
Riemann tensor. For a diagonal metric in a four dimensional spacetime, the independent
Riemann components are 20. The independent Ricci components are 10 though and from
the Einstein equation we can see that the Ricci tensor is related to the cosmological con-
stant. The other 10 missing components form the basis of the Weyl tensor... So the Weyl
tensor should not contain any information about the cosmological constant and indeed it
does not!!! Moreover, the Weyl tensor is traceless by definition and this is another reason
why information from the cosmological constant will not be contained in the Weyl tensor.
So, in conclusion, the Weyl tensor represents the free gravitational field and in this case the
Weyl invariant is equal to the Kretschmann scalar in the Schwarzchild solution.
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Figure 2.2: The Kretschmann scalar (yellow) and the metric function (magenta) for M =
LA =—1.

To find the black hole horizon we have to solve the equation(i make the assumption that
M is positive):

2M  Ar? Ar3
gt=0=>1-——-—=0=r—-2M—-——=0
T 3 3
The above equation is a cubic equation, so we expect three solutions. We set: f(r) =
Ar3
r—2M — - To simplify the analysis we will consider a negative cosmological constant,

namely Anti-de Sitter spacetime, therefore we set: A = ——, then, the f(r) function becomes:

ﬁ7
f(r) =rl® —2MI* + 13

Using [I] we can obtain the roots of the function:

— 2 h
T = m-’* W’ (263)
14+4V3)? (1 —1iV3)h
ry = ( +Z\[) _( Z\[) ’ (264)
2h31/3 231/3
1—iV3)? (1+4ivV3)h
7”‘3 — ( Z\f) _ ( ,L\/>) ’ (265)
2h31/3 231/3

where:

h= i/\/§\/27z4M2 + 16 4 912 M.

We can immediately see that roots 7o 3 are imaginary and have no physical meaning. We
can obtain some qualitative results by inspection of the f(r) function. The function has the
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following behavior:
Fr = 0%) ~ =007, f(r = 00) ~ +0(?)

which means that the function changes sign and from the fact that is continious we can

determine that the function has at least one root. Moreover, the derivative of the metric

function is: f/(r) = ?—5 + 27% > 0 meaning that f(r) is a monotonically increasing function

and has one inflection point: 2/1% — (4M)/r3 = 0 = r = /21*/33/M, so, the metric function
has one real root.

The geodesic structure of the AdS Schwarzchild spacetime has been discussed at [24]. To
obtain the horizons the authors considered the same function f(r) which is of the form:

24 ar—b=0,

where a,b > 0. We suppose:
x = Z sinh(0)

and we multiply the equation with a scalar k:

73 sinh®(0)k + ak sinh(f) — kb =0
and based on the identity:

4 sinh? f 4 3sinh(6) — sinh(30) = 0

we have: aZ3 = 4,akZ = 3,ab = sinh(30) :

a23:4éa:iikZ:3éZ:2 k
73 73 3

, and now,

. . -1 . 1 . 1 3b 3 2n7m
kb = sinh(30) = 30 = sinh™ " (kb) + 2nmi = 0 = gsmh S\ 3 + 3

, where n = 0, 1, 2 denoting the three roots. So, now the roots become for r = Z sinh(0),a =

12,b=2M]I?

12 1 M

ri = 2{/=sinh | =sinh~! [ 3v3—] |, (2.66)
3 3 !
2 1., M\ 2w

ry = 2\/gsmh <3smh <3x/§l> + 3) , (2.67)
12 1 MY\  4ri

rg = 2\/;sinh (i))sinh_1 (3\/§Z) + ?) . (2.68)
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Using now the approximate relations for sinh, sinh~! we expand the real root for M /l—=0

to obtain:
3

Ty~ 2M — ZT < T'Schwarzchilds (269)

meaning that the event horizon for the AdS Schwarzchild black hole is smaller than the
Schwarzchild horizon.

2.4 The RN-(A)dS Black Hole

The RN-(A)dS Black Hole is the solution of Einsteins equations coupled to electromagnetism
with the presense of the cosmological constant. The action for the solution is the following:

R 1
S = /d4x\/—g(2 —A— 517%6>1?‘)“5> (2.70)
The following equations extremize the action:
Gap + Agap = 2Tp (2.71)
VF, ! 0%(V—gFap) =0 (2.72)
af = — — —9rap) = .
B N B
We will use the same ansatzes as in the Reisnner-Nordstrom case:
ALL = (—¢(T’),0,0,0) (2.73)
ds® = —A(r)dt® + B(r)dr?® + r2dQ> (2.74)

where the Faraday tensor is defined in Section 2.2. Finstein’s equation for the metric ansatz
read:

r) (rB'(r r)2 — B(r /(12
rA'(r) + A(r)(=B(r)) + A(r) | ¢'(r)? _
AT T gy TABr) =0 (2.76)

r (A(?“) (2B(r) (A'(r) +rA"(r)) —rA'(r)B'(r)) — rB(r)A'(r)? — 2A(7“)2B’(r))
4A(r)2B(r)?

B 7“2d),(7“)2

_— r? = .
Y OED +AZ=0 (2.77)

From tt and rr equations we can obtain the relation between the metric functions:

B(r) = (2.78)
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and now we can solve Maxwell’s equation to obtain the scalar potential (as we have done
in the Reissner-Nordstrom case, the procedure is exactly the same, thus i do not procced in
deriving everything):

o(r) = —f (2.79)

where C' is an integration constant related through Gauss’s Law to the Black Hole charge.
Now we can go back to the last of Einstein’s equations to obtain the metric function. The
equation is:

CZ
—rA'(r)— A(r) — =+ Ar* +1=0 (2.80)
which is trivial to integrate and obtain:
Q> A’
Ar)= - ——+—+1 2.81
(=5-5+2+ (281)

02
(A(r) +rA'(r) is a total derivative, so we just need to integrate ——5 4 Ar? 4 1.) We have
T

to identify ¢; with the Black Hole mass and then the metric takes its final form:

oM A2 Q oM A2 Q2\
P I e P U R (2.82)
r 3 r2 r 3 r2
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2.5 The No-Hair Theorem

Consider a static black hole spacetime with a bifurcate Killing horizon in a theory of a scalar
field minimally coupled to gravity. The scalar field must satisfy the equation of motion in
the corresponding spacetime metric:

O¢p = VAV gb:m (2.83)

I d¢ .
We multiply this equation by ¢ and we integrate over the whole spacetime region M which is
bounded by two hypersurfaces of constant time ¢, the asymptotic region and the bifurcation

2—surface:

/d‘*m\ﬁ(qﬂap b ¢):0:

/ d*z/—g <v“¢vﬂ¢>+¢ > / pVHpdS,, =0 (2.84)

where we performed integration by parts. Now, the last term vanishes. The two hypersur-
faces of constant ¢ cancel its other out, the bifurcation surface has measure zero and the
asymptotic region contribution vanishes because ¢ goes to zero at large distances (to be
more accurate, in the action/integral the derivative of the scalar field is present, so we want
the derivative of the scalar field to vanish at large distances, for example a scalar profile of
the form ~ /r is not problematic). So we have:

/d4x\ﬁ<vf‘¢w¢>+¢ <b> (2.85)

The first term in the above equation is always non negative, it is always positive, or zero,
when the scalar field is constant. Let’s abandon the case of constant scalar field since it is
the trivial case so the term is always positive. Then, the second term should be negative.
For a mass term potential:

V(9) ~ m?¢? (2.86)
, the second term is
dv
¢Tz5 = m2¢? (2.87)
, which is positive. For a Higgs potential and for A > 0:
V(g) ~ \¢* (2.88)
the term becomes:
AV (28
do Ad '

This is the famous No-Hair Theorem [7], [§], [9].
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2.6 Black Holes Coupled to Scalar Fields: The BBMB Black
Hole

The first Black Hole Solution Coupled to Scalar Field was derived by Bronnikov, Melnikov
and Bocharova and independently by Bekenstein(called BBMB Black Hole). The action is:

1 1 1
S = / d*z/—g [mR — Ewwugb — ERgzﬂ] (2.90)

The scalar field is conformally coupled to gravity, thus the trace of the resulting energy
momentum tensor will be zero. Varying with respect to the fields we obtain the Einstein
and Klein-Gordon equation:

G;w = 87TGT,W (2.91)
1
06 = LR (2.92)
where
1 a 1 2
T;w = vu¢vu¢ - ig,uuv OVa® + g(g,ulej - Vuvu + Guu)¢ (2'93)

Indeed if we trace T}, and use the Klein-Gordon:

1 1
gNVTuV = glwauﬁbaud) - glwig;wgaﬁaaﬁbaﬁgb + ggl“’ [guugaﬁvavﬁ - vuvu + Guu]¢2

v 1 afs 4 af 2 1 v 2 1 v 1 2
=gt alt¢au¢ - 459 8a¢85¢ =+ 69 Vav5(¢ ) — 69” vuvu(¢ ) + 69“ [Ruv - ig;wR](b
1 1 1
= —g"0,00,9 + §9Wvuvu(¢2) + E[R - §4R]¢2 =
1 1
= —g" 0,00, + §gwjvuvu(¢2) - 6R¢2 =
1
= —g" 0,90, ¢ + 59“” 20,00,¢ + 20V .V, ¢ — ERQSQ =
1
— 69"V, V6 — RSP =
1
= 6V, 6 — <R
= 1R 1R =0
= 0[5R6 — <Ro) =
Now, the equations become:
R=0 (2.94)

O¢ =0 (2.95)
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Imposing a metric with one degree of freedom, the first of these two equations is a second
order differential equation for the metric function. So we can solve immediately this equa-
tion and obtain the metric function. Then we can use the Klein-Gordon equation, which
now describes a free scalar field and obtain the scalar field configuration. Both these two
functions should satisfy Einstein’s equations. The metric ansatz and the two equations in
terms of the scalar field and the metric function follow:

ds* = —f(r)dt* + f(lr)dﬂ +7%(d6? + sin®0d¢?) (2.96)
)+ 4rf;(27“) +2f(r) -2 _ 0 (2.97)
£ ) + 6 0 () + L) <o 2.98

The original paper by Bekenstein [I7] does not contain any insight about the derivation.
Here, i will present two derivations of the solution that can be done by hand. The first is
not the most elegant derivation for sure and it does require large amounts of patience since
it contains terrible algebraic manipulations, but we can obtain the desired result and it is
mathematically sound.

2.6.1 First Approach

We can solve for the metric from R = 0:
fm==+—+41 (2.99)

We compute the tt, rr, 0 equations in terms of the metric function and the scalar field
(setting 877G = 1):

—ro(r) (1) (r¢(r) + ¢(r)) +6rf'(r) — f(r)< —r2¢/(r)? + 2r(r) (2¢/(r) +7¢" (r))
+o(r)? — 6) L o) —6=0 (2.100)

f(r) (rp(r) (rf'(r) + 4f(r)) &' (r) + (¢(r)* = 6) (rf'(r) + f(r) — 1) + 3r2£(r)¢' (r)*)

=0
1272

(2.101)

21'(r) (2ro(r)¢/ () + 6(r)? = 6) + 7 (6(r)2 = 6) £ (r) + () (46(r) (') + 16" (r)
- 2r¢>’(r)2) =0 (2.102)
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We substitute the solution for the metric function obtained from the vanishing of Ricci scalar
and solve the last equation for ¢”(r). We obtain:

_ ¢/ (r)2 = 2r3¢(r) ¢/ (r) + 113/ (1) + car®¢ (r)? + 2card(r) ¢/ (1) — c2(r)? + 62

¢"(r)
2r2 (r2 4+ c1r + ¢2) o(r)
(2.103)
Substituting back to tt equation we obtain now a relation for the first derivative of the scalar
field: ( 2 )
2¢co (p(r)* — 6
'(r) = 2.104
¢(r) r (212 + 3crr + 4eg) ¢(r) ( )
Finally substituting to rr equation we can have a relation for the scalar field:
24/6
o(r) = f\/cQ(r(r +c1)+c2) (2.105)

==
V1227 + 1) (2r + 3c1) + dear(3r + 2¢1) + 4eo?

This scalar field profile should satisfy the Klein-Gordon equation for arbitary r. So, from
this condition we obtain a relation between the constants:

cy = a (2.106)
4
Now, setting ¢; = —2m we finally obtain:
2
£lr) = <1 - ’:‘) (2.107)
o(r) = £v/6—" (2.108)
r—m

Substituting the resulting functions in the equations we can see that indeed f(r) and
¢(r) consitute a non-trivial solution of the Einstein-Conformal Scalar equations.

2.6.2 Second Approach

This, may be the way Bekenstein derived the solution. It contains less algebraic manipu-
lations to solve through the equations. If we combine the equations ¢t and rr we obtain a
very simple relation:

2¢/(r) — ¢"(r)¢(r) =0 (2.109)

It’s trivial to see that this is equal to:

( ! )":0 (2.110)

We can immediately integrate:

o(r) = (2.111)




Chapter 2. Black Hole Solutions in 4-dimensional General Relativity 32

We substittute the obtained configurations (the scalar field and the metric function obtained
from the R = 0 condition) in Klein-Gordon:

(—2car + cre3m — c3¢2 + 2¢1¢4)

(e T c0)? =0 (2.112)
which gives the constraints:
c1 = 22 (2.113)
c3
2 =4ey (2.114)

Now, after this parametrization we again substitute the new configurations in one compo-
nents of Einstein’s equations. We obtain a constraint for co:

1
co = 4/ = (2.115)
6
We ended up with one constant of integration, since ¢; and ¢4 can be expressed through co.

Now, setting:

cp = —2m (2.116)
the BBMB Black Hole is obtained:
2
m
F(r) = <1 _ ) (2.117)
,
m

o(r) =+V6 (2.118)

r—m

The Black Hole horizon is located at the largest positive root of the metric function:
rH=m (2.119)

where m is related to the Black Hole mass. There also exists a singularity at » = 0. One
can see that the scalar field diverges at the Black Hole horizon, so the no hair theorem is
evaded.

2.6.3 Solution of the Differential equation R = 0.

For a one degree of freedom metric the condition R = 0 yields a second order differential
equation for the metric function:

7 4 / 2 2
')+ Sf0) + 5f () = 5 =0 (2:120)

It can be written as:
f(r)r? +arf'(r) +2f(r) =2 =0 (2.121)
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1 1 1 1 1

0 5 10 15 20

Figure 2.3: The metric function f(r) (black) and the scalar field configuration (with the
positive sign) ¢(r) (orange) m = 1.

This is a Equidimensional Equation [4]. It can be solved using an ansatz for the solution.
We can solve it by inspection and creating total derivatives.

(2 f (r)) +2rf (r)+2f (1) =2 = 0= (P2 f' (")) +2rf(r)' =2 =0 = (r2f'(r)+2rf(r))-2=0=
r2f'(r) +2rf(r) =2r + e = (P () = (P +ra) = 2 f(r) = fra e =
C1 C2
flr) :1+7+ﬁ (2.122)
2.6.4 Discussion for the Derivation of the Energy-Momentum Tensor

The energy momentum tensor seems a bit tricky to derive. It is really easy though. The
term that might bother the reader will be:

5(R¢2) = 69MVRuV¢2 + gMV(SR,w/QSQ

The first term is ready. The second term is not. We will use the Palatini identity we prooved
in the previous chapter, Eq.(L.15)). So the second term will be:

GOR % = <gWD _ V“Vl,>(5g‘“’q§2

The covariant derivatives act on the variation of the inverse metric tensor. We want the vari-
ation of the inverse metric tensor to be a multiplying factor of the whole action. Therefore,
we’ll create total derivatives and ignore the boundary terms we will come across, in order
to make the variation of the inverse metric tensor a multiplying factor. The derivatives will
now act on the scalar field ¢2. I will discuss the box term. We have:

guyDégMV¢2 — gyyvavaéguyqu — Va (guyvaég,ullqu) _ (va(bQ) (g“yvadguu)
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The first term is a total divergence term, thus if we integrate a boundary term. We ignore
it:
9V Vabg" ¢* = —(Vad?) (90 V 39"

We construct another total derivative:
—(Vad?) (g V6g") = —V° (gm,ég“’jvagb2) + 9 (VOV 0 6)5gH"

The first term is a total divergence term, thus if we integrate a boundary term. We ignore
it:
guuvavaéguy¢2 = guu(vava¢2)59“y

We can see that now the variation of the inverse metric tensor is indeed a multiplying factor
and the derivatives act now on the scalar field. The same procedure one follows for the two
covariant derivatives. I should remind that the metric is compatible:

Vg =0, (2.123)

where i’ve dropped the indices for simplicity.

2.6.5 The Solution with Electric Charge
Now, we add to the action a Maxwell field:

S = _7\/7]?!“’ (2.124)
167

where F),,, is the usual Faraday tensor, so now the full action becomes:

1
4 I > I v/ T I »/ 7%
S = /d z/—g 16 GR v AV R¢ 67TF Fll (2.125)

By variation, the field equations are (setting 8wG = 1 for simplicity:

G =T, + T ewwet (2.126)
1
06 = <R (2.127)
VHF,, =0 (2.128)
where:

TS, = VugVig— g,wV Vo + (gu,,D — VY +Gu)dt, (2.129)

1
T%amwell — F,upF QWFQ (2130)

4



35 2.6. Black Holes Coupled to Scalar Fields: The BBMB Black Hole

We impose a one degree of freedom metric:
1
b(r)

and an ansatz for the electromagnetic four-potential:

ds* = —b(r)dt* + —dr® + r*(df* + sin®(0)dyp?)

A, = (4/(r),0,0,0)

and we compute the field equations. The Maxwell equation yields:

24"
_ (T) _ JZ{”(’I“) — 0
r
and we can immedaitely integrate to obtain:
Q
o (r)=—
(=",

(2.131)

(2.132)

(2.133)

(2.134)

where @ is the electric charge. The tt, rr, 00 components of Einstein’s equations in differential

equation form now read:

0 = 1% (rot/ (r¢’ +¢) — 6rb' + b (—r?¢* + 2r¢ (2¢' + r¢") + ¢* — 6) — ¢*) — 3Q*(2.635)
= 72 (rgb (r¢’ + ¢) — 61 +b ((r¢/ + ) (3r¢’ + ¢) — 6) — ) — 3Q> + 6r°,  (2.136)

1
24"

while the Klein-Gordon equation reads:

00 (0 AV 2 =2) |y DA

From ¢t and rr we obtain a very simple relation:
2¢/(r)* — ¢(r)¢"(r) =0,
which we can integrate:

C1
co+r

¢(r) =

From the constant Ricci scalar we obtain the metric function:

Now, we plug the obtained configurations in Klein-Gordon:

c1(—ca(es +2r) +esr +2¢4) =0

(20 (2r¢¢’ + ¢* —6) + 1 (¢* — 6) 1" + b (46 (¢ +r¢") — 2r¢™)) +

Q2

T (2137)

+b(r)¢"(r) =0 (2.138)

(2.139)

(2.140)

(2.141)

(2.142)
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which yields the following constraints:

c = % (2.143)

¢ = %3 (2.144)

Now, all Einstein’s equations yield the following:

2¢3 — 3¢5 +6Q% =0 (2.145)
which we can solve for cy:
3
=+ 5\/03 — 202 (2.146)
Setting c3 = —2M where M represents the Black Hole mass, the final configurations are:
M?  2M
b = ——-——+41 2.147
() = F-o+L (2147
o (r) = 9, (2.148)
T
VO6M? — 3Q?
= ¥ 2.149
o(r) o (2149)

Again, the scalar field diverges at the horizon. Bekenstein argued that this is not a bad
divergence [18]. The Kretschmann scalar and the Weyl contraction are:

8M? (TM? — 12Mr + 6r?)
r8
48 M3 (M — 1)?
r8 '

K(r) = RgpeqR™ = , (2.150)

W(r) = CapeaC®? = (2.151)
Both scalars diverge at the origin indicating a physical singularity. The Kretschmann scalar
does not vanish at any r (the roots of the numerator are imaginary). However, the Weyl
scalar vanishes at » = M. The norn of the Weyl tensor measures the tidal forces and it’s
vanishing at the horizon where the divergence of the scalar field occurs means that the scalar
field cancels the tital forces of the black hole at the horizon.
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2.7 de Sitter Black Hole with a Conformally Coupled Scalar
Field in four Dimensions

Here, i will discuss the Black Hole solution obtained at [II]. We consider four dimensional
Gravity, a cosmological constant and a conformally coupled scalar field with a Higgs-like self
interacting potential term:

R—-2A 1 1
— 4 — 1% T pa2 4
S /d T/ g( 6~ 27 0u 0, 12R¢> ag > (2.152)
The field equations are:
G;w + Aguu = 87TGT;W (2.153)
1
06 — <Ro - 4ag =0 (2.154)
where:
1 o 1 ) A
T = vu¢vu¢ - ig;u/v OVt + E(Q}UJD - V.V, + Guu)¢ - O‘Quu(b (2.155)

The energy momentum tensor is traceless thus tracing Einstein’s equations gives a very
simple relation between the Ricci curvature and the cosmological constant:

R=4A (2.156)
For the one degree of freedom metric,
1
b(r)

the tt, rr, 00 components of Einstein’s Equation are calculated:

ds* = —b(r)dt* + ——dr? + r*(df? + sin®(0)dyp?) (2.157)

r (4nGe (—rb'¢ — ¢V + 6are?®) + 3V) + b (3 — AnG (—r?¢” + 2r¢ (2¢' +1¢") + ¢%)) + 4G
+3A12 —3=0
(2.158)

b(r (4rGe (rb'¢' + b — 6arg®) — 3b') +b (4nG (r¢’ + ¢) (3r¢' + ¢) — 3) — dnG¢* — 3Ar* +3) =0
(2.159)

r (3" +87Gbg + 6A) — 167G ((rb +b) ¢/ +1b¢") — dnG® (20 + rb") + 6V) + 487waGré* =0
(2.160)

From tt and rr equation we can obtain a simple relation for the scalar field:

2¢/(r)* — ¢(r)¢"(r) =0 (2.161)
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which we can immediately integrate to obtain the scalar profile:

1
o(r) = P (2.162)

We solve for the metric function from the constant curvature relation:

P (r) + 4rb (1) 4 2b(r) — 2

= 4A (2.163)

br)y=—7F+—5+—+1 (2.164)
Now, plugging the solution to Klein-Gordon we obtain:

—2r2 (6a + CQQA) + 3ci1(c1es — 2¢9)r + 3c1(2¢1¢4 — co03)

=0 2.165
3r2(err + ¢2)3 ( )
which gives the following constraints:
2
o =2 (2.166)
c3
2
c
4= % (2.167)
Lo
a=—c (c2®A) (2.168)
Now, the metric function reads:
Ar? 2 s
br)y=——++-—=5+—+1 2.1
(r) 3 +4r2+ r + (2.169)
and the scalar field: )
or)= ——— (2.170)
(2c2)
% +c2
Plugging the results into ¢t we obtain:
2 (—47G + 3co?
o’ (~AmG + 3er’) =0 (2.171)
16mco?Gr? (4Ar* — 12r2 — 12¢37r — 3c32)
which gives the constraint:
o = j:2\/§\/§ (2.172)

Plugging the results into rr and 60 we can see that the obtained conditions and configurations

satisfy the equations. Finally:
ﬁ VGM

Br) = o (2.173)
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G’M?* 2GM  Ar?
b(r) = - —+41 2.174
(="g - -+ (2174
2
a= —§7rG'A (2.175)
which is the reported solution, where we set ¢c3 = —2M G. We ended up with one integration

constant which is related to the Black Hole mass. The scalar field brings no new hair to the
solution. The inner, event and cosmological horizons are located at:

_ VAV3GVAM +3 -3

r_ i) (2.176)
ry = v3- V3 ;fK\/gG\/KM (2.177)
V3~ 4VBGVAM + V3 (2.178)

T4y =
* 2v/A
provided that the cosmological constant is positive. All possible divergencies of the curvature

invariants, the metric and the scalar field are hidden behind these horizons. The only
curvature singularity exists for » = 0, since:

8 (18G?M?r? — 36G3M?3r + 21G* M* + A*r®)

Bvé —
R’ Ropgys = 3,8 (2.179)
: )
lim RV Ryg5 — 00 (2.180)
The massless solution corresponds to de Sitter spacetime, since:
lim b =1 — 2.181
A (2181)

and has a cosmological horizon at r = /3/A. From the square roots appearing in the
horizons we can obtain the allowed values of mass:

V3 V3
“ava M s

In the case of negative mass the singularities become naked, so these values are excluded by
cosmic censorship (the r4, 7 horizons become imaginary).

(2.182)

2.7.1 The Electrically Charged Case

For the Electrically Charged case we add in the action a Maxwell term:

1

- Ton d*z\/—gF" F,, (2.183)
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and an ansatz for the Maxwell one-form:
A, = (2(r),0,0,0) (2.184)

The derivation of the solution is exactly the same. From ¢t and rr equations we obtain the
scalar field, from the constant Ricci the metric function (the solutions are exactly the same)
and from Maxwell’s equations the scalar potential, which for the one degree of freedom
metric we imposed can be integrated immediately:
2 (r
_ (r) —A'(r)=0=A(r) = _Q (2.185)
r r

Now, all obtained configurations are substituted in all components of Einstein’s equations
and the Klein-Gordon in order to check if they are satisfied. Hence we obtain the following
constraints between the constants of integration:

2rG?AM?
= 2.1
CT ToaM? — 92 (2.186)
where a should satisfy the constraint:
2
a < —§7rAG (2.187)

that comes from the charge to mass ratio:

2
(E) = <G+ 27r9/;G2> : (2.188)

F(r) 5 +1 (2.189)
_ V3BGM? - 3Q?

o(r) = G —ar) (2.190)

A, = (A(r),0,0,0) = (—?,0,0,0) : (2.191)

2.7.2 Solution of the Differential Equation R = 4A.

This is again an Equidimensional Equation [4]. We will solve it in the same manner as

before: - )
e (r) +4rt(r) +2b(r) — 2 — A (2.192)

r2
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We have:

20 (r)F4rd (r)+2b(r) =2 = —4r2A = (P20 (1)) +(2rb(r)) = —4r2A+2 = (20 (r)+2rb(r)) =

43 / 27/ 43 2 !
(—=r’A+2r) = rob'(r) 4+ 2rb(r) :—gr A+2r+c; = (r°b(r))

3
4ot 9 r 9
= (—ng—l—r +ar) =r b(r):—gA—l—r +er+e =
2 g c
b(r)=1- A+ ?1 + r—; (2.193)

2.8 Four Dimensional Asymptotically AdS Black Holes with
Scalar Hair

Here, i will derive the Black Hole solution reported at [6]. Consider the action:

S = /d%ﬂ{? - ;a%aaqs - V(¢)} (2.194)

and the metric ansatz:

1
2 _ 2 2, .2

ds _-—fOth—thﬂdr-+a10)<1__k2dp-+d¢ ) (2.195)
where k = —1, 0, 1 negative,zero and positive curvature respectively. Now, the field equations

can be easily obtained from the variational principle:
py = ud)aud) *g;wg 58 (Zﬁ(?g(f) g,WV(qﬁ) (2'196)
Oo = v (2.197)

¢= 5 :

Using the metric ansatz we calculate the tt, rr, pp, pp equations and the Klein-Gordon:

a(r) (2d'(r)f'(r) + 4f(r)a”"(r) + a(r) (f(r)¢'(r)* + 2V (4(r)))) + 2 (r)a’(r)* — 2k

1a(rP 1) i
(2.198)
iﬂﬂ<2wamﬁu(Egﬁ+dﬂf@»%+ﬂﬂ¢@y_ng@»>:o (2.199)
(ko? — 1) (20/(r) () + 2/ (r)a"(r )42(%(;) (710) + FOO0P 42V GO _ a0,
_ 2O (1) + 2 0)a" () +alr) (10) + JOS O 60) g 00

4p2a )3
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20N OF ) | e s V)
) + ) —

The pp equation can be obtained from equation . Solving rr equation for the potential
we have:

=0 (2.202)

_ —2a(r)a’ () f'(r) — 2f(r)a’(r)? + a(r)* f(r)¢'(r)* + 2k

Vie(r)) = 20(r? (2.203)
Substituting back the potential in equations ¢¢ and ¢y we obtain:
a’(r) 1, B
) ® (r)? =0 (2.204)
260 a) (@) + )0 1)~ 0P) el PRI 2
4p2a(r)*

The above system of equations is a closed system for the 3 unknown functions. We although
have 2 equations and three unknowns, hence we can fix one of them and solve for the others.
We fix the scalar field configuration:

1 v
o(r) = ﬁln(l + ;) (2.206)

We can solve for a(r):

) = a1y i 4 YTV T —In@ £ 1) (2207

a(r »

where ¢, ¢y are constants of integration. We want a(r — 00) ~ 7, so we have to set
c1 =1 (for simplicity) and ¢z = 0 (because of the asymptotic behavior).

a(r) =+/r(r+v) (2.208)
Using a(r), f(r) can be calculated:

G2r(v+r)(In(v+r)/r)—v(v+2r))
1/3

f(T‘) = +k+ Aeffr(u + T) (2.209)

, where G and A.yy are constants related to the mass and the cosmological constant
respectively. Now we can solve for the potential:

_2G (v +6r% 4 6vr) (In(r/(v 4 7)) + 6Gv (v + 2r) — Agypv® (v* + 612 + 6ur)

vir) 203r(v + 1)

(2.210)
We can check that the potential satisfies the Klein-Gordon equation by substituting the
potential. We can aslo express the potential in terms of the scalar field:

V(¢) = —Aesr(2 + cosh(v29)) + g(a sinh(v/2¢) — 2v/26(2 + cosh(\/iczs))) (2.211)
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We can see that:
V(0) = =3Acpr = A (2.212)

V"(0) = m? = 2A/3 (2.213)

The scalar field mass satisfies the Breitenhner-Friedman bound that ensures the stability
of AdS spacetime under perturbations. The asymptotic relations of all functions are also
obtianed:

1
V(r— o0) ~—3Aess + ﬁ(ﬁ) (2.214)
Gv G 1
flr — o00) N—l-@— 37+k+AeffT2+A€ffVT+ﬁ(ﬁ) (2.215)
a(r = o0) ~r+ O0(r°) (2.216)
d(r — 00) —V—2+L+ﬁ(—) (2.217)
2v/2r2  \/2r 3 .

V(¢)

i 05 T.
-20F

-40f
—60;
—80;
-100;

-120f

~140

Figure 2.4: The potential V(¢) for v = 1,G = 1, Ay = 1. We can see that the potential
has a global maximum for ¢ = 0 which is the cosmological constant.

From the asymptotic behavior of the potential we can see that it acts as a barrier to
the scalar field at large distances. We also compute curvature invariants in order to seek
singularities. The relations are terribly complicated, so we present the asymptotic behaviors:

. oo (sgn(v)*sgn(G — kv)?
}g% RanRaﬁyd — ( ( V6 ( ) )

(2.218)

3 V2
R(r — o0) ~ §Aeff — 3 8 (2.219)
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G-k
R(r—0) ~ =2~ (2.220)
R Rogs(r — 00) ~ 24A2;; (2.221)
3G 3Gk | 3k’
RV R 5 5(r — 0) ~ (2.222)

w2kt 2urt T 4t

The asymptotic behaviour of the Kretschmann Scalar indicates a curvature singularity
at r — 0. We also check that the Kretschmann scalar is continious for all different values of
k and for r > 0. We plot the potential and the metric function f(r).

f(r)
12

10

8

T =t r
) 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2.5: The metric function f(r) for k =0,v =1,G =1,Acs5 = 1.

V(r)

0.5 1.0 15 2.0 25 3-0
-35f
—40F

-45

Figure 2.6: The potential V(r) for k =0,v =1,G =1,A¢s5 = 1.

Now, to examine the behavior of spacetime when the scalar field goes asympotically to
zero at infinity we will make a change of co-ordinates. We set: p = \/7(r + v) and now the



452.8. Four Dimensional Asymptotically AdS Black Holes with Scalar Hair

metric function becomes:
4p? |1/?

ds®> = —u(p)dt? + ————
s u(p) 1T 122

u(p)dp? + p*do* (2.223)

where the factor of dp? is obtained using the relation for the total derivative:

dp(r) = p'(r)dr (2.224)
where:
G2 +4p2  2Gp? (V2 +4p* +v)
u(p) = — s T () | ke Ay (2.225)
v v (V2 +4p? —v)
and:

2v
o(p) " <V i 1>
p - \/i
Computing the asymptotic expression of u(p) at infinity we can see that the scalar charge
v disappears:

(2.226)

G
u(p = o0) = ﬁ(p_g) “ 3 +k+ Aesrp? (2.227)

while g,, goes to:

Aeffl/2 n 11GV2 . E _ kV2 Aeffl/4
16 240p3  3p 16p% = 256p2

Gpp ~ k — + Aesp® +0(p7°) (2.228)

It is clear that the geometry at infinity deviates from the usual AdS geometry. This behavior
is attributed to the scalar field profile.
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2.9 Exact black hole solution with a minimally coupled scalar
field (The MTZ Black hole)

Here, i will derive the Black Hole solution reported at [2I]. Consider the action:

R+6172 1
S = /d4x\/7—g{2 — 50" 00u0 — V(¢)} (2.229)
and the metric ansatz:
1
ds* = —f(r) (b(r)dt2 + mdﬂ + r?df? + sinh? 9dg02> (2.230)
T

Now, the field equations can be easily obtained from the variational principle:

1
G;w - 3l_2g,u1/ = 8u¢au¢ - ig;wgaﬁaagbaﬂqb - guuv(¢)a (2'231)
0o = W 2.232

Using the metric ansatz we calculate the tt, rr, 00 equations and the Klein-Gordon:

= 2% f ((rt/ +4b) f' 4+ 2rbf") + 212 % (2rb' + b (r?¢ + 2) +2) — 31%r°bf"? + 4r° f2 (IPV(2:23B)

=207 f (rb' +4b) f + 2 f* (rPb¢' =2 (rb' + b+ 1)) — 310" — 4r? 2 (IPV = 3)
= APF((rb +b) f'+rbf") + 2072 (r (b + b¢') +20') — 31Prbf™ + 4rf* (IPV - 3),
¢ (rft +b(rf' +2f) +rbfe" V'

rf(r)? ¢
The MTYZ paper states that for the given potential the authors managed to solve the equa-
tions. I can obtain three indepentent equations which can be integrated analytically if we’re

given the scalar field form, therefore, i will take the form of the scalar field and derive all
other functions. Hence, we’re given:

o(r) = V6 Arctanh . i . (2.237)

Now, form Einstein’s equations we can obtain the following simple relations:
2£(r) (f"(r) + f(r)¢'(r)?) = 3f'(r)*> = 0, (2.238)
r(2b(r) — ¥/ (r)) f'(r) + f(r) (7‘2 (=b"(r)) +2b(r)+2) = O. (2.239)

The second from the above equations can be integrated like (6.2.4). The equations are
almost identical. Thus,

b(r) = cor® +r? / _a- i4{£?£(r)drdr (2.240)

(2.234)
(2.235)

(2.236)
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Given the scalar field we can analytically integrate to obtain f(r),

car(2u )
f(r) = PErESE (2.241)
which we can simplify:
_r2utr)
f(r) = i) (2.242)

We obtain b(r) by integration:

rt(er — 6p)(In(r/(2u +1))) = 2u(p + 1) (—err? + 20 (er + 2r) + 2pr(cr + 3r) + 4p3) )

b(?”) = 32#37”2 T2,

(2.243)
for ¢; = 6 becomes:

b(r) =cor®* — = — — — 1 (2.244)
We substitute all configurations in one of Einstein’s equations to obtain the potential:

3 3e2 (2,u2 + 72+ 2ur)
V(ir)=—5 — 2.245
(r) =1 ) (2.245)

The Klein-Gordon equation for the above potential is satisfied. We will set co = 1/1% and
we now have:

r(2p+ 1)
_ 7 2.246
sy = T (2.216)
r2 1 ?
b = ——|(14+- 2.247
" = 5 ( - ) , (2.247)
3 3(2p®+r?+2ur)
v = = - 2.248
(r) 12 Br2pu+r) ( )
6 sinh? (-2
V6
Vip) = l2(> (2.249)
The potential has a global maxima for ¢ = 0 and a mass term given by:
2

which satisfies the Breitenlohner-Friedman bound [22] 23]that ensures the perturbative sta-
bility of AdS spacetime. The black hole spacetime is static and spherically symmetric
therefore admits two Killing vectors s, d,. The event horizon of the black hole is the largest
positive root of gy and for this case is:

ry = ; (Vau/i+1+ 1) (2.251)
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This horizon surrounds all possible singularities of the solution. The p parameter of the
scalar field is related to the black hole mass. The range of the radial parameter is r > 0 for
positive mass while r > —2u for negative mass in order for a complete physical interpretation
of the solution as we can see in the figures below. We now present some plots for the physical
quantities of the solution. As we can see from the figures, all possible singularities of the
scalar field and the metric function are hidden behind the event horizon of the black hole.
The scalar field for positive mass is divergent only at infinity, the Ricci scalar is dynamical
and related to the cosmological constant at infinity, the scalar potential diverges at the origin
while tends rapidly to zero at large distances.
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Figure 2.7: From top to bottom: The metric function f(r)b(r) = g the scalar field function
¢(r), the Ricci Scalar R(r) and the potential V (r) for | = 1 while changing the parameter
1 which is related to the mass of the solution.
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2.10 Black Holes with non-Minimal Derivative Coupling

In this section we will discuss solutions reported at [53] 55]. We consider the action:

S o)

S:/dﬁ‘w\/—ig(

where we consider Einstein’s gravity and a scalar field which besides, its usual kinetic energy
term, is coupled to the Einstein tensor and z is the coupling constant. This is a Horndeski
theory [54] and we expect second order differential equations for the equations of motion.
This model has been, at first, considered for cosmology, since the addition of such a term
results to an accelerated expansion without the need of a scalar potential. We will discuss
here some local solutions for this model.

Varying with respect to the fields, the field equations are obtained:

1
G;w = Vu¢vu¢ - ig;wva¢va¢

1
— z< -V, V00 + Vo (V,0)VH(V,0) + RW&gVO‘qﬁV’B(b — iRVuéquﬁ + 2Va¢Ra(uV,,)¢
- ;Guuvawm + g ( — R*PVa0V 50 + ;(DW - ;vavawav%)) (2.253)

<g’“’ - zGW) V,V,b =0 (2.254)
We will consider the following metric ansatz:
ds* = —f(r)dt* + h(r)dr® + r?dQ? (2.255)

where dQ? is the 2-sphere line element. Since Vg = 0 and V,G* = 0 because of the Bianchi
identity, we can rewrite the Klein-Gordon equation as:

V{9 = 2G")V,6} =0 (2.256)

1
Using, V,VHF = \/jau(\/—gV“), integrating once, setting the integration constant
-9

to zero and considering ¢'(r) # 0 since this will yield trivial solutions, the Klein-Gordon
equation will take the form:

rf'(r) r2h(r) —h(r)+1=0 (2.257)

f(r) z
Einstein’s equations are rather complicated but we will give them for completeness:

h(r) (qu/(r) (d)/(r) + 47“@5"(7”)) — 2rh’(r))—3Tzh'(r)¢/(r)2+h(r)2 ((7‘2 + Z) ¢ ()% + 2)(—2h(r))3 =0
2.258
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qb'(T)Q (f(r) (h(r) (7“2 + z) — 3,2) — 3rzf'(r)) +2h(r) (f(r)(h(r) —-1)— rf/(r)) =0 (2.259)

— )R (' (r) (28 (r) (@ (r) + 200" (1)) =B/ (1)) +12f" (1) (r)?) = 3rz f (1)} (r)¢' (r)?
HAR(r)2(f'(r)+rf" (1)) +rh(r) £ (r) 2 (2h(r) +2¢' (1)) + £ ()2 (4h(r) (W (r) = 22¢/ (r)¢" (r) )+
620/ ()¢ (r)? — 4rh(r)?¢'(r)?) = 0 (2.260)

which are the tt, rr, 00 equations respectively. We solve for h(r) from the Klein-Gordon:

_2(rf(r) + f(r)
h(r) = ) (2 2) (2.261)
Now substituting back to tt and 06, we obtain a relation for ¢'(r):
o2 rE(f(r) + f(r)
¢'(r)” = CICIEL (2.262)

and from 77 a differential equation for f(r) can be found:

rf(r) (rf’(r) + f(r)) (r (37’22 +rt 4 222) f(r)+22 (3r2 + 22) f'(r)— 27“3f(7')) =0
(2.263)
which has a solution:

S

3/24,.—1
c1 627“2 coz°/“ tan (

f(r)= " + 3 + " ) + 3coz (2.264)

The obtained configurations satisfy all components of Einstein’s equations and the Klein-
Gordon. The asymptotic expressions at zero and at infinity are:
e cor? c923/2 tan~! <L>

Vz

f(r—0) ~ 7—1— 5 + + 3c2z, (2.265)
el + 7r023/2
2(1) ozt 9z 922 cor?
f(r—o00) ~ . R + 3 + 3coz. (2.266)

We will modify f(r) in order to match Schwarzchild solution at small distances. Setting

c1 = —2m and ¢y = o and f(r) becomes:

2 /ztan! (L
fr=+3- o+ ()

4 r 122 4r (2.267)

We can see that z acts as an effective cosmological constant term. Considering that z > 0,
the metric at infinity behaves similar to the Schrwarzchild-AdS solution. Imposing m > 0,
the metric has only one root which indicates the position of the black hole holrizon. We
present plots for the metric function f(r) and for the squared derivative of the scalar field.
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Figure 2.8: The metric function f(r). Here we fix z = 1 and change m.
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Figure 2.9: The derivative of the scalar field squared ¢'(r)? while changing m (z = 1).

We can see that the derivative of the scalar field blows at the event horizon of the black
hole. Moreover ¢'(r)? is negative outside of the horizon and the scalar field behaves as a
ghost, since f(r) > 0 outside the horizon while inside the horizon, the scalar field behaves
as a regular one, since f(r) < 0.

The Kretschmann scalar is divergent at the origin » — 0. It’s expression is complicated
but we’ll give a plot.

The temperature is given by:

(2.268)

| =

where 8 = 27/k, where:

P (2.269)

2 vV —9ttgrr ——
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Figure 2.10: The Kretschmann scalar while changing m (z = 1).

Then, the temperature at the horizon can be obtained:

7“,21—{—227

(2.270)
8mwzry,

T(Th) =

where, 1, is the position of the black hole horizon. The temperature is always positive since
z > 0. In the limit of z — oo

0.4r

0.3

T(rn)

0.2

'h

Figure 2.11: The temperature while changing z.

The temperature has a minimum value. We compute the derivative of the temperature
with respect to the horizon:

ré — 2z
T'(rp) = -2
() 87rr,21z

It has a root located at 79 = v/2z. The second derivative is positive at this point: T"(rg) =

meaning that 7 is a total minima and the value of the minima is 7'(rg) = Qﬁlﬂﬁ =

1

4/2723/2

0.11254
vz oo
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Chapter 3

Black Hole Solutions in 3-dimensional
(General Relativity

3.1 The BTZ Black Hole

Here, i will discuss the famous BTZ Black Hole [I2]. The discovery of the BTZ black hole
came as a surprise in the scientific community. In three dimensions, the Weyl tensor vanishes
by definition, thus no information about a gravitational field can be encoded there. If we
consider no matter and energy, then there exists no energy momentum tensor, and the Ricci
tensor vanishes from Einstein Equations, resulting to the vanishing of Ricci scalar. So, since
Ricci+ Weyl = Riemann, no geometry can be formed. If we include matter though, things
are different. Indeed, considering 2 4+ 1 Gravity and a cosmological constant term:

S = /d%\/?g(R —24) (3.1)

Einstein’s equation read:
G;U/ + Agw/ =0 (32)

and in the form of differential equations, imposing a two degree of freedom metric:

ds? = —b(r)dt* + f(r)dr® + r*do? (3.3)
we get: )
21\2_[)(})(())2 =0 (3.4)
) f;EZ%Q—;(i)A?fm L 55
b(r) (V' (r) f'(r) — 2f (ril;’;(b@)) ;} (J; ()g)b’(r)2 —4Mb(r)?f(r)* _ (3.6)

95
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It’s pretty trivial to integrate the equations. The first one is a differential equation for f(r):

f'(r)
rf(r)?

1
f(r)

2A — :0:>(Ar2+ )/:0:>

1
I =2"xr

where C'is a constant of integration. Now we can obtain b(r) from the second equation:

(3.7)

b'(r)
rb(r)

+2Af(r) = 0= (In(C — Ar?)) — (Inb(r)) =0 =

b(r) = C — Ar? (3.8)

Now, if we set C' = —M and A = —1/I, where [ the AdS radius we obtain the BTZ Black
hole:

b( Y (3.9)
D= M= |
We can see that this solution satisfies the gauge g9, = —1. The obtained configurations
satisfy the last Einstein equation.
3.1.1 Rotating Solution
For the rotating solution we impose a metric with rotational symmetry:
2 2 1 2, .2 2
ds? = —b(r)dt® + b~ (r)dr? + (u(r)dt n d@) (3.10)

Now the under the same action with the static case we obtain the following differential
equations:

= 26/(7")—}—7"3 '(r)? + 4Ar,

(
r) (20 (r) 4+ 73/ (1) 4 4Ar) + 2b(r) (3u/(r) + ru” (1)) ,

being the tt(rr), 60,t0 equations respectively. The first of these equations can be integrated
immediately to obtain the lapse function b(r):

b(r) = / <—;r3u'(r)2 - 2Ar) dr — M (3.14)

where M is a constant of intrgration. Now we plug this result in the 06 equation to obtain
the angular shift function:

(ru/(r) + 2u(r)) (3w (r) + ru"(r)) =0 (3.15)

20" (r) — 4A + 3r%u/(r)? + dru(r) (34 (r) + ru” (r))) + ru(r)® (2 (r) + r*u/(r)?
)

(3.11)
+ 4B4p)
(3.13)
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with the most general solution of this equation being:

C1
=c—— 3.16
ur) =2 - o (3.16)
where c1,co are constants of integration. Removal of global rotation of the co-ordinate
system leads to co = 0, so ¢; = J is the angular momentum of the black hole. Finally the

solution reads:

b(r) = @—M—Aﬂ, (3.17)
u(r) = _2;7{2_ (3.18)

In order to have a black hole, the asymptotic nature of the metric should be AdS, while,
M > 0 and the angular momentum should be constraint:

|J| < M1 (3.19)

It is remarkable that the BTZ black hole does not have a curvature singularity. All contrac-

107,\ T T T T T T T T T T T T T T T T T T T T T |

0.0 0.5 1.0 1.5 2.0
r

Figure 3.1: The metric function for [ = J = 1 while changing M. The case M = [J gives
only one horizon.

tions of the Riemann tensor are constant and related to the cosmological constant. This does
not mean that the BTZ black hole is not a black hole. It has a horizon (the spining case has
two horizons) and it is shown that it appears as the final state of collapsing matter and the
thermodynamical properties are very close to the ones the General Relativity counterparts
(Schwarzchild-Kerr black holes) possess [39].
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3.2 Conformally dressed black hole in 2 + 1 dimensions
Here, i will discuss the solution obtained at: [I0]. The action for this solution is:

R+ 2072 1 1
S = / dov/=g( =5 = 50u00"6 — SERS?) (3.20)
We consider three dimensional Gravity, a cosmological constant term and a scalar field
that is non-minimally coupled to gravity via the last term. The constant £ denotes the
strenght of the coupling between matter and curvature. It has been proven that in general
D dimensional spacetime for:

D=2 (3.21)

$= 4(D —1) '
the resulting theory is conformally invariant, i.e invariant under conformal rescalings. Here
we will consider £ = 1/8 in order to benefit from the resulting properties (the energy

momentum tensor is traceless, thus a very simple relation can be obtained between curvature
and the cosmological constant). So we have:

R+ 2072 1 1
S = /d%\/ 960" — qua?) (3.22)
2 16
The following equations extremize the action:
G,uzz - l_2gu1/ =T (3.23)
1
O¢ = §R¢ (3.24)
where:
1 1
= VadVid = 50wV Vad + 2(gw0 = ViV + G ¢” (3.25)

We will impose for simplicity a one degree of freedom metric ansatz and try to solve the
equations exactly:

1
ds® = —b(r)dt* + %dvﬂ + r2d6? (3.26)

The resulting equations tt, rr, 00 are:

12 (b(r) (57¢'(r)> — 30(r) (¢'(r) + 7¢"(r))) — V(1) (58(r) (2r¢'(r) + 6(r)) — 1)) — 2r

4127rb(r)
(3.27)
'(r 1 r ro (r r)) — r
o <b( JEGICTIGRLGIRE B (¢'<r>+ ¢2<>> +l22) —0 (328)
P (30() (F/()0'(r) + (1) (1)) + 60V (1) V') = 38 0°) +2 oo

4]2y2
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and the Klein-Gordon:

Vo) - o) (-2 - vr) + M g =0 )

T T

We mentioned before, that the resulting energy momentum tensor’s trace vanishes. Con-
tracting Einstein’s equations with g"” we obtain:

R4+6172=0 (3.31)

and in differential equation form:

— 2b;(r) —b"(r) + l% =0 (3.32)

It is trivial to solve this equation. We multiply with r%:

—2rb/ () — 20" (r) + - =0 (3.33)
The first two terms are a total derivative:
612
(sz/(r))/ == ZT (334)
We integrate:
2y = (3.35)
32 '
We integrate once again:
, 2r c r? ¢
Now, the combination b(r)%tt + rr gives the following equation:
3¢/(r)* — ¢(r)¢"(r) =0 (3.37)
It’s a matter of manipulations to see that this equation can be written as:
( ! )" =0 (3.38)
¢(r)?
which can be immediately integrated to obtain a solution:
A
o(r) = (3.39)

vr+ B
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Now, we have to see if the obtained configurations satisfy the remainig equations. We plug
the results in 00 equation:

A28 (B2—al?) Lo (8 B A2(B2+3Br+3r2)>
0

12(B+r)3 (B+r)3
= 4
1675 (3.40)
It’s difficult to see the constraints here. We can use Klein-Gordon then:
A (al?2(2B — r) 4+ 3B2%r — 3c¢l?
( ( ) ) =0 (3.41)

4127 (B + 1r)5/2

In order for this to be zero for arbitary r we have to set the co-efficients of O(r) and O(r°)
terms to zero. We thus obtain:

2B3
3B?

We check that with these constraints the Klein-Gordon equation is satisfied. Now we go to
00 equation:
B? (8B — A?)
S St A 44
812r> 0 (3:44)

which yields the constraint:

A=+V8B (3.45)
Now, the solution takes it’s final form:

2B* 3B ?
= te
_ 2V2VB

o(r) = VB¥r (3.47)

These configurations satisfy all equations. Also, we should impose the condition: B > 0 to
have a well behaved system everywhere. The horizon is located at:

ry = 2B (3.48)

(3.46)

and the scalar field remains finite there. A singularity exists at the origin, since:

12 (2B% + %)

lim Ry RO = lim ——7m—= — o0 (3.49)
The asymptotic relations at infinity are:
r2
b(r) ~ 7] (3.50)
2v2VB  V2B3?
o)~ VB _ V2 (351)

NG r3/2

and since the metric function behaves as O(r?) we have pure Anti de Sitter spacetime.
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3.3 Charged Black Hole with a Scalar Hair in (2 + 1) Dimen-
sions
Here, i will discuss the results of [13] where, the authors consider three dimensional General

Relativity, a scalar field non minimally coupled to gravity a self interacting potential and
electromagnetism:

1 1 1

5= / Pav/=g(R— " 0,00,0 — RS — 2V (9) — 1) (3.52)

The equations of motion that extremize the action are:
Gy =T, + T ! (3.53)
O¢p —1/8Rp — V'(¢) =0 (3.54)
VIE,, =0 (3.55)

where:
) 1 « 1 2

T/W = V;L¢VV¢ - ig;wv ¢va¢ + g(g/w[l - V,uvu + G,w/)(l3 - guuv((b) (356)
T Mozwell 1 /3 (FMFE 1 /4gWF2) (3.57)
F;w = 8}LAI/ - al/A/J, (358)
F? =F,, F" (3.59)

Imposing a one degree of freedom metric:
1
f(r)

and an ansatz for the electromagnetic 3-potential:

ds? = —f(r)dt* + ——dr* + r*dg? (3.60)
A, = (4 (r),0,0) (3.61)
. where Q and rg are integration constants. Einstein’s equations read:
F) (r (' (r) (2ro(r)¢' (r) + ¢(r)* = 8) + 4 (r) (¢'(r) (6(r) — r¢'(r)) + 16 (r)d" (1)) — 167V (¢)) —4Q*) =0

(3.62)
rf'(r) (2ro(r)d’ (r r)? —8) —4Q* — 162
f ( ) (2 ¢( )¢ ( )+ (bif)(r) 8) 4Q 16 V((ﬁ) + 4gb,(’l") (27“@25,(’/“) -+ d)(r)) =0 (3.63)

4r? (2f"(r) + ()¢ (r)? +4V(6(r)) = r?6(r) (4 (r)d(r) + o(r) " (r) + 4f(?“)d>”(7“))(+4%2
3.6
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Maxwell’s equations can be integrated (using total derivatives the result wil be a complitelly
trivial equation):

B M’(r) +TM//(T) =0= o = —Q 111(7“) +c3=—-Qln <T) (365)

T To

Now, from the combination of ¢t and rr equation we can obtain the scalar field:

1
Vkr+b

where k and b are constants of integration. A particular form of the scalar field configuration
will simplify very much the calculations:

o(r) = + (3.66)

(3.67)
From tt and 60 we obtain the metric function:

Q? Q*\ B 1 B r?
f(r) = (36—4> - <26—9>T—Q2<2+3T> Inr+ -5 (3.68)

The asymptotic realtions for the metric function are:

2

F(r = 00) ~ % + 6(n(r)) (3.69)
Fr—0) ~ —mz)fl(’") + ﬁ(i) (3.70)

We can see that we have pure AdS Space, since the leading order at infinity is the cosmo-
logical constant term. The cosmological constant can be positive, negative or zero. It has
been proven [14] that in order to have a black hole with horizons in 2 + 1 dimensions the
cosmological constant should be negative. Now we have to detrmine the potential. We can
solve one of Einstein’s equations to obtain the potential:

12B% (12Q% — 9r%) + 3B312Q + 4Br? (1% (98 + Q2) — 27r2) — 6BI2Q%r2 1n(r) — 3617

V(T) 36l27”2(B + 7“)3
(3.71)
We can invert the scalar field and obtain the potential as a function of ¢:
V(e) = 1+ ¢° n Bpd N Q240 ) Q%% (32 — 567 Q2¢6IH<B<%_1>)
(3.72)

We substitute all the obtined configurations in all of Einstein’s Equations and the Klein-
Gordon equation and we check that the obtained solutions constitute an exact solution of the
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Einstein-Maxwell-Non-Minimally Coupled Scalar Field equations. The mass of the metric
function is given by:

M= (35 - Cf) (3.73)

We will discuss now the scalar potential. To understand it’s behavior we split it into parts,
where U(¢) denotes the pure self interacting nature of the potential:

i) Bsb 0245 Q2¢* (32 - 5¢?) Q%¢%In (B (% - 1)) .
)= 5125 T o (¢ —8)> ' 18432B2(¢% —8)> 307282 (3.74)
If the Maxwell field decouples (@ = 0) we have:
6 6
V() = LA (3.75)

12 512B? 5122

u(e)
0.0010

0.0008 |-
0.0006 |-
0.0004 -

0.0002 -

-15 -1.0 Z05 i 0.5 1.0 1.5
-0.0002 -

-0.0004 |-

Figure 3.2: The potential U(¢) for @ = 1,1 = 1,B = 1,5 = —1. We can see that the
potential has two global minima, and one local maximum. If we included the cosmological
constant term and plot V(¢), then that maximum would be vertically displaced, denoting
the existence of a cosmological constant.
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Figure 3.3: The potential U(r) for @ = 1,1 = 1,B = 1,8 = —1 (top) and the potential

1
V(g) for @ =1,l=1,B =1, = —1 if we include the bare cosmological constant term 2
(bottom).

The Ricci Scalar reads: Q2( B )
2B — 3r 6
Rr)=—"—"3—— -5 (3.76)

As we can see it is dynamical and singular for » — 0 if @ # 0.
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3.4 Hairy Rotating Black Hole Solution in (2 + 1) dimensions.

We consider the action:

1 1
5= [ Eav=a(R- 70,000 - R - 2V(0)) (3.77)

The field equations read:

G =T5, (3.78)
1
06 — S Re — V'(¢) = 0. (3.79)
where:
1 1
T3, = VupVi¢ — 9wV PVad + g(gmﬂ — V.V + Gw)o? — gV (9) (3.80)

Since we are interested in rotating solutions we impose the following metric ansatz:

ds? = —b(r)dt2 + b1 (r)dr? + 1 (u(r)dt + d9)2 (3.81)

Under this ansatz the field equations become:

r3u(—=8b ¢ — 2(¢? — &)V (1) + 312 (¢ — 8)u/? + 32V) + b(2V (2r¢¢’ + ¢* — 8)+
r2(du(u' (2r¢d’ + 3¢% — 24) + (¢ — 8)u") + r(¢? — 8)u? + 8ru®(¢? — ¢¢")) — 32rV)
+86%(¢(¢ +r¢") — r¢) =0, (3.82)

(¢% —8) (20" +7%u?) + 4¢ (1t + 2b) ¢’ + 167b¢"* +32rV = 0, (3.83)
—8¢ (V'¢) +b¢") — 297" + 161" + 8b(r)¢"* + 3r* (¢ —8) u* +32V = 0, (3.84)

ru(—8¢(b' ¢ +bg") — 226" +16b" +8b¢? 4 312 (¢* — 8)u'> +32V) + 2b(u/ (2rp¢ 4 3¢? — 24)
+1r(¢* —8)u”) =0, (3.85)

being the tt,rr, 06,10 respectively. After some manipulations we can decompose the equa-
tions to obtain a differential equation for the scalar field, so we obtain the scalar configura-
tion:
1
o(r) = (3.86)

c1 + cor
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Now, we obtain a second order differential equation for the angular shift function u(r):
(24¢3 +c1(48car —3) +2cor(12¢or — 1))t/ +1 (8¢ +c1 (1697 — 1) +cor(8car—1))u”) = 0 (3.87)

which we can solve:

r
cs((8c1 — 1)(8¢t — e1 — 2¢or) — 16¢31% In <_8c1 — 8car + 1)>

u(r) = (8 — 1)r2 +cq (3.88)

We compute:

(8c1 — 1)3¢cy — 8ckezIn (—%)
li =
) e — 17
In order to avoid global rotation of the co-ordinate system we have to make the above
limit equal to zero so we set:

(3.89)

80%03 In (—%)
(801 — 1)3
We can see that for ¢; = 1/8 the solution seems to behave odd. We go back to seek the

reason for this behavior. The integration constant c; is related with the value of the scalar
field at the origin, we therefore make a series expansion of u(r) at ¢; = 1/8:

1 12 3
(c1—g)es  (a—§) es  es(12cr +1) 1
= — o - = 3.91
u(r) 256¢3r4 + 320c3r® + 192¢o73 + “ 8 ( )

(3.90)

Cq —

It seems that the solution is perfectly regular at ¢; = 1/8 and therefore we will substitute
c1 = 1/8 and now the angular shift function becomes:

C3 C3
= 3.92
U = 09,8 T 162 (3.92)
Now we can very eagsily obtain the lapse function:
2 2,.2
c3 (144c5r° + 24cor + 1 —12¢cor — 1
b(r) = s (144cy rtl) | e(-20r -1 (3.93)

36864c3rt 3r

while the scalar potential is obtained from Einstein’s equations and reads:

cg (46086%7“3 + 1088037‘2 + 96¢or + 3) — 491520%7“5 (3203 (6057“3 + 06) + T2¢90512 + 9057")

V(r) = :
(r) 18432275 (Scar + 1)3

(3.94)
The above configurations satisfy the Klein-Gordon equation as expected since the Klein-
Gordon equation is just the result of the covariant differentiation of Einstein equation.
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Now, adopting the same values for the integration constants with the paper we have at last
the configurations:

¢(r) = Qﬂ\/BJiT’ (3.95)

28B  r*  o?(2B + 3r)?

b(r) = B+=—t g t— 1 (3.96)
a(2B + 3r)
ur) = =5 (3.97)
vy = 39°BU+ B (17072 - 31°) + 120°B°Cr + B (9allir® + B —3r7) i
12r5(B +1)3
V(o) = gt gl b+ Y (¢ — 400 d ) (3.99)
l 5121 512B 51284 (¢2 — 8)
6 6a’B(5B+6
I - aa (3.100)

12 76
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Figure 3.4: From top to bottom: The metric function b(r) the angular shift function u(r),
the Ricci Scalar R(r) and the potential V (r) for [ = 1, B = 1,3 = —1, while changing the
parameter o which is related to the angular momentum of the solution.
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In these figures we plot the configurations along with the a = 0 (static) case in order to
compare the results. We can see that due to angular momentum the metric function develops
two horizons. Also for a = 0 the Ricci scalar is constant and related to the cosmological
constant term. The potential diverges at the origin while ternds rapidly to zero at large
distances, while for the vanishing of the angular momentum we can see that the potential
is constant and equals the cosmological constant. As a result the vanishing of « gives back
the conformally coupled black hole we previously discussed [10].
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Chapter 4

f(R) Gravity

4.1 Black Hole Solutions in R? Gravity

Here, i will derive the Black Hole Solutions reported at [5]. The action reads:

S = /d%«ﬁ—gRQ (4.1)
and the metric ansatz:
2 2 1 2 2 12
ds® = —b(r)dt* + mdr + r*dQ} (4.2)
T

where dQ? is the 2-sphere line element. It’s a matter of trivial calculations to arrive at the
equations of motion:

1
2R, R — 5g,wR2 +2¢,,0R -2V, V,R =0 (4.3)

As expected, the resulting differential euations are fourth order non-linear differential
equations. Although, spherical symmetry will make things easier and we can obtain a simple
second order differential equation, which can be written in terms of the product of three
differentials equations. The equations tt, rr, 86 are:

_27"41[)(7') (2r4b(3) (T)b/(T) . 7“2(7‘1)”(7“) — 2b’(r))2 + 4b(r)(7“4b(4) (T‘) + 6T3b(3) (7”) + 27’21)"(7“)—

4rb/ (1) — 6) + 20b(r)? + 4) =0
(4.4)

% (b(?“) (27“41)(3) () () — r2(rb" (r) — 20/ (1))2 + 8b(7‘)(7‘3b(3) () + 472" (r) — 2rb' (r) + 3)

—28b(r)* + 4)) =0
(4.5)

71
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QLG <T4b”(7’)2 — 8126 ()% + 4t () (363 () + 520" (1) + 6) + 4b(r) (6@ () + 57°6E) (1)
.

—2r2" (1) — 8rb/(r) — 6) + 28b(r)* — 4) =0

(4.6)
After careful inspection of the above system of equations, we can see that the combi-
tt* b(r
nation: 2( ) + 06 does not contain fourth order derivatives. We could also solve the ¢t
T

equation for b (r) the plug the result in 66 equation. Solving this for b®)(r) and substi-
tuting into rr the following is obtained:

~3b(r) (rb'(r) + 2b(r)) (r2"(r) — 2b(r) 4+ 2) (720" (r) + 4rV/(r) + 2b(r) — 2) —0 @7
214 (rt/ (r) — 2b(r)) '

which we can integrate (the equations can be very easily solved by hand) to obtain the
following three solutions:

C
b(r) =~ (4.8)
Gy Cy
b(r) = 5 +—+1 (4.9)
b(r) = Cyr? + % +1 (4.10)

C
The first solution: b(r) = —21 doesn’t possess the desired asymptotic behavior. It seems
r

that for large r, r — 0o there exists no geometry. As a result, the first equation is not a
black hole solution.
The second equation has the desired asympotic behavior. For large r we obtain the

1
Minkowski metric. We can identify the integration constant Cs as M since we want O(-)
,

to represent mass terms. So we have:

_ G M (4.11)
"

Note here that we cannot identify Cs as the black hole charge because the metric resembles
the Reissner-Nordstrom spacetime, as is naively done in numerous published papers. If we
had considered a maxwell term in the action and this ended up being a solution we could
then identify the constant as the black hole charge.

The third equation has the desired asymptotic behavior and reminds us of an (A)dS-
Schwarzchild spacetime, where in such spacetimes,we want for large r the 1 + O(r?) to
survive. Indeed, we can identify C4 as A and C5 as M:

b(r) = Ar? — M (4.12)
T



73 4.1. Black Hole Solutions in R? Gravity

We should note the fact that the obtained solutions are trivial solutions of the thoeory. If
we trace Einstein’s equations we have:

OR =0 (4.13)

This equation has two trivial solutions and one non-trivial:

R = 0 (4.14)
V,R = 0 (4.15)
OR = 0 (4.16)

We have seen that we are able to obtain the solutions for vanishing Ricci scalar and for
constant Ricci.

4.1.1 Coupling to Matter

We now couple R? Gravity to Electrodynamics:

S = /d“x\/fg (16‘22}2? — 1F2> (4.17)
The field equations are straightforward to obtain:
RR,, — R?+¢,0R-V,V,R = 42<F Fe_ L F2> (4.18)
= g9 Iu wVu W\ Fuely — J9u
V. F' =0 (4.19)

The field equations for a one degree of freedom spherically symmetric metric:
ds® = —f(?“)dt2 + f_1(7")d7"2 + r2d0? (4.20)
are the following:

0=f (72 (rf" —2f") —af <2r2f” Frt @ 63 fS) —arf - 6) — 2t O 1 202 1 8%Q% — 4)

(4.21)

O — _T,Q (Tf” _ 2f/)2 + 8f (47‘2f” _|_ r3f(3) _ 2,r,f/ + 3) + 2r4f(3)f/ _ 28f(7ﬂ)2 _ 8/1/2Q2 + 4
(4.22)

0= 47"f/ (5T2f// + T3f(3) + 6) +4f <_2T2f// + T4f(4) + 57_3]0(3) o 87'f/ . 6) —8T2f/2+r4f//2+28f2+8H2Q2_4
(4.23)

while Maxwells equation for the following four-potential ansatz

A, = (A(r),0,0,0) (4.24)
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yields:
2 /
_ 2 gy — o (4.25)
T
which we can immediately integrate:
A(r) = —g (4.26)

Now from the components of Einstein’s equations we obtain:
4r f'(r) (er"(r) + 2) + 74 f7(r)2 + f(r) (8 — 8rf’(r)) —Af(r)? +8u2Q* —4=0 (4.27)
which we can integrate to obtain:

d2 2M2Q2 d17“2
— 14 2 _
f(r) + r dir? 12

(4.28)

where d; and dy are constants of integration. We can see that ds is related to the mass of the
black hole while d; is related to the cosmological constant term that is generated through
the field equations. If we define a neq variable Z as:

2 22
P “df? (4.29)
then the metric function becomes:
M 7 M? 2 )

We cannot have any charged asymptotically flat black hole solutions as one can see. We can
only have dS-RN Black Holes for positive Z or AdS-RN Black Holes for negative Z. The
trace equation is still:

OR=0 (4.31)

since the electromagnetic stress tensor is traceless and it is sasfied since the Ricci scalar is
constant:

) 22
Re_ MZQ (4.32)
The Kretschmann scalar and the Weyl squared yield:
12M?r2 4 48MrZ +562%  2u*Q*
Rogys RO = o (4.33)
12M?  48MZ 487>
Caﬁ-\/écaﬁ’y& — 7=6 -+ 7'7 + 7"8 (434)

Both quantities diverge at the origin and remain finite for all » > 0. Hence, r — 0 is a
physical singularity. We can also see that the &(r?) term does not contribute to the Weyl
norm. This is expected. The Weyl tensor contains information about the free gravitational
field. This term represents the cosmological constant term, thus does not appear.
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4.2 A "Bianchi Idenity" for f(R) Gravity

In a next subsection, i will derive the field equations that govern the f(R) theory of Gravi-
tation. Here i will proove a genenarized Bianchi identity for f(R) theories of gravity. The
field equations are:

1
fRR,LLl/ - §guu[f(R)] + gw/DfR - VqufR = ’iTw/ (435)

where T, is the energy momentum tensor and fr = df(R)/dR. We take the covariant
derivative of this equation. For the left hand side we have:

1
\%a (fRR/w - §gw/[f(R)] + gul/DfR - vuvufR) (436)

The first two terms are very easy:

1
vu(fRR/W) = v'u(fR)RuV + v#(RMV)fR = v'u(fR)R/u/ + fR <2VI/R>

1 1
i <_9W[f(R)]> = —5/RVu(R),
thus these two terms give:
VH(fr) Ry

We want the last two terms to cancel out the above relation, in order for a Bianchi identity
to exist. The last two terms are:

vu(g,ul/DfR - vuvufR) = vuvavafR - vuvqufR = (vuvu - VMVV)vaR =

9*(VuVe = VeV )Voufr = —g" Ry Vi fr = —RiVufr = —Rigu V" fr = —Ruu V" f,

hence we have:
v“(fR)Ruu - RuqufR =0, (437)

thus the f(R) Gravity field equations obey a generalized Bianchi Identity:

1
\%a (fRR,uZ/ - ig,ul/[f(R)] + g,LLUDfR - vuvufR) =0, (4'38)

with the same assumptions one imposes to proove the Bianchi identity in General Relativity,
a manifold with a compatible metric and no torsion.
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4.3 Some Exact Vaccum Solutions

Here i will discuss some exact solutions of f(R) gravity that can be interpreted as black
holes. T do not know who to cite because i have not seen somewhere the solutions i present
here obtained with this procedure but some exact solutions can be found at |28, 27, 291 [30].
We consider the action:

S = /d4x\/?g<R+f(R)> (4.39)

which is general relativity plus an analytic function of the Ricci scalar R. By variation we
obtain the equation:

1
RIW(I + fR) - 5 (f(R) + R) g,ul/ + (g/wD - V,uvy)fR =0 (4.40)

df (R

spherically symmetric metric:

where fr = and for f(R) = 0 we obtain Einstein’s equations. We impose a general

ds® = —A(r)dt? + B(r)dr? + r?dQ? (4.41)

where dQ? is the two-sphere line element. The field equation yields differential equations
that is not clear how we can integrate them in full generality. We further assume the gauge:
B(r) = A7'(r). Now the equations read:

0 = 7 (A (—rfp+2fr—2) +rfrA" +rf) —2A(Pfh+2rfp+1) +2, (4.42)
0 = A(r (A (—rfr+2fr—2) +rfrRA" +7f) =24 (2rfp+1) +2), (4.43)
0 = r (24" (rfr+1) —rA" =2A(fp+rfr) +7f) +2fr (rA' + A—1). (4.44)

Now from the first two we obtain:
A(r)fg(r) =0= fr=c1+cor (4.45)
while from the first and third:
r2A'(r) fr(r) + r?(fr(r) + D) A" (r) — 2A(r) (rfr(r) + fr(r) + 1) + 2f(r) +2=10 (4.46)

From (4.45) we can see that:
R
f(R)=ciR+ ¢ / r(R)dR + C (4.47)

by direct integration with respect to the Ricci scalar. ¢; is related to the Einstein Hilbert
term while ¢y to geometric corrections that can be encoded in f(R) gravity and C is a
constant that does not depend either on r or R. Equation can be integrated for
general c1,co but the result is abominationally complicated to say the least. So we will
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give some values to the integration constants to obtain the metric function. At first we set
c1 = co = 0 and the equation for the metric function reads:

(r?A”(r) —2A(r) +2) =0
which yields (A)dS schwarzchild:
A(r) =1+ 673 + g (4.48)
Now, we substitute the result back to one of Einstein’s equations and f(r) is obtained:
f(r) = 6eq (4.49)

and the Ricci scalar is of course constant:

R(r) = —12¢4 (4.50)
and now the "correction" reads:
R
(R =3 (4.51)
which is linear in R. If we set ¢4 = —A /3 then, the correction terns out to be the cosmological
constant term as expected.
R(r) = 4A, (4.52)
flr) = =2A, (4.53)
f(R) = =2A. (4.54)

We now set ¢; = 0. Now the correction becomes:
R
F(R) = ¢ / r(R)AR (4.55)
and the full R+ f(R) will become:

R
R+ / T‘(R)dR

We now obtain the metric function:

1
A(r) = —637“2(6263 +1)In (027“ n 1) + 5(0203(1 —2¢or) + 1(c2(3cor — 2) + 2¢471) + 2) — ;—i
(4.56)

The logarithm makes things complicated. We will kill the logarithm by setting: ¢3 = —2:

co’

1 1 3¢c3
Alr)= - 2 =2 4,
(r) 5 + Seor +7r < 5 + C4> (4.57)
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which is Schwarzchild (A)dS metric. We substitute back to one of Einstein’s equations and
obtain f(r). We have:

9c§r + 2¢o + Geyr

f(r) = . : (4.58)
1
R(r) = —18¢3 —12¢c4 + = (4.59)
f(R) = 202\/1803 +12¢4 + R+ 9¢3 + 6cy, (4.60)
R+ f(R) = R+2c2\/18c§ +12¢4 + R+ 9¢3 + 6¢4. (4.61)

which contains square root correction to General Relativity.
We will now consider ¢; = —1 and general co. We expect that the pure Einstein Hilbert
term will disappear. The metric function reads:
A(r) = 24 6B 4 oy (4.62)
r)=_-+4+ = +ar :
2 g2
Plugging the result back to Einstein’s equations we obtain the following:

2091 + 12¢47% — 1
flr) = 5 , (4.63)

r

1
R(r) = T—2—12C4, (4.64)

Ff(R) = 2c\/12c4+ R— R, (4.65)
R+ f(R) = 2c\/12¢4 + R. (4.66)

Indeed the pure Einstein Hilbert term disappeared as we expected. Now to check if the
obtained model has any physical meaning we compute the second derivative of the model
to check for tachyonic instabilities. Moreover a positive frr ensures quantum mechanically
that the scalaron is non-tachyonic. We have:

C2

‘ 4.67
2(12¢4 + R)3/2 (4.67)

frRR = —

1
,where 12¢4 + R = — always positive. Then in order for the second derivative to be positive
r

we have to impose the constraint:
co <0 (4.68)

Then, the metric function describes a black hole solution with an (A)dS asymptotic behavior.
The resulting R+ f(R) is stable [3I]. c4 behaves as an effective cosmological constant that
is generated through the equations.

We should note the fact that this model also satisfies the constraints from Cosmic Mi-
crowave Background since fr = —1+ cpr < 0 as it is discussed at [I5]. One may argue that
in the action finally appear constants of the solution that are not fundamental constants
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-50|

-100}

Figure 4.1: The metric function A(r): Green: ¢3 = 1,¢4 = 2, Red: ¢3 = —1,¢4 = —3, Blue:
c3 = —cq4 =1, Orange: —c3 =c4 =1, Yellow: —c3 = ¢4 = 5.

of the theory. By assuming a negative value for c¢o for example co = —1 and substituting

¢y = —A/3 we have:
R+ f(R) = —2v/R —4A

which contains only fundamental constants of the theory.
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f(r)
o : ,
04 0-6 078 10
-100:—
—200:—
—300:—
Figure 4.2: The gravitational model as a function of the radial coordinate f(r) for co = —1:

Green: ¢4 = 1, Red: ¢4 = 2, Blue: ¢4 = 3, Orange: ¢4 = —1, Yellow: ¢4 = —10.

R()
300:—
200:—
100:—
R —— 55 o= o '

Figure 4.3: The Ricci Scalar R(r): Green: ¢4 = 1, Red: ¢4 = 2, Blue: ¢4 = 3, Orange:
cqy = —5, Yellow: ¢4 = —10.
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4.4 Some Exact Charged Solutions

Some charged f(R) black hole solutions can be found at [32] B3] B4, 35, 36, 37, B0}, B38]. We
begin with the same theory minimally coupled to Maxwell’s kinetic term:

S = /d%xﬁ—g(R + f(R) — 1/2F2) (4.69)
The field equations are:
1

R,uy(l + fR) - §(f(R) + R) Guv + (g,uVD - vuvu)fR = T;u/ (470)
VIE,, =0 (4.71)

Imposing the same metric ansatz and the following ansatz for the U(1) field:
ds* = —B(r)dt* + B~ (r)dr? + r?dQ? (4.72)
A, = (4/(r),0,0,0) (4.73)
allowing only radial electric fields, Maxwell equation can be immediately integrated to yield
o (r) = 63 (4.74)

where @ is the charge of the black hole. Now the differential equations form Einstein’s field
equation yield:

= 13 (= (B (—rfr+2fr—2) +1frB"+7f)) + 2r°B (r*ff, + 2rfp + 1) + Q* 4275)
= 3 (B’ (—rf]’pL +2fr — 2) +rfrB" + rf) —2°B (2'r‘f1’3 + 1) — Q%+ 2r?, (4.76)
= (2B (rfp+1) +rB" + 2B (fp +rfp)) +2r%fr (rB' + B — 1) +r* f + QA.TT)

From the first two we obtain:
fR=0=fr=c1+cr (4.78)
We set ¢; = ¢co = 0: and then obtain the metric function:

2m 2
B(r) UL A

4.79
r 2r2 ( )

where ¢4, m are integration constants, the mass and an effective cosmological constant which
is the RN(A)dS Black hole metric. Now we obtain f(r) which as expected is constant:

f(r) = 6cy (4.80)

and the Ricci scalar:
R(r) = —12¢4 (4.81)
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If we set ¢4 = —A/3 we obtain:
2m Q2 Ar?
Br) = +1- " * 4.82
(r) * r + 272 37 (4.82)
R(r) = A4A, (4.83)
f(R) = —2A. (4.84)

We are able to derive the RN AdS black hole for fr = 0 as it is expected to happen. We
will now set ¢; = 0 and arbitary co. We obtain now the metric function:

11 2 Ar?

R B R

2 3cor  2r 3
The most general solution is complicated and contains logarithms. This solution is obtained
by adjusting the integration constants. We expect that the Ricci scalar will be dynamical
because of the presence of 1/2 instead of 1 in the metric function. We substitute the solution
to Einstein’s equation to obtain f(r), we compute Ricci scalar and reconstruct f(R):

(4.85)

fr) = w (4.86)
R(r) = 712+4A, (4.87)

f(R) = 2 (CQ\/—4A Ty A) , (4.88)
R+ f(R) = R+2 (02\/—4A+R— A), (4.89)

which contains square root corrections to General Relativity. In order for the obtained model
to be stable we compute the second derivative of the model:

C2
oA R

The denominator is always positive and we want frr > 0 so we have to impose

fRR =

<0 (4.90)
We can modify the metric function by setting A = 0 and now the configurations read:
2

B(r) - % n 3c127~ n % (4.91)

R(r) = %2 (4.92)

f(r) = 2% (4.93)

f(R) = 2¢eVR, (4.94)

R+ f(R) = R+2cVR, (4.95)

where co < 0 in order for the model to be stable. We can see that for negative ¢y the mass
terms acquires the correct sign.
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4.5 Black Hole Solutions in f(R) Gravity Coupled to Scalar
Fields

4.5.1 Minimal Coupling

We consider the following action:

5= [atev=s{ 5150 - 4] - 50 0,00,0) (4.96)

To obtain the field equations one must vary with respect to the inverse metric tensor and
the scalar field ¢. Varying with respect to the inverse metric tensor (ignoring the boundary
terms) we have:

55 =0= 4| fd4w\/fg{21ﬁ[ F(R) — A] - ;gwauwm}} —0

1
For the cosmological constant A term we have: 0(y/—gA) = —5\/—ggu,,5g‘“’A, where we've

1
used that: §(y/—g) = _ix/fggw(gg/w.

1
For the kinetic term: \/—gigwamam we have:

1 1 1 1
6[V=959" 0u60,9| = ~ v/ =9980" 39 0as0) + 5/ =09 0000,
Varying the f(R) term we obtain:

§ [d*ay/=g[f(R)] = [d*z|— ;\/fggﬂuég“”f (R)+v/=g0f(R)] =

1 df (R
J a5~ gowie )+ Loy

We know that variation of the Ricci scalar with respect to the inverse metric tensor yields:
OR = 0g"" Ry, + 0R,g". In General Relativity, the last term of the previous expression is
zero because it degenerates to a surface term where the variation of the metric tensor is zero.
In f(R) Gravity this term is §R,,, g"” f'(R). We cannot write this term as a total divergence,
f'(R) is bothering us. So, using a well known identity we can write: 0R,,¢g" f'(R) =
' (R) |90 — V.V, |09, where O = ¢V, V, the D’Alambert operator and the prime
denotes derivative with respect to the Ricci Scalar R. The box operator and the covariant
derivatives act on the variation of the inverse metric tensor, but we want this term to be a
multiplying factor of the whole action. So intergrating by parts (twice) these two terms and
discarding surface terms we have:
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[ d*z/=gf' (R)[gwg""VaVedgh] =
Jd'ay/=gf' (R)gu V*Viog"] =
[ d*a/=gVP (1 (R)g,u Vdg] = [ d*an/=gVP[f (R)]guw Vidg" =
— [ d'a/=gV°Lf'(R)] g Viog" =
— [ d*z/=gVi[V ' (R)gundg™] + [ d*a/=g9. Vs [V' ' (R)]0g" =
[ d'e /=99, V[V f'(R)]og" =
S d*av/=g69" (909" VsV f' (R)]
For the [ d*z\/—gf(R)V,V,0g" term we have:
Jd*ay/=gf'(R)[V,.V,og"] =
S d'e/=gVulf'(R)V,0g""] — [ d*ay/=gV,[f'(R)]V,0g" =
— [ d*a/=gV,u[f (R)]V,og" =
— [ d'o =gV, [V.f' (R)og"] + [ d*z/=gdg"' V[V f'(R)] =

[ d*e/=gég" Vo [Vuf'(R)]
So gathering together all these terms we obtain:

1
58 = [ dizy/=gog” [ F(R) Ry — ~gu[f(R) — Al + g Of (R) — V.V, f'(R) — K [0,00,6 +

2
1
§guugabaa¢ab¢]:| =0

The action above yields the following field equation:

1

fRR/w - ig/w [f(R) - A] + g,uVDfR - vuvufR = /fT,uV (4-97)

1
where T, = 0,00, — ~g,,9*°0aPOp is the scalar field energy momentum tensor and we've

set f/(R) = fr. In Eq.(2) the prime devotes derivative with respect to the Ricci Scalar
R. Variation with respect to the inverse metric tensor yielded the first field equation, so
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we expect that varying with respect to ¢ will yield the second field equation. Indeed, we have:

6(g""VupViud) = g"6(Vud)Vud + g"6(Vud) Vo = (V) VHO + 6(V,9) VY =
26(V,,0) Vi) = 2V, (5¢)VEe
where we've summed the terms with dummy indices. From Leibnitz rule we know that:
Vu(doVHe) =V, (69)VFEP + 6V, VHe

The left hand side term in the above expression in spacetime takes the following form:
[ d*z\/=gV ,,(6¢VH$). We can see that this term is a surface term so: [ diay/—gV ,(§¢VF¢) =
0 because d¢ = 0 at the surface. So we have:

[ d*x/=gV (06)VFP = [ dra\/—gdpV ,VH
which yields the second field equation:

O¢ =0 (4.98)

where 0 = ¢?*V,V, is the D’Alambert operator. We are interested in black hole solutions
so we will consider a spherically symmetric metric ansatz. To make the calculations eazier
we will consider a 2+1 dimensions space-time of the following form:

o
b(r)

In order to proceed with the solution of the equations (2) and (3) we must calculate the
Christoffel symbols and the components of the Ricci tensor. From equation (4) one can see
that our space-time depends only on the radial coordinate r. So the non-zero components
of the Ricci tensor will be Ry, Ry, Rgs and these components will be functions of r. The
non-zero Christoffel symbols are:

ds* = —b(r)dt* + —dr® 4 r2df* (4.99)

1 1 b'(r)
thtr = ant = §9tt(ar9tt + Oigir — Orgir) = Qgttargtt =

1 1 1
Iy = 59”(@9% + Oigrt — Orgu) = —§grr(3rgtt) = Eb(r)b’(r)

T 1 rr 1 rr 1b,(r)
I =59 (Orgrr + Orgrr — Orgrr) = 27 I = 90

1 1
L% = 59" (90910 + Oo9r0 — Orgo0) = 59" (~Orgee) = —7b(r)

1 11 1

1
rf, =19 = 5909(69907“ + 0rg06 — O0gro) = iargee = 5772(27“ )= -
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Now we can compute the non-zero components of the Ricci tensor. The Ricci tensor inherits
all spacetime properties so the only non-zero components are Ry, R, Rgs and we expect

them to be functions of the radial component r. So we have:

Rllb = ng - Fga,b + ngrga - FZeFEa

,C

L e e e e e e
Ty — Thyy + Tl — DE TG+

Dhr — Tre + 0010 — T T+

F?t,@ - th,t + szF?t - F?Aré\t =

i r + [T, Ty — Ty + Ty — T Tg, =

Iy, + 0Ty —T5T, + 19 T, =

r

SO = 30 GO = (W) s L) =
Ry = bg;)[b’(r) +rb"( )]

Ry =T% —T% 4+TIT%7T? —T2TY% =

rr,w wr,r wa= rr rw— ar

Ff’r,t - Pl;“t,r + F%argr - Fgargr—’_
F:r,r - FZT,T + F;aP;}r - F;argr_‘_
b (r b(r)? (r)? 1 b (r
N L RN L) o) R S G
e T a r 2b(r) 4b2(r) 4b2(r) 12 2rb(r)

Roo = TG o = Ta9.0 T Taxl'ge — Tl 00 =
Thor — Tigo + ThuThy — Lo, Tigt

Pogr = LTrgo+ rwloy — Ty rpt

er,e - Fgeﬁ + 15, s — Lol =

FngEH + Fgr + F;rrga - FSGFQG =

(4.100)

(4.101)
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B rb'(r)
2

rb'(r)
2

—b(r) —rb'(r)+ +b(r) =

Rgg = —71b'(1) (4.103)
The Ricci scalar R is defined as: R = g"” R,,,. We find that:

LG b (r) (4.104)

r

In Eq. (2) fr is a function of R.R is a function of the radial coordinate r so fr will be a
function of r.The terms V.V, fr and VyVyfr are:

1
ViVifr = Vi0ifr = 0:01fr — T'0ufr = —T,0- fr = —ib/(r)b@)f}/%

VoVofr =Vo0ofr = 0000fr — T'§p0afr = —T40r fr = 1rb(r) f

In addition Ofr = ¢g"'V,V, fr = ¢""V 0, fr because fg is a scalar quantity but 0, fr is
now a dual vector and when the covariant derivative acts on it we will have connections
from the Christoffel symbols. So we have:

O = 9 V,dofr = 0 (3,00 f ~ TS

Ofn = 9" (00ufr — T fr) + 97 (90, fr = T80 S ) + 6 (0000 — ThyrSi) =

1

1
—g"T7,0,fR+ g 0:0r fr — " T, 00 R — §%T5,0, fR = 7 §b(T)b’(T)f1’g +b(r) fr — b(r) ( -

b(r)
1b/(r) / 1 / 1 / / 4 1 / / b(r) / 4 / /
ib(r))fR_ ﬁ<_rb(r)>f3 = ib (T)fR+b(7’)fR+ §b (T)fR‘f‘ TfR = be(T)‘f‘b (T)fR+
gy~

b(r)) (4.105)

Ofr = Fb(r) + fr(b'(r) + ==

where prime denotes derivative with respect to the radial co-ordinate r.
The energy-momentum tensor is given by:

1
T/J,l/ = a,u¢au¢ - ig,uz/gabaa¢ab¢

The scalar field ¢ inherits all spacetime properties so it is a function of r: ¢ — ¢(r). So we

have: gabaa¢6b = 9" 0r$0r¢ = b(r) (87«(;5)2
The T} component reads: Ty = —;( — b(r))b(r) (8r¢)2 = —l—;bZ(r)(&qu)Q.

1 1
The T, component reads: T, = (8,4;5)2 — 5(87«@%))2 = 5(87«9{))2.
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1 1
The Tpy component reads: Ty = —igggb(r)(&,(b)Q = —irzb(r) (8r¢)2.

The ¢t field equation is:

1 1
Ritfr — 91 (f(R) - A) +9ulfrR — ViVifr = §b2(7”)(3r¢)2 =

2
b(r) b(r)

(B b)) it 22 )= 8) =00 [ ) £ (0)+ 20 300 £ =

1 2
§b2 (’l“) (ar¢)

The 7r field equation is:

b/
(VrvrfR = vrarfR = ararfR - F;:rarfR = }/;L + 2()((77:))‘}0]/%)
RrrfR grr f ) + gerfR -V, V, fR - 7(87“(?)2 =

(=) s+ 700+ 8] - - -

[_ b'(r) V' (r)
2b(r)  2rb(r)

1
5(8@)

The 60 field equation is:

}fR )

1

1 2
Roo fr = 5900 (f(R) - A) + 9000 fr — VoVofr = —57”25(7“) (0r9)" =

() 32 (£R) = A+ 2 [ 1b(r) + £ (60 + 20)] = () 1 = — 220000 (0,0)°

r

while the Klein-Gordon equation reads
6 = 0 = gVaVio = g"Vadho = g (Dudd — T, w<z>) = g7 ¢ = g"Tye — 9" T -

v(r
Tt = b+ ot ()6 —b(r)(— 33+ b1 = b)Y+ I+

2b(r)

1 1
) + ()8 =

b(r)¢" +b'(r)¢ + ib(r)qb' =0 (4.106)
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where prime denotes derivative with respect to the radial co-ordinate r. We can solve the
Klein-Gordon equation to obtain:

Cq
= — 4.1
o(r)=Cor+ / b(r)rdr (4.107)
where C'1,Cy are integration constants and of course:
1
/ p— 4.1
)= 0 (4.108)

Now we have to solve the Einstein’s equations. We can manipulate the equations in order
to arrive at more useful ones. The resulting relations from the unknown functions should
satisfy the Trace (Scalar) Equation obtained from tracing the field equation obtained from
the variational calculation. The Trace Equation is equivalent to a constraint equation as in
the context of classical mechanics. We can derive a relation from the Trace Equation and
substitute this relation back to the original field equation and then the final result will also
satisfy the Trace Equation. Tracing the field equation we have:

1
I8 = g® frRap — §gab9ab[f(R) — Al + g% g0 fr — 9V Vi fr = kg™ Ty =
1 b
Ii = frR = BIf(R) = Al + 30fr = g*"VaVefr = kT =

frRR — ;)[f(R) — A +20fp = kT = z[f(R) — Al = frRR+20fr — kT =

R+20fp — T
f(R)—A:2(fR 3fR ) (4.109)
Now Equation (2) becomes:
1
fRRab - 7gab[f(R) - A] + gabDfR - vavbe = /iTab =
2
1 R4+ 20fp — kT
frBRap — 29ab2<fR 3fR ) + gadfr — VoV fr = KTg, =
1 2 1
frRap — ggabeR - ggabDfR + §9abf€T + 90fr — VoV fr = To =
(R ! R]+1 Ofr — VoV f Tup — ~gaphT (4.110)
Ir ab — 59ab 39atfR = VaVefr = KT — 5gak .
For k = 1:
(R L R]+1 Ofr — VoVfr =T, L T (4.111)
IR ab ~ 3Yab 39abfR = VaVofr =Tap = 59ab .
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1
where T = g™ Ty = 90,0046~ 39 gubg " Ouwdsd = g™ DadOpd—29"* DudDsd = —g"* DudDut> =
—g"" 0 Orp = —b(r)(0,¢)? because ¢ is a function of r.

Now we can do the algebra and obtain the field equations:
The tt equation yields:

1 1 1
Jr[Ru — ggttR} + ggtthR — ViVifr =Ty — ggttT

o R sgult= bg;)[b'(r) ()] + bl (— 2br(’4> b'(r)) = b(r);:(r) + b(’”)g'(” .
2b(r)b'(r) 1 gy b (r)  b(r)b(r)
5 ) = —— - —¢
o T — ST = S2(r)(0,6)2 — H(—b(r)(—b(r)(@,0)% = 2(r)(,6)?
tt 3gtt = 9 r r 3 r r r = 6 r r
T 2 T
o gDV = =) ) + T+ U] = =07 — 3w ) - 5

1
o ViVifr=Vi0ifr = 010 fr — T'§i0afr = 130, fr = —ib’(r)b(r)f]’%

r)b" (r )b (r 2(r
[ X PP L0 e [ b))~ kS (b)) = S8R0 0102 =
)b (r 2(r
FrR[DY" (r) — Gl )] —20*(r) fg + fR[ — 2b(r)V (1) — 2! i ) + 3V (r)b(r)] = b*(r)(0r¢)*
(4.112)
The rr equation yields:
1 1 1

Ir [Rrr - ggrrR] + ggerfR = VoV fr =T — ggrrT

o T — ;gTTT = ;(ar¢>2 - ;(b(lr))(_b(r))(ar¢)2 - ;(ar(b)Q + ;(ar¢)2 - 2<ar¢)2

1 b (r) b (r 1.1 20'(r) _ b (r) ' (r)
* B =g = o 2 3 T V) = e T 2

20 (r)  1V'(r) ') 1(r)

3rb(r) T 30(r)  6b(r) | 6rb(r)
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1 1., n 1 b(r) 1 " 1b’(r) 1
J ggerfR = g(%)be(T) + 3b(7’)fR '(r) + 3T()TfR 35(r) fr+ f
b (r
* VioVifr=V,0rfr = 0,0, fr =170, fr = [R + Qb((r))f}z
So we have:
16"(r) 1¥(r 1b’ T b (r 5
= 507+ gyl 8 éﬁﬁ+ 5o/ Ik~ gyt one =
b// b/ b/ 3b/
Now, we can obtain the following equation
fr+(0,0)* =0 (4.114)

From the above equation we can naively state that information from the scalar field will be
contained in the gravitational model, i.e. the f(R).
The 66 equation yields:

1 1 1
fr[Rog — ggeeR] + gQGODfR —VoVofr=Tho — ggeeT

1 1 20 (1) 1r220'(r) 2
- 5. - — / - — 2 IR Sa— = — / — — 2y e
* Rgp 3990R rb'(r) 3" ( . b/(r)) rb'(r) + 3, + U b (r)
2 1 b —rb
—rb'(r) + grb’(r) + gT’Qb”(r) . (T)S rb'(r)

5 = PP [FRb() + F0(r) + ] = 2 o) 4 22 b () + ()

VoVofr =1b(r)fr

1 1 2 L, 2
o Tho — ggeeT— —57“ b(r)(8r¢)* — *7” 2(=b(r))(8r¢)* = & b(r)(0r9)
So we have:
r2b"(r) — rb(r
fr[ o )3 o )] + ;(Tfoéb(r) + r2 fRb (r) +rb(r) f) — rb(r) ff, = —éﬂb(r)(@rgi))Q =

2fr[r?0" (r)—rb (r)]+2(r® fb(r)+12 fR (r)+7b(r) fr) —6rb(r) f = —r?b(r)(0r¢)* (4.115)

The equations have been computed by hand for completness. It is easy to see that there
exists no hairy black hole solution. The Klein-Gordon equation takes the form of a total
derivative:

(In(b(r)¢' (r)r)) = 0 = b(r)¢/(r)r = C (4.116)
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where, C' is a constant of integration. Now, in order to have a black hole we want for

r =rp, b(rp) = 0, where 7, denotes the event horizon of the Black Hole. This means that
the above takes the form:

b(r)¢' (r)r =0 (4.117)

for arbitary 7. In order for this equation to hold (considering that the scalar field does

not diverge at the horizon):
1) ¢'(r) = 0 = ¢(r) = C which is a trivial solution.
2) b(r) = 0 everywhere, which means that there is no geometry.

In other words: There exists no hairy black hole solution. To support a hairy structure
we are now motivated to intoduce different kinds of matter in the action, such as a potential
term, or couplings of the scalar field with gravitational invariants such as the Ricci Scalar
or the Gauss-Bonnet invariant. One may though argue that it’s the metric ansatz that is
problematic. It’s very simple to support a hairy structure. This is not the case of course.
It’s No Hair Theorem that ensures that no Hairy Black Hole exists. We have shown that
the potential must satisfy a condition. Without potential the positivity of V,¢V®¢ ensures
that that integral is always positive or zero. And this is what happens if we consider a more
general metric ansatz. Let’s go back in four dimensions and consider:

ds? = — f2(r)dt? + v2(r)dr® + aQ(T)( dp® + ds02) (4.118)

1 — kp?

Then:
2a/(r)¢'(r) +f’(?‘)cfﬁ’(r) u(r)¢”(r) —u'(r)¢'(r)

0= a(ryu(r)® — f(rju(r)? + u(r)3 =0 (4.119)
which we can integrate immediately to obtain
() = —0r)
¢'(r) = a(r)2f(r) (4.120)

If we want a black hole then for some r : f(r) = 0. Imposing that the scalar field is a C?
function, and behaves well everywhere, then ¢; = 0. But if ¢; = 0, then the scalar field is
contant, or we cannot have geometry. The No Hair Theorem still holds.



Chapter 5

Exact (2+ 1) Dimensional f(R)
Gravity Black Hole with a Minimally
Coupled Self Interacting Scalar Field

5.1 Black Hole Solution

We will consider the f(R) gravity theory with a scalar field minimally coupled to gravity in
the presence of a self-interacting potential [40]. Varying this action we will look for hairy
black hole solutions. We will show that if this scalar field decouples, we recover f(R) gravity.
First we will consider the case in which the scalar field does not have self-interactions.

5.1.1 Without self-interacting potential

Consider the action

1 1
s= [@ova{ g - j0a.00.0} 6.1
where k is the Newton gravitational constant x = 87G. The Einstein equations read
1
fRR;,LV - ig,ul/f(R) + guquR - vqufR = ’iTuu , (52)
where f'(R) = fr and the energy-momentum tensor 7),, is given by
1
Ty = 0udp0yp — §g#yga/38a¢0/3¢ . (5.3)
The Klein-Gordon equation reads
O¢p=0. (5.4)
We consider a spherically symmetric ansatz for the metric
1
ds* = —b(r)dt* + @dﬁ + r2df* . (5.5)

93
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For the metric above, the Klein-Gordon equation becomes

b
(96 = W) () + ) (40 + 22 = 0, (5:5)
and takes the form of a total derivative
b(r)¢(r)r =C', (5.7)

where C'is a constant of integration. In order to have a black hole, we require at the horizon
to have r = rg — b(rg) = 0. Then, C' = 0. This means that either b(r) = 0 for any r > 0
and no geometry can be formed, or the scalar field is constant ¢(r) = ¢. We indeed expected
this behaviour, which cannot be cured with the addition of a second degree of freedom in
the metric (6.5). From the no-hair theorem [7] we know that the scalar field should satisfy
its equation of motion for the black hole geometry, thus if we multiply the Klein-Gordon
equation by ¢ and integrate over the black hole region we have

/ dx/=g(¢0¢) ~ / B/ —gVHeV,p =0, (5.8)

where ~ means equality modulo total derivative terms. From equation (5.8) one can see
that the scalar field is constant.

5.1.2 With self-interacting potential

We shown that if the matter does not have self-interactions then there are no hairy black
holes in the f(R) gravity. We then have to introduce self-interactions for the scalar field.
Consider the action

1 1,
5= [ @ev=a {51 - o os00- v . 59)
The scalar field and the scalar potential obey the following conditions
p(r—o00)=0, V(r—00)=0, V}¢:0:0. (5.10)

Varying the action (6.13) using the metric ansatz (6.5)) we get the tt,rr, 00 components of
Einstein’s equations (for k = 1) and the Klein-Gordon equation

r (U (1) fR(r) = fr(rY"(r) = £ (r) + b(r) (2f&(r) + & (r)?) + 2V (6)) = fr(r) (r)+2b(r) fR(r)

(5.11)

b(r) (r (=0 (r) fR(r) + fr(r)V" (1) + £ (r) + b(r)¢ (r)? = 2V(9)) + fr(r)V(r) — Qb(r)ff?(r)) ):
5.12
—r (2b’(r)fl/%(r) + b(r) (2]%(7“) + (f>’(r)2) + 2V((Z>)) +2fr(M(r)+rf(r)=0, (5.13)
(V) b) 00D |y V0D _—

r ¢'(r)

=0,

0,
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The Ricci Curvature for the metric (6.5) reads

A G N (5.15)

r

From (5.11)) and (5.12)) equations we obtain the relation between fr(r) and ¢(r)
R(r) +¢'(r)? =0, (5.16)

while the (5.11)) and (5.13]) equations yield the relation between the metric finction b(r) and
fr(r)

(2b(r) — rb'(r)) fr(r) + fr(r) (V' (r) —rb"(r)) =0. (5.17)
Both equations (5.16)), (5.17) can be immediately integrated to yield

fr(r) =c1+ cor — //¢'(r)2drdr , (5.18)

b(r) = c3r? — r2/ 7‘3]5(7’)

where ¢, co, c3 and K are constants of integration. We can also integrate the Klein-Gordon
equation

dr (5.19)

()0 (r)? + () (1) (1) + B)S (?

r

V(r)=W +/ (5.20)
Equation is the central equation of this work. First of all, we recover General Rel-
ativity for the vanishing of scalar field and for ¢; = 1,c0 = 0. We stress the fact that in
f(R) gravity we are able to derive non-trivial configurations for the scalar field with one
degree of freedom as can be seen in the metric . This is not the case in the context
of General Relativity, as it is discussed in [20]. There we can see that a second degree of
freedom (equation (4) in [20]) must be added for the existence of non-trivial solutions for
the scalar field. Here, the fact of non-linear gravity makes fr # const., and therefore we
can have a one degree of freedom metric. The integration constants ¢; and ¢y have physical
meaning. ¢ is related with the Einstein-Hilbert term, while ¢y is related to possible (if
ca # 0) geometric corrections to General Relativity that are encoded in f(R) gravity. The
last term of this equation is related directly to the scalar field. This means that the matter
not only modifies the curvature scalar R but also the gravitational model f(R).

5.2 Black hole solutions

In this section we will discuss the cases where ¢; = 1,¢c3 = 0 and ¢; = ¢3 = 0 for a given
scalar field configuration. For the second case to satisfy observational and thermodynamical
constraints we will introduce a phantom scalar field and we will reconstruct the f(R) theory,
looking for black hole solutions.
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5.2.1 C1 = 1702 =0

Equations (5.18)), (5.19) and (5.20) are three independent equations for the four unknown
functions of our system, fr,®,V, b, hence we have the freedom to fix one of them and solve

for the others. We fix the scalar field configuration as

| A
o) =\l g (5.21)

where A and B are some constants with unit [L], the scalar charges. We now obtain from

equation (5.18) fr(r)

A
r)=1—-——, 5.22
where we have set co = 0 and ¢; = 1. Therefore, we expect that, at least in principle, a pure
Einstein-Hilbert term will be generated if we integrate fr with respect to the Ricci scalar.
Now, from equation (5.19) we obtain the metric function

(5.23)

= oy’ — - = 1
) =car = T SE ~A—sB)e  (A_sB)p"

, 4BK S8AKT 64AK 12 (8(B +r)— A)
- :

The metric function is always continuous for positive r when the scalar charges satisfy
0 < A < 8B. Here we show its asymptotic behaviors at the origin and space infinity

4BK 8AKT 5  64AKr? r
= - — ~In (- 24
b(r — 0) yry: (A—8B)2+C3r +(A—BB)3H( A_SB)+ﬁ(r3()3,2)
K AK
b(r - oc0) = E—I—E—r?AefH—ﬁ(r_Q% (5.25)

where the effective cosmological constant of this solution is generated from the equations

can be read off
192AK In(2)

i —8B) (5.26)

Aeﬂ‘ = —c3 +

It is important to discuss the asympotic behaviours of the metric function. At large
distances, we can see that we obtain the BTZ black hole where the scalar charges appear
in the effective cosmological constant of the solution. Corrections in the structure of the
metric appear as O(r~") (where n > 1) terms and are completely supported by the scalar
field. At small distances we can see that the metric function has a completely different
behaviour from the BTZ black hole. Besides the constant and ¢'(r?) terms there are present
O(r) and O(r?In(r)) terms that have an impact on the metric for small r. Our findings
are in agreement with the work [52] where in four dimensions Schwarzchild black holes are
obtained at infinity with a scalarized mass term while at small distances a rich structure of
black holes is unveiled. This is expected since at small distances the Ricci curvature becomes
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strong and therefore changing the form of spacetime. The Ricci scalar and the Kretschmann
scalar are both divergent at the origin

16AK

R(r—0) = (A—3SB) + 0 (lnr) , (5.27)
2 42
K(r—0) = 7‘21(%‘?[_(8143)4 +0 <710 lnr) , (5.28)

indicating a singularity at » = 0. As a counsistency check for A = 0 we indeed obtain the
BTZ [12] black hole solution
K

b(r) = csr® + =, (5.29)
which means that for vanishing scalar field we go back to General Relativity. Hence the
solution (5.23]) can be regarded as a scalarized version of the BTZ black hole in the context
of f(R) gravity.

Now we solve the expression of the potential from the Klein-Gordon equation

1

V) = SABA —8BRB 1 )P

<3(4A4(—B2(K — 18¢37%) + 36 B3¢c3r + 12B%c3 — 4BKr — 2K71?) — 64A3B(r*(9B%c3 + K)

+Br(18B%c3+K)+6B%c3)+256 A2 B(B(6r2(B%c3+K)42Br(6 B*c3+5K ) +4B%c3 +3B* K )+

30K In(2)(B+r)3)— A% Bes(2B2+6 Br+3r2) +64BK (— A3 (2B%+6 Br+3r2) hﬂ@)

—8(5A2—-32AB+64B?)(B+7)2In(8(B+7r)—A))—4096 AB*>K (B+r)*(121n(2)(B+7)+ B)
198304 B3 K In(2)(B+r)%)—8A? K (A*—32AB+64B%)(B+r) In(r)+8K (A—8B)*(B+r)? 1n(B+r)> ,
(5.30)

the asymptotic behaviors of which are

~ Kn(r)
B2?(A—8B)
3A(24A*Beg — A3c3 — 192A (B?cs — K In(2)) 4 512B3¢3) 1
= - 2
V(r — o) Sr(A— 8B +ﬁ(;§5>3 )

To ensure that the potential vanishes at space infinity, we need to set the integration constant

Vo at (5.20) equal to

V(r —0) + 00, (5.31)

192K In2 (5A% — 32AB + 64B?)
0= A(A = 8B)3 '
In addition, there is a mass term in the potential that has the same sign with the effective
cosmological constant

wt=v"o=0 =3 (

(5.33)

192AK In(2) > 3
eAn e

(A—spp @) Tah (5:34)
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which satisfies the Breitenlohner-Freedman bound in three dimensions [22] 23], ensuring the
stability of AdS spacetime under perturbations if we are working in the AdS spacetime.

Substituting the obtained configurations into one of the Einstein equations we can solve

for f(r)

1
1) = B2 (A —sBPS(A—S(B+1)
—2Bc3r(A—8B)*+8Kr(A+8B)—AK(A—8B)))+A*Kr(—(A?—~32AB+64B%)) In(r)(A—8(B+r))

B(192BKrIn(2)(5A%>~32AB+64B?)(A—8(B+r))+A(A-8B)?

+Kr(8(B+r)—A) <6432((5A2 — 32AB + 64B2) In(8(B + 1) — A) + 242 m(m)) —(A-8B)!
r)—
On the other side, the Ricci scalar can be calculated from the metric function
) = 16AK (—36r(A —8B) + (A — 8B)? + 192r?) N 384 AK 8(B+r)—A ;
" r(A—8B)2(A—8(B + 1)) (A—8B)3 r @
(5.36)

As one can see it is difficult to invert the Ricci scalar and solve the exact form of f(R),
though we have the expressions of R(r), f(r) and fr(r). Nevertheless we can still obtain
the asymptotic f(R) forms by studying their asymptotic behaviors

AK(A - 8B)  T68AK In(2) 1
- —4 — .
f(r—o0) 1283 (A—sB) c3+ 0 5 (5.37)
_ AK(A-8B) 1152AKn(2) 1
R(r— o) = — 198,4 (A_8B) —bcs+ O 5) (5.38)
2AK
16AK
which leads to
334AK In(2)
f(R) ~ R+ 203 - m =R— 2Aeﬁ‘ ) r— 00, (541)

A
R<1—83), r—0. (5.42)

=
=
2
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Figure 5.1: All the physical quantities of the AdS black holes are plotted with different
scalar charges A, where other parameters have been fixed as B=1, K = =5 and ¢3 = 1.

The fact that the Ricci scalar contains logarithmic terms prevents us from obtaining the
non-linear corrections near the origin, where we expect the modified part of the f(R) model
to be stronger, since it is supported by the existence of the scalar field and the scalar field
takes its maximum value for r = 0 — ¢(0) = y/A/B. To avoid the tachyonic instability, we
check the Dolgov-Kawasaki stability ctiterion [49] which states that the second derivative of
the gravitational model frr must be always positive [31), 50, [6I]. Using the chain rule

dfr(R) _ dfr(r)dr _ fp(r) r*(A-8(B+r))°
dR ~ dr dR R(r)  128K(A—8B)(B+r)?’

frR = (5.43)

we can see that the above expression is always positive for K < 0 when the continuity con-
dition 0 < A < 8B is considered. So far we have not imposed any condition on c3, therefore
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the spacetime might be asympotically AdS or dS depending on the value of parameter c3

192AK In(2

c3 ?;)(3) >0 asympotically AdS , (5.44)
192AK In(2

3 ?A 82;3) asympotically dS . (5.45)

We can prove that the metric function has at most one root, which can not describe a
dS black hole. For the asympotically AdS spacetime, the condition K < 0 gives an AdS
black hole solution while the condition K > 0 gives the pure AdS spacetime with a naked
singularity at origin. For the asympotically dS spacetime, the condition K > 0 gives a pure
dS spacetime with a cosmological horizon. Therefore pure AdS or dS spacetime described
by this solution suffers from the tachyonic instability, only AdS black holes can survive from
this instability. We plot all the physical quantities of the AdS black holes in FIG. [7.1] and
FIG.[777 In FIG. [7I] we plot the metric function, the potential, the scalar field, the Ricci
scalar, the f(r) and fr functions along with the A = 0 (BTZ black hole) case in order to
compare them. In FIG. we plot the f(R) model along with f(R) = R — 2Aeg in order
to compare our model with Einstein’s Gravity. For FIG. [T.7] we used the expression for the
Ricci scalar for the horizontal axes and the expression for f(r) for the vertical
axes.
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Figure 5.2: The f(R) function. The black dashed line represents the Einstein Gravity
f(R) = R — 2Acg, where other parameters have been fixed as B =1, K = —5 and ¢3 = 1.

From FIG. [7.]] and FIG. [7.7] we can see that the existence of scalar charge A makes
the solution dev1ate from the GR solution, and the stronger the scalar charge is, the larger
it deviates. The figure of the metric function shows that the hairy solution with stronger
scalar charge has larger radius of the event horizon, while its influence on the curvature is
qualitative, from constant to dynamic, with a divergence appearing at origin. The scalar
charge also modifies the f(R) model and the potential to support such hairy structures,
where the potential develops a well near the origin to trap the scalar field providing the
right matter concentration for a hairy black hole to be formed. For the f(R) model, the
scalar charge only sets aside a small distance with the Einstein Gravity while the slope
changes little, indicating our f(R) model is very close to Einstein Gravity. We can see that
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even slight deviations from General Relativity can support hairy structures. The asymptotic

expressions (5.41]) (5.42)) tell us that at large scale the scalar field only modifies the effective
cosmological constant while at small scale the slope of f(R) can also be modified, which
agrees with the figure of f(R).

Next we study the thermodynamics of this solution. The Hawking temperature and
Bekenstein-Hawking entropy are defined as [47, 48]

V) 2K(B+ry)
Tlry) = d4r i (A—8(B+ry))’ (5.46)
S04) = g lalr) = tntrsfur) =4 (1= g ) Ga)

where r; is the radius of the event horizon of the AdS black hole and A = 27r, is the
area of the event horizon, where the gravitational constant G equals 1/87 since we've set
871G = 1. Here in the first expression we have already used r to replace the parameter cs.
It is clear that the Hawking temperature and Bekenstein-Hawking entropy are both positive
for K < 0and 0 < A < 8B. We present their figures in FIG. FIG. shows that for
the same radius of the event horizon, the hairy black hole solution owns higher Hawking
temperature but lower Bekenstein-Hawking entropy. However, with fixed parameters B, c3
and K, the hairy black hole solution has larger radius of the event horizon, therefore, we
plot the entropy inside the event horizon as a function of the scalar charge A in FIG.
to confirm if the hairy solution is thermodynamically preferred or not. The fact is that
hairy black hole solution is thermodynamically preferred, which owns higher entropy than
its corresponding GR solution, BTZ black hole, and the entropy grows with the increase of
the scalar charge A. It can be easily understood that the participation of the scalar field
gains more entropy for the black hole.

————— A=0 o
[ -
25¢ N ettt A=0 60 A=1 2
[ \ -7
20} “‘ A=1 A=2 s
3 \ A=2 2 2 A=3 //
=1 5; \‘\ A=3 & A=4 ”’7
-
1.0 RN A=4 -

0.0 0.5 1.0 15 20 0.0 0.5 1.0 15 2.0

Figure 5.3: The Hawking temperature and Bekenstein-Hawking entropy are plotted with
different scalar charges A, where other parameters have been fixed as B =1 and K = —5.
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Figure 5.4: The Bekenstein-Hawking entropy as a function of the scalar charge A, where
other parameters have been fixed as B=1, K = —5 and c3 = 1.

5.2.2 Exact Black Hole Solution with Phantom Hair

In the previous section, we have set ¢; = 1 and cp = 0, therefore the f(R) model consists
of the pure Einstein-Hilbert term and corrections that arise from the existence of the scalar
field. We have shown that with the vanishing of scalar field, we obtain the well known results
of General Relativity, the BTZ black hole [12].

We will now discuss the possibillity that the scalar field, purely supports the f(R) model
by setting ¢; = co = 0. From equation we can see that due to the 0(r™") (where
n > 0) nature of the scalar field and the double integration, there will be regions where
fr < 0. For example for our scalar profile the fr turns out to be

fr(r) = A (5.48)

8B+r)’
which is always negative for A, B > 0. With this form of fr one can derive an exact hairy
black hole solution similar to a hairy BTZ black hole which however has negative entropy
as can be seen from the relation (5.47)).

It is clear that a sign reversal of f(R) can fix the negative entropy problem. As a result,
the sign reversal of other terms in the action is also required, which leads to a phantom
scalar field instead of the regular one. This comes in agrement with recent observational
results which they require that at the early universe to explain the equation of state w < —1
phantom energy is needed to support the cosmological evolution [44] 45, 46]. As it will be
shown in the following, in the pure f(R) gravity theory the curvature acquires non-linear
correction terms which makes the curvature stronger as it is expected in the early universe.

Hence, we consider the following action

5= [@ova {50+ 390,006 Vio)} (5.49)

which is the action (6.13]) but the kinetic energy of the scalar field comes with the positive
sign which corresponds to a phantom scalar field instead of the regular one. Under the same
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metric ansatz (6.5)), equation (5.16) now becomes

fr(r) = ¢'(r)? =0, (5.50)
and by integration
Jr(r) = / / & (r)2drdr (5.51)

having set ¢; = 0 and ¢ = 0. With the same profile of the scalar field, the solution of this
action becomes

A
o) = Vg (5.52)
A
fr(r) = m> (5.53)
ABK 8K
b(r) = —— +—8AT—AT2, (5.54)
16K
R(r) = 6A-— jr , (5.55)
B(ABA +4K) 3ABA+8K K _(B+r
vir) 8(B+r) 8B(B+r) B2 n( r > ’ (5:56)
2K 2K B+r
0 = g () 550
AR 3AA 2K (6ABA — ABR+ 16K
JB) = 35~ 1B +B21n< 16K > ’ (5.58)
K¢> 3A¢* B2A¢® BK¢S K A
V() a5 s sz @ TmEm\aitse (5.59)

The f(R) model avoids the afforementioned tachyonic instability when frr > 0, and for the
obtained f(R) function we have

A22
L >0=K<0. (5.60)

frr == 128K (B + 1)

For a particular combination of the scalar charges: B = A/8, the f(R) model is simplified
and takes the form:

f(R)=R—6A+ 128K 4 (1 _AAR-6M) 6A))

A? 128K (5:61)

The metric function (5.54)) as we can see, is similar to the BTZ black hole with the addition
of a O(r) term because of the presence of the scalar field, and this term gives Ricci scalar
its dynamical behaviour. The potential satisfies the conditions

Vir—o00)=V(—0)=0, (5.62)
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and also V/(¢ = 0) = 0. It has a mass term which is given by
2 " 3
m =V (qsz):—zA. (5.63)

The metric function for A = —1/1? (AdS spacetime) and for A, B > 0 has a positive root,
since K < 0. For A = 1/1? (dS spacetime) the metric function is always negative provided
for A, B > 0 and K < 0, therefore we will discuss only the AdS case. The horizon is located
at

2l (/K (4KI? — AB) — 2KI
ry = ( I ) ) (5.64)

where we have set A = —1/I2. As we can see, in this f(R) gravity theory we have a hairy
black hole supported by a phantom scalar field.
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Figure 5.5: We plot the metric function, the potential, the Ricci scalar and the f(R) function
of the phantom black hole for different scalar charge A, where other parameters have been
fixed as B=A/8, K =—1and A = —1.
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Figure 5.6: The temperature and the entropy at the horizon of the black hole, as functions
of the scalar charge A while changing scalar charge B.

In FIG. we show the behaviour of the metric function b(r), the potential V(r), the
dynamical Ricci scalar R(r) and the f(R) function. As can be seen in the case of B = A/S,
the scalar charge A plays an important role on the behaviour of the above functions. For
example if the scalar charge A is getting smaller values the radius of the horizon of the black
hole is getting larger. This means that even a small distribution of phantom matter can
support a hairy black hole.

Looking at the thermodynamic properties of the model the Hawking temperature at the
horizon is given by

2K  ry +/K(4KI? — AB)
T(ry) ="~ = :
(rs) TA + 2?2 TAl ’ (5.65)

which is always positive for A, B > 0 and K < 0, while the Bekenstein-Hawking entropy is
given by

g 9 B An?r, B T2 AKI
S(re) = (5 fr(re) = 4n"ri fr(rs) = 2B+ry)  JK(AKE—AD) >0. (5.66)

For the thermodynamic behaviour of the hairy black hole we can see from FIG. that
for larger scalar charge A we are getting smaller temperatures, while the entropy has the
opposite behaviour.
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Chapter 6

Curvature Scalarization of Black
Holes in f(R) Gravity

6.1 Scalarized Black Hole Solutions

It is known that by introducing a geometric scalar field ) = f'(R) the f(R) gravity theories
can be transformed to the Brans-Dicke theory [43], one of the scalar-tensor theories. The
resultant theory can be considered as a scalar-tensor theory with a geometric (gravitational)
scalar field. Then it was shown in [41l 42], that this geometric scalar field cannot dress
a f(R) black hole with hair, therefore, the non-hair theorem is respected in these models.
Also, the scalar-tensor theories can be transformed from Jordan frame to Einstein frame,
where a new scalar field minimally coupled to Einstein gravity replaces the former coupling
style.

Our approach in our study is to consider a general f(R) gravity theory in the presence
of real matter parameterized by a scalar field minimally coupled to gravity in the presence
of a self-interacting potential [52]. Varying this action we will look for hairy black hole
solutions. We will show that if this scalar field decouples, we recover f(R) gravity. First we
will consider the case without a self-interacting potential.

Without self-interacting potential

Consider the action

1 1
5= [atev=a {5 R 20 - 3"0,00,0} (6.1)
where k is the Newton gravitational constant x = 87G. The Einstein equations read
1
fRR,uV - ig;w [f(R) - QA] + g;WDfR - vuvufR = KT;U/ ) (62)

107
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where fp = f'(R), O = V#V,, is the d’Alembertian operator, and the energy-momentum
tensor T, is given by

1
T[,LV - u¢5u¢ - iguugaﬁaaqsaﬁ(ﬁ . (63)

The Klein-Gordon equation reads
Op=0. (6.4)

We consider a spherically symmetric ansatz for the metric

1

B dr® 4 r2d6* 4 1% sin® 0dp? . (6.5)

ds* = —B(r)dt* +

Then the Einstein equations become

e The t — t Einstein equation is

B(r) (TB’(T) Filr) — fr(r) (rB”(r) n ZB’(T)) + 2 B(r) f(r) + AB(r) fl(r) + srB(r) ¢ (r)? — rf(r)

r

(6.6)
e The r — r Einstein equation is

—1B'(r) fp(r) + fr(r) (rB"(r) + 2B'(r)) — 4B(r) fi(r) + krB(r)¢/(r)* + rf(r) — 2Ar

rB(r) =0

(6.7)
e The 6 — 0 Einstein equation is

2fr(r) (rB'(r) + B(r) = 1)+1 f(r) = r (r (2B'(r) fr(r) + 2A) + B(r) (2rfz(r) + 2f(r) + £r¢/ ()3

(6.8)
e Finally the Klein-Gordon equation becomes
2 /
B'(r)¢'(r) + B(r) <¢"(T) + ¢T(T)> =0. (6.9)
The Einstein equations ¢t and rr give a relation between fr(r) and ¢(r)
¢'(r)* + fr(r) =0, (6.10)

while the Klein-Gordon equation gives a relation between ¢(r) and B(r) which it can be
written as

¢'(r)r*B(r) = C1 , (6.11)

where 1 is an integration constant.
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If we assume that there is a black hole solution with horizon 7, then we must have
B(rp) = 0. Then from relation we have C; = 0. However, this relation is valid for
any r which means that either B(r) = 0 or ¢/(r) = 0 should be zero. If B(r) =0 we do not
have any geometry while if ¢/(r) = 0 means that the scalar field is a constant everywhere.
Therefore, we do not have any hairy black hole solution with a non-trivial scalar field.

In fact for any static black hole spacetime, we can multiply ¢ to the Klein-Gordon
equation and integrate it over the black hole exterior region,

0- / dhey=go0s — / Ao gV ($Va) — / A =gV GV o6
— }’{ dxv—hog" P — / diae/=g (Vo)?, (6.12)

where the metric function ¢'" is zero at the event horizon and the cosmological horizon (for
the asymptotically de Sitter spacetimes), and if we want the scalar field to decay fast enough
at space infinity (for the asymptotically flat spacetimes), the scalar filed must vanish in the
whole space. Similar no-hair theorems have been given in |7, [§].

With self-interacting potential

We have shown that if matter does not have self-interactions we can not have hairy black
hole solutions. Therefore we further consider the f(R) gravity theory with a scalar field
minimally coupled in the presence of a self-interacting potential

1 1
5= [dov=a {11 - 201 - 30,006 - V() } | (6,13
where the scalar field and its self-interacting potential vanishes at space infinity
p(r—00)=0, V(r—o00)=0, V‘(b:O:O. (6.14)

Then the stress-energy tensor and the Klein-Gordon equation become

1
T,Lw = au¢au¢ — Guv [29a58a¢8ﬁ¢ + V(¢):| ) (6'15)

dv  dv
|:| = — _— =
¢ dp’ do ‘(b:O 0

Considering the metric ansatz (6.5 and setting x = 1 the field equations now become

(6.16)

2rBff —rfrB" + 1B fi — 2frB' +4Bfp +71 (B¢* — f+2A+2V) =0, (6.17)

rfrB" —rB'fl + 2frB' — ABfp + 1 (B¢? + f —2A —2V) =0, (6.18)
2fg (rB'+ B — 1) = Br (2rff +2f5) + 12 (2B f + B¢ — f+2A+2V) ,  (6.19)
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/ !/
B/¢/+B<¢”+2f> :‘(;’ (6.20)
where the primes denote the derivatives with respect to r.

There are four equations (6.17), (6.18)), (6.19), and , but only three of them are
independent. We can use the first three of them to deduce the last one. In other words, we
have four unknown quantities B(r), ¢(r), f(R) and V (¢), while three independent equations.
Therefore we need to choose one of these functions and then solve the others. QOur initial
motivation for this study was to see what is the effect of a matter distribution on a non-
trivial curvature described by a f(R) theory. Therefore we choose different distributions of
matter ¢(r) to see what kind of geometries, f(R) theories and potentials can support such
hairy structure.

Using the t — ¢ and r —r components of the Einstein equations we recover
the relation between fr and ¢ which is independent of the self-interaction of the
scalar field, while the ¢t — ¢ and 6 — 0 components give the relation between fgr
and B

fr(r*B" —2B+2)+r(rB'—2B) f =0, (6.21)

from which we can solve fr(r) and B(r)

fr(r) = 01+627"—//(25/2de7“, (6.22)
B(r) = r? {/ Wdr%—q} . (6.23)

rfr

We can see that if the scalar field ¢(r) is known, then fr(r) can be obtained by integration
and also the metric function B(r). The Klein-Gordon equation (6.20) gives the expression
of the potential,

V(r):/¢/ |:B/¢/+B<¢//_|_2T¢/>] dr+Vy (6.24)

which can also be obtained by integration.

Using (6.18)), we can obtain f(r)

fr(rB" +2B’) . 4B fr
r

- — B¢ +2A +2V . (6.25)

£lr) = B'fh -

Besides, the expression of curvature under our metric ansatz can be calculated through

the metric function - /
B 4rB 2B(r) — 2
R(r) = _r*B"(r) +4r gr) +2B(r) ' (6.26)

r

From the expressions of f(r), R(r), V(r) and ¢(r) one can determine the f(R) forms
and the potentials V(¢).

In the action we have introduced a cosmological constant A. However, in the
expressions of the functions fr(r), B(r), V(r) and R(r) the cosmological constant does not
appear. The reason is the presence of the f(R) function. If we integrate the expression
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with the Ricci scalar [ frdR = f(R)+ fo, an integration constant will appear sharing
the same dimension [L]~2 with the cosmological constant. In the next subsection, we will
see that an effective cosmological constant can be generated.

We note here that the relation connects the f(R) function with the scalar field ¢.
This means that the f(R) function has the information of the presence of the scalar charge.
This equation leads to the equation in which if the scalar field ¢ decouples and co = 0
we recover GR.

6.1.1 Gaussian distribution

We first consider the Gaussian distribution of the scalar field,

¢=Ae "2 (6.27)

where A is the amplitude of the scalar field.

From (6.10)) we can solve the fr explicitly
1
fr(r) = —ZAZ (ﬁrE(T) + 2677"2) +c+ear, (6.28)
where c1, co are integration constants and
E(r) = = ey (6.29)
r)=— e r .
VT Jo

is the Gauss error function.
In fact, we can use (6.23)) and (6.24)) to calculate the metric function

dr+cs| , (6.30)

, 2 (1426*”2 —8¢c1 — 4027") + \/mA? (27”2 + 3) E(r) + 8c3
Blr) =
(r)=r / 2rt (A2 (VrrE(r) + 2e7"%) + 4ey + 4egr)

and the potential

V(ir)y=Vy— A2/6T27’ [((r*=3)B—rB']dr. (6.31)
We rewrite the potential as a function of ¢,
A? A?
Vi) =vo+ [ [Bo) (n s ~3) + Blorwm s | odo (6.32)

where

I SN S B ( AQ>5/2 fr(6)do
B(¢) = caln 2 g @ In 2 2 ; hlﬁj—i—Cg , (6.33)
2 2
fr(¢) = % ln;lg/ 0do —%¢2+01+02 1n;22. (6.34)

1/111‘2—22
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For the Gaussian distribution we have an exact solution for the metric function
B(¢), the f(R) function and the potential V(¢) of the coupled field equations given by the
equations —. If the scalar field is decoupled and A = 0 then we have the solutions
n [28]. If A # 0 and the scalar field backreacts with the metric we will study what kind of
hairy black hole solutions we get and what is their behaviour at large and small distances.

Hairy black holes at large distances

The asymptotic expressions at large r distances are

By = L M7 +0<1>, (6.35)

2
T Aot

V(r) = A% <i(2Aeﬂ +1)r? — —Mr+0 (r0)> , (6.36)

where the parameter M is related to the mass of black hole and A.g is an effective cosmo-
logical constant

461
M = — 1 .
3VTA2Z — 12¢ (6.37)

Aet = —3cq, (6.38)

where we had already adjusted the integration constant
3 2
Vo = 5\/7?14 M, (6.39)

to make the potential vanish at r infinity and it also satisfies

dv(¢) ‘
= 6.40
4o oo (6.40)
The asymptotic expression of f(r) at large r distances is
f(r)y=2 A —1—1 ! +2A+0 ! (6.41)
s Bt TS T 3y r3 ) '
Note that at large r distances the curvature is
A 1 1
R(r) =4heg + 5 +O0( 5], (6.42)

then we can obtain the form of the f(R) function

2
= \/R- 4Aeg) +2A . (6.43)

f(R) ~ ¢ <2R— 6 Ao — i
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If we choose a specific value for the constant ¢y = ‘fA we get at large distances the
asymptotic expressions
2M A 1
B(r) = 1—-=—-— effr?+0 (4eT2> ; (6.44)
R(r) = 4Aeg+O ( > (6.45)
Aot A
Vi) = A" (— S 2+r2) +O(re*T2) , (6.46)
() = 2(ciheg + A) +O<re ) (6.47)
2A 2
V(g) ~ —¢? eff m? + (A + 1) m? , (6.48)
A A
where
ﬁAQ C3
M = — 6.49
1661 661 ’ ( )
A = —3cq . (6.50)

Note that what really works in our solution is the effective cosmological constant Aeg,
though we use f(R)—2A as the Lagrangian density at the beginning. Also for the Schwarzschild
solution in Einstein gravity, what appears in the coefficient of r? term of the metric function
is the real cosmological constant. To compare with the Finstein gravity, here we define a
new function F'(R) which satisfies

F(R) = 2Aeg = f(R) — 2A . (6.51)

It is clear that for Einstein gravity we have F'(R) = R, while for our case at large distances,
it becomes

F(R) = f(R) = 2A + 2A¢r ~ 2(cy + 1) Aegr ~ %(c1 + 1R, (6.52)

where the choice ¢; = 1 can cover the Einstein gravity.

Let us summarize our results so far. In our explicit solutions of the field equations
we have the four parameters cy,co,cs3,cq4 and the scalar charge A. The parameter c4 is
related to the effective cosmological constant, the parameter c3 is related to the mass M
of the Schwarzschild-AdS black hole while the parameters ci,co are of geometric nature
and appear in the f(R) function. We can see from that at large distances the F(R)
function goes to pure Ricci scalar term R, and we can choose ¢; = 1 to cover the Einstein

_ f A?
gravity. If we choose cy = the scalar charge A appears in the metric function
though its mass scalauzmg in this way the Schwarzschild-AdS black hole. Also from
we can get the usual relation R(r) = 4Aqx. Note that we have chosen a specific value

for the constant cy = ‘/TZA2 to have the Schwarzschild-AdS solution at large distance (the
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constant term of the metric function is 1) while for other values of ¢ the solutions are just
Schwarzschild-AdS-like (the constant term of the metric function is 1/2). Since we are more
interested in the scalarization of Schwarzschild solution (and considering the length of this

paper), we will only plot the figures for the first case with co = ‘/iAQ.
Now the interesting question is if we go to small distances at which the Ricci scalar is
expected to get strong corrections and the scalar field to get stronger, what kind of scalarized

black holes we can get?

Hairy black holes at small distances

The various functions at origin » — 0 can be expanded as

A — 4A%¢; 4+ 4¢3 + 2¢9c3 2¢c3
B(r) = ! 240 6.53
(r) (2 20 + BAZ—6e)r +car®+ 0 (r7) (6.53)
4eace:
R(r) = BTy (A22 320 7w 12¢4+ O (r) | (6.54)
— 2
4A2%¢csr 3A%r2 (A* — 4A%¢; + 4¢2 + 2¢9c3 )
Vir) = i+ 547~ 6o, ( YVEEDS: ! ) +0 (%), (6.55)
—2¢;
2¢oc3 4eo (A4 —4A%c + 42 + 26263)
fr) = a2 2 420 +0 (1), (6.56)

where V) is an integration constant different from V{. (New integration constant may comes
out when we do the analysis, but that does not mean there are two free parameters. In
fact, we can fix the numerical solutions by giving the boundary condition at one side V' (r —
o0) =0.)

When A2 # 2¢; and g # 0, the curvature R is divergent at origin » — 0, indicating a
singularity.

Note that the modified gravity f(R) and its derivative f/(R) need to satisfy the conditions

. f (R) - R . /
lim —— =0 1 R)—1=0 6.57
A R - g PR , (6.57)
which are necessary conditions to recover GR at early times to satisfy the restrictions from
Big Bang nucleosynthesis and CMB, and at high curvature regime for local system tests
[15] 16].
The two conditions give the same constraint

A% =2¢; 2. (6.58)

If we choose ¢; = 1 to cover the Einstein gravity at large distances, and also keep this
constraint (6.58) at small distances, then there is no hair A = 0. Considering that GR can
not explain the observations at large scales, here we think about it in another way. We only
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keep the constraint (6.58) at small distances, and consider non-trivial A, then our F(R)
model will deviate from GR at large distances, the relation (6.52]) becomes

F(R) ~ <1 + 1A2> R. (6.59)

We can adjust the scalar charge A to control the deviation of the F(R) model from GR,
and when the hair is small enough A — 0, we cover the GR at large distances.

The functions B(r), R(r), V (r), f(r) are all functions of the parameters ¢; and the scalar
charge A. At large distances choosing various values of the cp parameter of the function
f(R) and with a non-zero scalar charge A we get various scalarized black hole solutions.

Choosing ¢y = \/iAQ we saw that a scalarized Schwarzschild-AdS black hole is produced.

2
Using the value of co = \/TZA , the effective cosmological constant 1} and relation
.58) we rewrite the asymptotic expressions at origin
(16.58)) ite the asymptoti pressi t origi

1 A f
B(r) = 1+ gﬁAQCg — ?C’% — ;HTZ + 0 (7"5) , (6.60)
A2
R(r) = dhes— \/Zﬁ +0(r), (6.61)
2 AZ 2

V(r) = 1%\/7?144%7“2 — §A2637“ L2 vito (), (6.62)

A A2 A2
f) = ¢ ¢ VTdles T + 20 + 205 +2V1 + O (r) (6.63)

8r 4r? r
where
1 ‘
V(p) ~ Vi — 52\@43/203’/‘4 — ¢+ g\/%A%g(A —¢)+3A(A—¢), (6.64)
VAA (VmA%c3 +8) Viheg — R
F(R) ~ R—2Aeg+2A+2V4+ (vVrA%es + 8) VAo . (6.65)
4,/c3
If ¢3 > 0 and Aeg < 0, then
C3 T2Aef—f

B(r—>0)—>—§—>—oo, B(r — o) = — — 400 . (6.66)

Using the constraint of A we can show that the metric function and also the
functions V(r) and f(r) are always continuous for any positive r. Therefore, there must
exist a zero point, namely the event horizon of a black hole. This can be understood from
the fact that at small distances the modified curvature of the f(R) theory is so strong that
it gives strongly coupled hairy black holes.

In this case, the solution describes a scalarized black hole in AdS spacetimes as it can be
seen in the following figures which are plotted varying the mass M which is related to the
cs parameter as follows, using and the relation (6.58) we have

A2 A?
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In the above relations four ¢; parameters appear. We have made the following choices
of the parameters. We use ¢c; =1+ %Az because we want to recover GR at small distances.

_ /mA?

To have a scalarized Schwarzschild-AdS black hole we must have c; = Y—. We use
c3=3 (A2 + 2) M — 3y/mA? /8 to connect the parameter c3 with the mass M and the scalar
charge A. Finally ¢4 = —Aeg/3 to replace ¢4 to define an effective cosmological constant Aeg.
The solution can be characterized by three parameters: M, A and A.g. Besides, we need
c3 > 0 and Aeg < 0 to make sure that an AdS black hole exists, which leads to M > /7/8
with free A or 0 < M < /7/8 with A% < 16 M/ (y/m — 8M). This indicates that for large
black holes (M > \/7/8), there is no constraint on the scalar charge, the scalar charge can
be extremely large, while for small black holes (0 < M < /7/8) the scalar charge must be
smaller than a critical value.

0
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Figure 6.1: Plot of the curvature, metric function, scalar field and potential for various
values of M, while we have fixed A = v/2 to have ¢; = 2 and Aeg = —1. As can be seen
in the upper left plot the Ricci Scalar R(r) is divergent at r = 0 while the metric function
B(r) in the right upper plot has a zero for positive r, indicating that a physical singularity
at origin is covered by the event horizon of a black hole. In the lower plots the scalar field is
plotted and the potential plot shows that it develops a deep well inside the event horizon of
the black hole, to trap the scalar field providing the right matter concentration — Gaussian
distribution in this case.

The formation of a hairy black hole at small distances is very interesting. To plot Fig.
[6.1] we solve numerically the metric function B(r) and the potential V(r) from the equations

(6.20) and (6.21]), since we already know the explicit expressions (6.27) (6.28)) of the scalar
field ¢(r) and fr(r). Then we use the relation (6.26)) to plot the curvature R(r). The
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boundary conditions we used are ([6.44), and V(r — 0o) = 0. As can be seen in this
figure the curvature is divergent at the origin while the metric function develops a horizon.
Also the Gaussian distribution of the scalar field and its potential are shown in the bottom
of the Fig. We can see that the potential develops a deep well. This well is formed
before the appearance of the horizon. This indicates that the scalar field is trapped in this
well providing the right matter concentration for a hairy black hole to be formed. When the
horizon is formed the potential of the scalar field develops a peak as it is shown in Fig. [6.2]

0.02

0.01

= M=1
M=2
M=3
-0.01 M=4
M=5

-0.02
1 2 3 4 5

Figure 6.2: Plot of the potential outside the horizon for various values of M, while we have
fixed A = v/2 to have ¢; = 2 and Aeg = —1. The plot shows that the potential develops a
peak just outside the event horizon, trapping the hairs near the surface of the black hole.

In Fig. we compare the F'(R) function with Einstein Gravity F(R) = R. From the
figure we can see the at small curvature it is very close to Einstein Gravity, while at large
curvature it deviates from Finstein Gravity. In Einstein Gravity, such minimal coupling can
not give hairy black holes due to no-hair theorems. While in our f(R) theory very close to
Einstein Gravity as Fig. 4 shows, especially at small curvature, hairy black holes can be
obtained.

Although it is hard to be seen in Fig. but we can illustrate that the F'(R) models
can not avoid the so called Dolgov-Kawasaki instability[43], which happens when Frpr =

. : o : N
frr < 0. The expression under the Gaussian distribution and the choice co = ¥~
to have scalarized Schwarzschild black holes give

fR'(r) = %AQ [2€_T2T +vr(1— E(T))] >0 always. (6.68)

While from the plot of the curvature R(r) in Fig. [6.1] we can see that R'(r) < 0 outside the
event horizon of the black hole, therefore we have frr = fr’(r)/R'(r) < 0.

6.1.2 Other matter distributions

If we consider another matter distribution we expect to get a similar structure of the hairy
black holes at large and small distances. This will depend on the behaviour of the scalar
field at large and small distances. Choosing different matter distributions will affect the
form of the f(R) function which nevertheless it will always have extra curvature terms other
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Figure 6.3: Compare the F(R) functions with Einstein Gravity F(R) = R (Gray line),
while we have fixed A = /2 to have ¢; = 2 and Aeg = —1. The plot shows that for small
curvatures the F(R) models are very close to Einstein gravity, while for extremely large
curvature, they deviate from the Einstein gravity with a small deviation. If the mass is
increasing we observe larger deviation of F(R) model from Einstein Gravity.

than the Ricci scalar R. If for example we choose a a polynomial distribution like

A

o) = G (6.69)

we will get
Ap(r +5)~%
fr(r) = T pt2

or an inverse trigonometric function distribution of the scalar field

+c1 4 cor (6.70)

o(r) = g — arctan(r) (6.71)

we will get

1
fr(r) = —3" arctan(r) + ¢ + cor . (6.72)

Therefore we expect that strong and weak curvature effects of the f(R) function at small
and large distances will give hairy black hole solutions.

6.2 Non-minimal Coupling case

In this section we will consider a scalar field non-minimally coupled to gravity and we will
look for hairy black holes. The strength of the coupling between the scalar field and gravity
is denoted by the factor 1/12 (the conformal coupling factor) and in the action we also
consider a self interacting potential. The motivation for this study is to show that choosing
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various matter distributions we can have the formation of hairy black holes at small distances
if the scalar field is not minimally coupled. We will see that the scalarization mechanism
depends internally on the dynamics of the scalar field before and after the formation of the
horizon of the black hole.

Consider the action

1 1 1
5= [d'av=g [%(f(R) ~20) — 3" 00,6 — <SRG~ V(9)] - (6.73)

Varying this action we get the same field equation (6.2 but with a different energy-momentum
tensor

1 1
Ty = 0,90, ¢ — §gul/gaﬂaa¢8ﬁ¢ + 6 (gw,D — V.V, + G/w) ¢2 - g#yV(qb) ) (6.74)
and a different Klein-Gordon equation
1 /
O — gRqﬁ —V'(¢)=0. (6.75)

Using same metric ansatz (6.5) and setting x = 1, from the 66 and ¢t components of the
Einstein equations we get

fr(r) (=3rB"(r) + 6B(r) — 6) + 7 (rB'(r) — 2B(r)) (¢(r)¢'(r) — 3f(r))

12r2B(r) =0, (676)
while from the ¢t and rr components of the Einstein equations we get
1
gB(T’)2 (3fR(r) = o(r)¢" (r) +2¢(r)?) = 0 . (6.77)
The Klein-Gordon equation reads
(rB'(r) +2B(r)) ¢'(r) | é(r) (r?B"(r) + 4rB'(r) + 2B(r) — 2) " Vi(r) _
- + 62 + B(r)¢"(r) 70
(6.78)

As in the previous section with a scalar field minimally coupled to gravity, we will consider
various matter distributions and we will study their effect on a spherically symmetric metric.
Then having the forms of the scalar field ¢(r) we will solve for fr(r) from equation (7.12),
then we will get B(r) and V (r) numerically from equations (6.76) and ([6.78)) respectively.

In this case, the equations are hard to be even asymptotically integrated in full generality.
Thus we can not give a proof of continuity like we did in the previous section. But for the
boundary conditions we give (B(0.2) = —10, B(100) = 1, V(100) = 0), the numerical
results show that they are continuous, then an horizon is formed, and we indeed observe
similar behaviors with the minimally coupled case.
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6.2.1 Inverse proportional distribution

We first consider the inverse proportional distribution of the scalar field

= 6.79
o) = . (6.79)

where m and n are constants. Then we get
JrR=C1+ Cor, (6.80)

and the metric function B(r), V(r) can be obtained numerically as shown in FIG.
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Figure 6.4: The metric function B(r) (left) and the potential V(r) (right) for m = Cy =
Co = 1, for different values of the scalar charge n. Larger scalar charge n gives larger radius
of the event horizon and the potential goes to zero after the formation of the black hole.

We can see that for the conditions we give, there is an horizon formed and black hole
solutions exist with a scalar field to behave well for all » > 0 values. The scalar charge n
plays a role in the solution, since for larger n the black hole is formed closer to the origin
of coordinates, while the potential in all cases goes to zero after the formation of the black
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hole. For the f(R) function we have from equation (6.80)),
f/(R) = C1+Cyr(R), (6.81)

R
F(R) = CiR+Ch / r(R)R , (6.82)

where the parameter C; is dimensionless and C has dimensions [Co] = L™!. Therefore if
C1 =1 and Cs # 0 this solution can be considered as an extension of the Einstein gravity.
The scalar charges play a role in determining the metric therefore the matter distribution
will influence the form in the final f(R) through the Ricci scalar.

6.2.2 Exponential distribution

Next we consider the exponential distribution of the scalar field
o(r) =me """, (6.83)

where m and n are constants (n > 0 for the appropriate asymptotic behaviour, with units
[L]7!). Then we get

1
fr= —Emge_%r +Cor+Cy (6.84)

and the metric function B(r), V(r) can be obtained numerically as shown in FIG.|6.5

As we can see for FIGJ6.5], similar horizons are formed and black hole solutions exist with
the scalar fields regular everywhere. Potential wells are developed inside the event horizon
of the black hole, to trap the scalar field providing the right matter concentration. Larger
scalar charge n gives deeper potential well and smaller radius of the event horizon.

For the f(R) function we can see from equation that curvature corrections will be
present in the final f(R) form. The first term of equation is related directly to the
scalar field charges, while the last two terms will contain information about the scalar field
indirectly through the metric function.
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Figure 6.5: The metric function B(r) (left) and the potential V' (r) (right) form = C; = Cy =
1, for different values of the scalar charge n. Potential wells are developed inside the event
horizon of the black hole, to trap the scalar field providing the right matter concentration
for hairy black holes to be formed.

6.2.3 Inverse tangent distribution

Finally we consider the inverse tangent distribution of the scalar field

¢(r) = arctan <mTj_ 7') , (6.85)
where m is a constant with units [L] and we get
m-+r T 1 m \?
fr= ( o ) In (2m n r) + 6 arctan <m—i—r> + Cor +C1 (6.86)

and the functions B(r), V(r) can be obtained numerically as shown in FIG. In FIG.
we plot the scalar field ¢(r) and fg.

As we can see from FIG. similar horizons are formed and black hole solutions exist
with the scalar fields regular everywhere. Potential wells are developed inside the event
horizon of the black hole, to trap the scalar field providing the right matter concentration.
Larger scalar charge m gives deeper potential well and smaller radius of the event horizon.
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Figure 6.6: The metric function B(r) (left) and the potential V'(r) (right) for C; = Cy =1
for different values of the scalar charge m. The potential goes to zero after the formation of
the black hole horizons.

For the f(R) function we can see from equation that non-linear curvature correc-
tions will appear in the final f(R) form. These corrections are related directly to the scalar
field charges due to equation (7.12)) (the first two terms of equation ) Of course, the
scalar field plays a role in the metric function B(r) so it is expected that information about
the scalar field will be present in the Ricci scalar and more non-linear corrections will finally
appear because of the last two terms of equation , assuming of course that the Ricci
scalar is dynamical. FIG shows that the nonlinearity of fr(r) becomes stronger near
the origin due to the concentration of scalar field, while for larger values of r it goes like
fr ~ C1 + Car, since the scalar field vanishes asymptotically.

We can see that in all the above cases, the scalar field modifies the gravitational model
at hand, depending each time on the scalar field profile. The first polynomial distribution
for example, seems to modify indirectly the gravitational model, while the other two distri-
butions play a profound role in the final f(R) model. The integration constants Cq and Co
have a physical meaning. C] is related to Einstein Gravity and Cy is related to geometric
corrections that can be encoded in f(R) gravity, as it can be seen in equation (6.82)).
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Figure 6.7: The fr function (left) for C; = Cy = 1 and the scalar field ¢(r) (right) for
different values of the scalar charge m. The nonlinearity of fr(r) becomes stronger near the
origin due to the concentration of scalar field, while for larger values of r where the scalar
field is weaker it goes like fr ~ C1 4 Car.

6.2.4 Solution of the differential equation (6.21)
Here, we will solve the differential equation (6.21]). We have:

fr (r*B" —2B+2) +r (rB'—2B) fz =0 (6.87)
By inspection we can see that we can wite this equation as:
(frr®B' = 2rfrB) = —2fr

We can now immediately integrate:

(6.88)

It is very easy to solve the homogenous equation. We obtain:

B(r)hom = cqr?
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We will now treat ¢; as a function of r and substitute the obtained solution in (6.88). We

have:
c3— | 2fgdr
T2C/1 +2r%c; — 2¢11? = S e ff L ,
TfR
from which we can solve for ¢;(r) :
C3 — f2fRd7'
ci(r)=c —I—/dr 6.89
1(r) =ca T (6.89)

and now substitute back in the solution of the homogenous equation to obtain the general
solution of the differential equation ([6.21)):

B(r) = 12 (C4+ / CSIWW) (6.90)

rfr
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Chapter 7

(2 4+ 1)-Dimensional f(R) Gravity
Black Holes with a Non-Minimally
Coupled Scalar Field

In the previous chapter we consider a minimally coupled scalar field and discussed the
resulting physics. Here we will consider a non-minimally, solve the field equations and
discuss a bit the stability of spacetime and thermodynamics.

7.1 Black Hole Solution

We consider the action

. R 1 1
5= [@ev=g{ N7~ Juomro - oro? —vie)} (71)
which consists of a function f(R) differentialble in any order and a non-minimally coupled
scalar field that self-interacts with an arbitrary potential V' (¢). The field equations that arise

are

1
I;w = fRR,uV - ig;wf(R) + g/u/DfR - v,uvufR = T,uz/ ) (72)
1
06— <R~ V'(8) =0, (7.3
_df(R) o
where fr = IR the energy momentum tensor is given by
1 le' 1 2
T;w = aud)a%b - 59#1/8 $0a@ + g <g;u/|j - vuvu + Guu)¢ - guuv(¢) ) (74)

127
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and the trace of Einstein equation in tensor form reads
It =2frR —3f(R) + 40fr = ¢0¢ — RG*/8 — 6V () . (7.5)
Imposing a metric ansatz with one degree of freedom
ds® = —b(r)dt* + b(r)"tdr? + r2db? (7.6)

Einstein’s equation ([7.2]) takes the form of the following differential equations
2r (V' (¢p¢) — AfR) + 4frb" —2b (4ff + ¢* — ¢¢") + 4f — 8V) + V' (8fr + ¢°) — 16bf% + 4bpe’ £707)

2r (b (¢p¢' — 4fp) + AfR" + 4b* +4f —8V) + ' (8fr + ¢*) — 16bf + 4bpg’ =0, (7.8)
r (4 (¢¢' — Af) + ¢*b" — 4b (Aff + ¢ — ¢¢") + 8f — 16V) + 16fgb =0 , (7.9)

where all functions depend only on the radial coordinate r. The Klein-Gordon equation for
the metric ansatz ([7.6]) we imposed takes the form

20/(r) +rb"(r)) | b(r)¢/(r) Vi(r)
b/ / (b(r) ( _

(r)e'(r) + 3 + r ¢ (r)
The trace of the Einstein equation ([7.2]) in terms of the unknown function reads

IH = =32 fr4-32fgb +167 fRb" +8rpb ¢/ +2¢°0 +1d2b" —32b f1,—32rb f+8bpd +8rbpd +24r f —48rV =
(7.11)

The Klein Gordon equation can be obtained by taking the covariant derivative of Einstein’s

equation. Therefore, we have a system of three independent equations with four unknown

functions: the f(R) model, the potential V' (¢), the scalar field ¢(r) and the metric function

b(r). We will leave the potential arbitrary and let equations determine its form. We will

then check the trace of Einstein’s equations. A vanishing trace will indicate that the matter

is conformally coupled to gravity. From equations , we can obtain the relation

between the gravitational model fr(r) and the scalar field ¢(r)

+b(r)¢"(r)

~0. (7.10)

”w
"

AfR(r) +3¢/(r)* = ¢(r)e"(r) =0 . (7.12)
We can immediately integrate this equation for fr(r)
fr(r)=s—ar+ / / % (p(r)¢" (r) — 3¢/ (r)?) drdr | (7.13)

where s, « are constants of integration. s is related to the Einstein-Hilbert term, « is related
to geometric corrections to Einstein gravity that are encoded in f(R) theories and the last
term is related to the scalar field. We can see that the scalar field gives an immediate modi-
fication to the f(R) model if the integrand does not equal zero. To simplify the equations we
will assume that the quantity under the integrand vanishes, giving the profile of the scalar
field. Hence, we have

fr(r) = 1—ar, (7.14)
P(r) = L (7.15)

c1T + C2
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We can immediately integrate fr(r) with respect to Ricci scalar to obtain the general form
of the f(R) model:

R
Fa(r) =1 —ar — f(R) = R— a/ r(R)dR . (7.16)

We can see that we obtain a geometric correction term in addition to the Einstein-Hilbert
term. The scalar field does not appear immediately in the f(R) model as happens in [40].
Information about the scalar field may appear in the f(R) function in the case where the
scalar charges c1, co and the modified gravity parameter o are connected.

Now, we solve equation for the f(r) function and substitute back in obtaining
a second order differential equation for the metric function b(r) which it is not clear how to
be integrated in full generallity. For general cp, co, the metric function can be obtained, but
the result is not a continious function for all » > 0. We find that for particular values of the
scalar charges ¢; = 8c3a, ca = 1/8 we obtain a simple second order differential equation:

r (r(ar + 1) (r) + b'(r)) —2b(r)(ar+2)=0, (7.17)
which we can integrate to obtain the metric function

m 2am A2 — A (—dartry, 4+ rj(dar + 3) — 3rt)

b(r) = — - _
(r) 212 3r r2 (4dary, + 3)

, (7.18)

where m and A are constants of integration and rj, represents the event horizon of the black
hole. The Klein-Gordon equation (7.10)) now takes the form

2rt(ar + D)W/ (r) — (m (4a3r3 + 6a%r? + dar + 1) + 6A7"4) =0, (7.19)

and immediately integrating we get

1 a*m — 6A m
_1 _m 2
vir) 2 (304(047“ +1)3 37“3) (7.20)

The f(r) function now takes the form

while the Ricci scalar is m
R(r) = i + 6A . (7.22)

Solving the scalar curvature for r we find that the positive root is

r= \4/%, (7.23)

assuming that m > 0. The f(R) model now is

F(R) = R—2A — %a%(R _GAY (7.24)
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The resulting f(R) gravitational function is tachyonically stable [50l 56, [5I] since

¢f(R)  ayYm
dR?  4(R—6A)3/4"

(7.25)

which is always positive for positive ¢z and . We can simplify the f(R) model by setting
4Ym
3

=1— m = 81/256, which will lead to

f(R)=R—2A —a(R—6A)%* . (7.26)

It is clear that we cannot set o — 0 since we have set ¢; = 8c3a which will imply that the
scalar field is constant. If we set a = 0 at equation ([7.14]) before relating « with the scalar
charges ¢y, co we will obtain

o(r) = BS_E:T, (7.27)

b(r) = 35+%TB—A7«2, (7.28)
3N

Vi) - _B(E;\Hff, (7.29)

f(r) = 4A, (7.30)

fr(r) = 1, (7.31)
6 6

V(g) = 5152(1’32—%, (7.32)

R(r) = 6A, (7.33)

a special case of the solutions obtained at [I3, 57|, where 3, B are integration constants.
The trace of the resulting energy momentum tensor vanishes and the scalar curvature is
constant, meaning that the matter part of the action is conformally coupled to gravity.

We will now turn back to the f(R) gravity solution we obtained. We will express the
potential in terms of the scalar field, which after the redefinitions of the scalar charges reads

o(r) = \10”8“, (7.34)

atmg® atme® Agp®
V(@) = =gt G s 2 (7.35)

We know that the conformal invariance requires the trace of the stress-energy tensor to
vanish, which gives a special form of potential V(¢) ~ ¢°. However, here the potential
is fixed by the choice of fr(r), ¢(r) and the metric ansatz, therefore inevitably breaks
the conformal invariance of the theory. We can check this by computing the trace of the

energy-momentum tensor
m

Tﬁ:—m7

(7.36)
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which is non-zero as expected. The metric function contains only one root, namely the
event horizon of the black hole, when A = —I~2 (AdS spacetime) as one can see from the
asymptotic behaviors of b(r). For a > 0 the scalar field is always regular and well behaved
for all » > 0. We present some plots of the functions we encountered thus far.

From FIG[71] we can see that the gravitational effects are more intense near the origin
where the curvature is stronger. The metric function develops a horizon while the scalar
field and scalar potential are regular for r > 0. The Kretschmann scalar ensures that there
exists no other singularity except for » — 0. The scalar field does not dress the black hole
with some kind of scalar hair, a primary scalar charge that can be detected by an observer
asymptotically at infinity, or a secondary one that would be related to some other conserved
charge like the black hole mass for example. The model parameter « of the modified gravity
appears in the scalar field and is the reason that we can obtain non-trivial solutions for
the scalar field. There is no way that we can turn off the scalar field to obtain previously
discovered solutions of the f(R) theory in three dimensions.

The metric function, contains three constants of integration that determine the behavior
of the black hole; the cosmological constant A, the modified gravity parameter «, since we
made the assumption that gravity is non-linear fr # constant and m, a parameter that gives
Ricci scalar and f(r) dynamical bevaviors. Note that if m = 0 then the conformal invariance
is restored, while the correction term in vanishes and only pure AdS spacetime is left
with a self interacting stealth scalar field in the background, in other words, the breaking
of the conformal invariance is essential in order to obtain a black hole solution. This is the
so-called "stealth structure" in the literature [58| 59]; this kind of matter configurations have
no influence on the geometry of spacetime.
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We will discuss the properties of spacetime at large distances by considering the pertur-
bations of a massless scalar field in the black hole spacetime [59], therefore we introduce a
free scalar field ¢ that satisfies its equation of motion

Odo =0 . (7.37)
T T T T T T T T
of ]
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Figure 7.1: The metric function b(r), the scalar potential V' (r), the scalar field ¢(r), the
Ricci scalar R(r), the Kretschmann scalar Ry g5 R*%7°(r) and f(r) as functions of the radial
coordinate r, while changing the modified gravity parameter «, fixing the cosmological
constant A = —1 and m = 81/256 .

Transforming the scalar field as ¢g = r~12ppe~ ™0t the Klein-Gordon equation takes
the form of a Schrodinger-like one

dQSDO 2
pRONN (wg — Vest)po =0, (7.38)
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where we expressed this equation using the tortoise coordinate r, = [drb(r)~! and the
effective potential in the background of the metric ([7.6)) reads

b(r) (b(r) — 2rb (r
a?m?  2am?  5m2  mA  3A%2?
_ _ _ 0 4
3rd 3rd 1676 492 + 4 (7.40)

-20

Verr(r)

-30F a=1

a=2

-40 a=3

-50 a=4
0.0 0.5 1.0 15 2.0 25

Figure 7.2: The effective potential Veg(r) while changing the modified gravity parameter «,
fixing the cosmological constant A = —1 and m = 81/256 .

The asymptotic behavior of the effective potential is Veg(r — 00) = 3A%r%/4, meaning
that regardless of the modified gravity parameter o and m, the potential acts as a boundary
at large distances, constraining the matter field. We present a plot for the effective potential
in FIG.[7.2] The effective potential turns out to behave similar to the BTZ effective potential
[59] and develops a deep potential well inside the event horizon of the black hole.

In order to better understand the parameter m, we plot the metric function for different
values of m.

20—

< E m=0.1
m=1
m=5

-40+ m=10

0.0 0.5 1.0 15 2.0 25 3.0

Figure 7.3: The metric function b(r) for different values of the parameter m, fixing the
parameter « and the cosmological constant A as a = —A = 1.
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We can see that for larger m we obtain a larger horizon radius which reminds us the
behavior of the mass parameter of a black hole. For example in the BTZ black hole
b(r)prz = r*/I> — M, where M is the mass and [ is the AdS radius, a larger mass will
bring larger black hole horizon radius. Since the metric function b(r) is rendered dimen-
sionless, (I has dimensions of [L], @ has dimensions of [L~!]) m will have dimensions of
length squared [L?] and from the view of dimensional analysis we cannot identify m with
the allowed black hole parameters, mass, charge and angular momentum (in our uncharged
and non-rotating case only the mass is the allowed black hole parameter).

7.1.1 Thermodynamics

We will now briefly discuss thermodynamics. The Hawking temperature and the Bekenstein-
Hawking entropy are given by [60], 48, 47, [61]

T(rn) = b/i;h), (7.41)
Stm) = ) (.42

where both quantities are evaluated at the black hole horizon. Here, &/ = 27ry, and fg)tal =

. 1
fr+ ff%ouplmg =1-—ar, — §¢(rh)2, so besides the modified gravity part ar, that modifies

the area law for the entropy, the scalar field also modifies the entropy via the non-minimal
coupling between matter and curvature. We now define the function

damr + 3m + 6A7‘4> ’ (7.43)

rp, = Root (— 62

so that the parameter 7, represents the position of the black hole horizon. The temperature
and the entropy then are

m 3Ary,
T(rn) = 3 dr (7.44)
7Ta2’l”3
S = ——— h 7.45
(Th) 2ary, + 2 ( )

To ensure that the parameters satisfy the relation at the horizon ry, we replace the parameter
m with rp,
6A7

b =0->m=—-——"—
(rn) m dary, + 3

(7.46)
The entropy is always negative for any «,r, > 0 and the Hawking temperature is explicitly
calculated

_3Arp(ary +1)

T(ra) = m(4dary, + 3)

(7.47)
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We plot in FIG.4 the temperature and the entropy (7.45). It is known that the
non-minimally coupled scalar black hole has a reduced entropy [10] and here besides the
contribution of the scalar field we have a contribution from the modified gravity, resulting
in negative entropy. As a consequence this solution is not allowed thermodynamically. The
result coincides with the (3 + 1)-dimensional case [62]. In the (3 + 1)-dimensional case, the
conformal invariance is respected and the intoduction of a Maxwell field will bring more
entropy to the black hole. However this is not the case in (2 + 1)-dimensional case. The
conformal invariance is broken in order to have a black hole solution and not pure AdS
space with a scalar field overflying it, so the introduction of (F* FW)S/ 4 electrodynamics
that preserves the conformal invariance is not going to cure the nerative entropy problem.
Modification of the entropy is also observed in the General Relativity case [63] where ranges
on the values of the parameters of the solution are given, in order to obtain positive entropy.

In modified gravity theories such as the Einstein-Gauss-Bonnet gravity, the possibility of
negative entropy has been discussed [64], where it is claimed that classical thermodynamics
is not applied in this case and negative entropy simply indicates a new type of instability in
asymptotically AdS black hole physics. We should also note the fact that for asymptotically
dS spacetimes we can have positive entropy if we assume that o < 0, which would also imply
that the resulting f(R) would be tachyonically unstable, and a divergence point is introduced
in the scalar field that lies outside the event horizon of the black hole. For @ < 0 and a
positive cosmological constant A = [~2 we obtain a black hole solution with two horizons,
one black hole horizon and one cosmological horizon. The entropy will be positive
when the modified gravity parameter « satisfies ary < —1 while we will have a divrgence
point for ary, = —1 which indicates a phase transition. At this point the temperature will
equal 0 as it can bee seen from ([7.44). Thermodynamically, the dS solution is preferred than
the AdS as it is argued in [64].

Figure 7.4: The metric function for the dS black hole for A = 1, m = 1 while changing a.
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7.2 Black Hole Solution with Linear Electrodynamics

We now include a Maxwell invariant in the action and now it becomes:

R 1 1 1
5= [@ay=s{ T 000 — (GRS -V - FLF) . (148)

hence, the field equations are now supported by Maxwell’s equation
V. F'" =0, (7.49)

and the corresponding energy-momentum tensor

1
T = Fualy = 9w P Fag . (7.50)

Imposing a one degree of freedom metric (7.6) and an ansatz for the electromagnetic U (1)
field allowing only radial electric fields

A, = (Ai(r),0,0) (7.51)
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Figure 7.5: The Hawking temperature T(ry,) (7.47) and the Bekenstein-Hawking entropy
S(rp) (7.45) as functions of the horizon radius for A = —1, while changing a.
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Maxwell’s equation can be immediately integrated to yield the scalar potential A;(r)

Ay(r) + AL ()

T

=0— A®r) =Qn <’"> (7.52)

7o

where @), ¢ are constants of integration. We now follow the same procedure to integrate the

field equations. We obtain equation (7.12)) with the configurations ([7.14]), (7.15)) solving this
equation. For the particular values of the scalar charges ¢y, co we used in the uncharged case,

cl = 805, co = 1/8, we obtain a second order differential equation for the metric function
(ar +1) (@r*V"(r) + aQ*r + Q%) + o*r3V (1) — 2a2r*b(r)(ar +2) =0 , (7.53)
which we can integrate to obtain b(r)

m(—6ar —9)  Q?*(16ar + 48arIn(r) + 36 In(r) + 9)
19272 1440272

As expected for @ = 0 we obtain ([7.18]). Now we can solve from the Klein-Gordon the
expression for the potential

b(r) = — Ar? . (7.54)

24a (am(3ar(ar + 1) + 1) + 12A7%) + Q*(9ar(ar + 3) + 11) — 12Q*(3ar(ar + 1) + 1) In(r)
B 144ar3(ar +1)3 ’
(7.55)

V(r) =

while the f(r) function can be solved from the Einstein equations

 24a? (—damr + 3c3 4+ 12Ar%) + Q* (—36a%r? — 32ar + 45) + 12Q? (4ar — 3) In(r)
N 720274

f(r)

(7.56)
The potential as a function of ¢ reads

1
73728 (42 — 8)

e ’ <a2¢8 (240%m (¢* — 247 + 192) + Q* (~T6" + 724" + 576)) —144A (¢ - 8)° ¢°—

8 — ¢?
1202Q? (¢* — 24¢ +192) ¢°In ( o ) ) . (7.57)

The Ricci curvature reads

5Q*  Q*In(r) | @

8a2rd 202714 3ard’

R(r) = = +6A + (7.58)
T

where the electric charge brings logarithmic terms, making the inversion R(r) — 7(R)

difficult, therefore we cannot obtain the exact form of the f(R) function. However, we can

obtain information about possible tachyonic instabillities using the chain rule

~ Jr(r) ol

frR(r) = R(r) = 1aZm + Q%*(ar +3) —2Q%In(r) ’

(7.59)
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which is positive for m,a,r > 0 and therefore the resulting f(R) is tachyonically stable
50, K6l 5I]. We present plots of the encountered functions.

In FIG. W we plot the metric function b(r), the potential V' (r), the Ricci scalar R(r),
the f(r) function and frr(r). The metric function develops a horizon; larger values of «
give larger values for the radius of the black hole horizon, the potential goes to zero after
the formation of the black hole horizon, while the gravitational effects are larger near the
origin where the curvature is stronger, as we can see from the behaviors of the Ricci scalar

R(r) and f(r). frr is always positive meaning that the f(R) model at hand is tachyonically
stable.

Considering now a massless scalar field (|7.37]) as a perturbation, we find that the resulting
effective potential ([7.39) in the background of the metric (7.6) behaves at infinity as

3A2 2 1
Vagr(r — 00) ~ 4T +o <T> : (7.60)

which means that the potential acts as a boundary at infinity, constraining the matter fields.
In FIG. we plot the effective potential.
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Figure 7.6: The effective potential Veg(r) for the linear electrodynamics case while changing
the modified gravity parameter «, fixing the cosmological constant A = —1, m = 1 and

Q=2
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Figure 7.7: The metric function b(r), the potential V(r), the Ricci scalar R(r), the f(r)
function and frgr(r) for different values of the parameter a while fixing the negative cosmo-
logical constant A = —1 the electric charge @ and the constant ¢; as Q = 2,m = 1.

7.2.1 Thermodynamics

In this subsection, we will breifly discuss thermodynamics. The Hawking temperature and
the Bekenstein-Hawking entropy are given by ,. Information about the electric
charge does not appear in the scalar field configuration, therefore as we can see equation
will not change, resulting in negative entropy. The temperature will change, since the
electric charge appears in the metric function, so we have

(arp +1) (Q* (16ary, + 9) — 14402Ar})
48Ta?rd (dary, + 3)

T(r) = : (7.61)

where we have used the horizon condition b(ry) = 0 to solve for m. The temperature is
always positive for any A < 0, > 0,7, > 0,Q > 0 and we can see its behavior in FIG. [7-8|
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Figure 7.8: The Hawking temperature as a function of the position of the event horizon
T'(rp,) while changing the modified gravity parameter «, having set @ = 2, A = —1.

7.3 Conclusions

In this paper we considered (2 + 1) dimensional f(R) gravity and a non-minimally coupled
self interacting scalar field. Fixing the general profile of the scalar field, without fixing the
f(R) model we derived exact, charged and neutral asymptotically AdS black hole solutions.
The resulting f(R) model is free of tachyonic instabilities, the Ricci scalar is dynamical,
the scalar field is regular everywhere and the scalar potential that is obtained from the
equations breaks the conformal invariance. The breaking of conformal invariance is essential
in obtaining black holes, since if we set m = 0 to restore the invariance, we obtain a stealth
scalar field overflying AdS spacetime. Thermodynamically the obtained solutions are not
valid, since the entropy having contibutions from the modified gravity part and the non-
minimal coupling between the scalar field and the Ricci curvature of the matter sector of the
action is always negative. We discussed that we can have positive entropy for a < 0 and dS
spacetime, where in this case a pole exists in the scalar field that lies outside the event horizon
of the black hole and the f(R) model is tachyonically unstable. It is known that conformal
scalar black holes have a reduced entropy, because of the non-minimal coupling between
matter and curvature [I0]. In the investigated f(R) theory the effect of the modified gravity
together with the non-minimal coupling between matter and curvature lead to negative
entropy. As a consequence, Finstein’s theory of gravity is thermodynamically preferred.

It would be interesting to allow the scalar field to have a direct contribution to the f(R)
model through to see what the effects of such a direct contribution are to physics and
in particular thermodynamics. In the minimally coupled case where the scalar field modifies
directly the f(R) theory [40] the BTZ black hole is scalarized and the resulting black holes
are thermodynamically preffered since they possess higher entropy that the BTZ.
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