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Extetapévn Ilepiindn

Ex0moC aUTAC TNS OLMAWUATIXAC Epyaoiog lvon 1) ETEXTACT) TOU UOVTEAOU TV Simpson xou
Visser, mou anooxonel oty anololpr] v areptlouny tng Schwarzschild petpuic, eiod-
yovtag emmiéov @optio xou xoopohoyixr otadepd. Apyixd, 1 epyacia Eexvd pe pla €lo-
aywyr) otny onola amomepdTon Vo Yivel xatavonté mwe 1 Schwarzschild peiavy| ony| dev
omotehel mpoomedoiun oxovknxétpuno (traversable wormhole), oxdun xou ov outr Sio-
Véter plo yopwr yewuetpla, mou Yuuiler oxovAnxdTpuTa. MTn cuvéyela, Vétovta Ta facixd
XQLTTPLOL TOU TIPETEL VoL TANEEL 1) UETEWXT OOTE var TepLypdpet Wia traversable wormhole. Kot’
oucioy, To XOPPETL aUTO NG SIMAWUATIXAC amoTEAEL pla avooxdnnon (review) endve oTig
TEOCTEAAGIUES oxoUANnOTEUTES Xotd Morris xou Thorne, ypnouylomolovtag T0 QOopUIAoUd
Tou Bronnikov. Ou oxouknrdtouneg yapaxtnelloviar ¢ oTaTiol xou cQoueixd GUUUETEL-
xol ywpodyeovol ywelc xévtpo xa opllovieg yeyovotwy. Anhadh, we ula yewuetpla oTtny
omola 1 oxTival TV oQonp®y QTAvVEL ot uiot EAdyto T T PEYAADOTERT TOL UNdEVOS, Tou
onuotodotel tov "houud" Tng oxouvAnxotpunag xou emimhéoyv, ywelc null Killing horizons,
Tou elvor 0 0ploUdC Tou 0pillovTa YEYOVOTWY Yla ouTH TNV xAdorn yetpxav. Lo vo To
TETUYOUNE AUTO, BAETOUUE TS O TAVUGTAG EVEQYELIC-OPUNC TTOU TEQLYPAPEL TNV XATUVOUT
¢ OANG TOU amoUTELTAL YO TNV XATAOXEUT TG OXOVANXOTEUTAS, oTa TAdoLa Tne ['evixrg
Ocewplag e Uyetndtntag mopofidler v Null Energy Condition (NEC) xou étol v xa-
Diepwpévn otnv BiBhoypagpio we "eZwtinh" (exotic) popgh VAng eivor avambdgexty. Ilpoc
TO TENOG QUTHS TNG AVAOXOTNONG, ENUVEQYOUUCTE GTOV PopUaMous Twv Morris xow Thorne
%o TOEOUCLACOUKE TNV TLO omAT) Yop@T| WG TROCTEANGHUNG OXOUANXOTEUTOG, XadMS Xal
To Penrose 6udypopua autod Tou EBOUC TOV YWEOYEOVWY, ETOL WOTE VO ATEXOVIGOUUE TNV
outtaxt| Toug dopr. Mio awtio} Sour) mou dev SluEpel o TUMOTA amd oUTY| Tou ETENEdOU
Minkowski ywpdypovou, extéc and tnv cpunvela Tng. Mto TeiTO XEPIAO, TUPOUCLALETo
1 mpoavageplelon TEyVIx TV Simpson xau Visser, €l0dyovIag oTny UETEWXT TNG MEAAVHS
OTNG TNV TUEAUETEO 7, Yiot TIC TWES TNG omolag, 1) TEPLYPUPTY TNG METEWAC Cextvd amtd uio
uehavr) omy| pué€yet xan pia mpoomehdown oxouknxdteuna. ‘Ocov agopd TV Teheutalo, auTH
1 TOPUUETEOC XATOAAYEL Vo avomopto Té Ty axtivar Tou Aoupol tne.  Ilopoucidlouue tnv
TEYVIXT] QUTY| OTNV YEVIXA TNG Uop@n| xat €Tl elpaote o Y€on va Ny enexteivouue TEpay
¢ Schwarzschild petpuic. ‘Onwe mpoeinaye, ciodyouvue goptio, To onolo onualvel Twg
epopudlovye Ty eV otnv Reissner-Nordstrom yetpud| xou emniéoyv, €l0dyoude TNV
xoouohoYr) otadepd To omolo onuaivel o egapudloupe TV TeY VXY oty Schwarzschild
xot Reissner-Nordstrom dS/AdS. Yto tétopto XEQdhono, Tapouctdlouye Evay TPOTO Yol Vo
OLoXEIVOUUE TNV 0EY XY LEAVT| OTLY| XU TNV CUVETOY OUEVT] OXOUANXOTOUTIOL UE TIOQUTTEN O
HEYEDT. Luyxexpuuéva, UEASTAUE TNV VEOT TV XUXAXGY TEOYLOY YOpw antd ToV Ao NG
OXOUANUOTEUTIAC X0l BAETOUNE KOS XIS AUEAVOUUE TNV T TNE ELCAYOUEVNC TOQUUETEOU
n, N ISCO xat n potoviny| ogaipa (photon sphere) éoyovton o xovtd otov hayd, uéypet Ty
TEMXT| TOUC €CoPAVIoT). 2TO TEAEUTHO XEPAALO, TR OO TO TEAXE CUUTERAOUATO QUTHC
NS MEAETNG, YivovTow Xou PEELXE Oy OALoL ETEVL OE ovoly Td {nThAaTa YOopw ond autols TOUC
Y WEOYPOVOUC.

Z Z 4 4 4
Yuyxexpuéva, to amoteréopota Tou xepahalou 3 cuvodilovtour oo e€NC:

1. X1nv mepintwon mou elodyouue TNV xoouoloyixr otatepd oTic eéiowoelc Tediou, oL
0UO YWPEOYPOVIXEC TEQLOYES TOU GUVOEEL 1] OXOUANXOTEUTA EVOL OUUTTWTIXG ETt-
nedec/dS/AdS, yia undevixy, Vetixr o apvnTins xoopoloyny| otoaepd, avtictotya.

2. T xdde oxovinrdteurma  NEC napafidleton yia 6Ao 10 €0p0C TOU Y 0RO EOVOU TOU
TEPLYPAPETA UTO TNV EXACTOTE UETEIXT.



3. Elaipeon amotehel n meplntwon tng Yetinric xooporoywhc otadepdc, yia Ty onola
epgavileTtar o xoouohoyos opilovtac poxeud and Tov Aoud. Arnotelel e€aipeon,
OLOTL eMéve O AUTAY TNV UTEpETLRAvVELD 1) xadapd YPOVIXT) CUVLGTWON TNG UETEWXNS
undeviCetar xan €tor 1 NEC dev napofidlerton.

‘Ocov agopd To xepdhono 4, Eyoupe To eENG:

1. T Tic YVOOTEC HEAAVES OTEEC TIOU 1) TROTELVOUEVY) UETEXT TEQLYRAQEL, AoBEvVOUUE Tig
YVeoTég Véoelg Tng putovinig ogalpag xou tng ISCO.

2. Tt TIC TPOTEWVOUEVES GXOLVANUOTEUTES, lvor BuvaTtd Vo unv oplleTton oUTE PWTOVIXT
ogaipa, obte ISCO.

3. T Ti¢ TPOTEVOUEVEC GXOUANXOTEUTES, UTdEYEL 1) TepinTwon va opiletan 1) ISCO, eved
1 pWTOVIXY| oaipo OyL.

4. T'at TIC TPOTEWOUEVEG OXOUANXOTRUTES, UTGEYEL 1) SUVITOTNTA Vo 0pllETan Xou 1) Q-
Tovt) ogalpa xou 1 ISCO.

5. 'Olec oL mopamdvey TEPITTMOELS AopPBAvoVTaL Yol DIUPORETIXES TWES TNG ToUEUUETEOU
1, Tou yapuxTtnellel To Yovtélo Twv Simpson xat Visser, 6 oy€orn Ue TIC UTOAOLTES
ToEUPETEOUS Tou cuoTAUATOS. Tlap’ GAa auTd, Xopuiot TOLOTIXE BLUPORETIXY| GUUTERLPORS
0ev eupaviCeTon e TNV ELOAYWYTH PopTiou o xoouoroyxrc otadepds. Ou udveg
OLopOEES Efval TOCOTIXES.

Kelvovtag v epyaota, BAEToVUE TKC 1) TEOXEITTOUGH HETEIXT OTtO TO HOVTELNO TwV Simp-
son xou Visser dev unopet va tpox et amd tny dpdorn tng 'evinig Ocwplog tng Lyetindtnrog,
obun o Pe TNV Elooywyh xdmotou Boduwtol mediou, eAdytoto cuvdedeuévoy (minimally-
coupled) ye tov petpixd TavuoTh. Autéd ornuaivel, Twg yio vo Bpolue v Yewpla miow
and TNV PeTE oty Yo meénel va Eeglyoupe amo To mhaicto g Ievixrc Oewplag tng
LYETIHOTNTAUC XA VoL TERACOUPE o€ TpoToTotNuEVES Vewpleg Bopltntac. T'ot Tov Adyo autd,
OXLOYPAUPOVNE Wlol TOAD EVOLAPECOVUGCH TIEOOTTLXY| YL TIG OXOUANXOTQEUTEG OE TEOTOLNUEVEG
Vewpleg Bapdtnrag. Mia mpoomtin) ToU pag BIVEL TNV BUVATOTNTA VO XUTACKEVUCOUUE YOV~
TENA GXOVANXOTOUTILV YLoL T OTOl0L OEV AmOLTELTAL 1) ELCAY WY T e TIXAS UANG, apol 1) UTopén
TOU Aol oTny yewpetpla dev anartel Ty mopaPlacn tng NEC and tov tavuoth evépyetog-
opuric Tou VAol medlov. H mopofiaon tng NEC, épyeton and yewuetpixolc 6poug mou
elodyovton oty Yewpio Adyw Tng Teomomoinone Tng, ot onolol EpUNVEVOVTAL WS XATOLOU
eldoug Baputind peuoto. Téhog, BAémouye Twe 1 peTeixr Tewv Simpson xou Visser anoTteAet
éva €UQopo TEDIO UEAETAC Yiot TNV TEELYEOPY| OANY Y QPAoEWY PETUED opowy (regular)
HEAAVY 0TIV X0l OXOUATXOTRUTIWY.



Abstract

The goal of this thesis is to extend the Simpson-Visser technique for regularising the
Schwarzschild metric by the introduction of a cosmological constant and charge. Before
that, this thesis starts with an introduction that clarifies that the Schwarzschild black hole,
even if it possesses a wormhole-like geometry, is not a traversable wormhole; something
that is forbidden by the principle of General Relativity. After that, we pose the basic
criteria for a metric to describe a traversable wormhole in principle. This is a review
for traversable wormholes in the sense of Morris and Thorne, in which the Bronnikov
formalism is enforced. Wormholes are characterized as static and spherical symmetric
spacetimes without centre and horizons; that is, a geometry possessing a minimum co-
ordinate sphere radius different than zero, which is the definition of the throat of the
wormhole and no null Killing horizons, which is the definition of a horizon in this class
of spacetimes. In order to succeed that, a NEC violating Energy-Momentum tensor is
unavoidable, so "exotic matter" is appropriate for the structure of the throat. After,
recovering the original Morris and Thorne formalism and present the simplest example
of a wormhole, we extract the Penrose diagram of such a spacetime in order to illustrate
its causal structure. A causal structure which is like that of Minkowski, but with a dif-
ferent interpretation. What we are going to see in chapter 3 is the technique of Simpson
and Visser in order to regularize the Schwarzschild metric by the introduction of some
parameter 7. Specifically, on the values of this parameter depends the kind of the geom-
etry that the metric describes, starting from the original Schwarzschild black hole to a
traversable wormhole. For the wormhole, it turns out that this parameter corresponds
to the throat radius. The intermediate "states" are those of a regular black hole and
a one-way traversable wormhole. We present this technique in its general state, which
allows us to extend the technique of Simpson and Visser to more spacetimes rather than
the Schwarzschild one. Namely, we extend this procedure by introducing a cosmological
constant and charge (Reissner-Nordstrom). In chapter 4, we present an observational
distinction between the initial black hole and the corresponding wormhole. With the cir-
cular orbits being our tool, we see that as we grow the parameter 7, the ISCO and the
photon sphere become smaller and smaller until their final disappearance. In the final
chapter, some comments for future work on this spacetimes are presented.
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Chapter 1

Introduction

Einstein-Rosen Bridge or Schwarzschild Wormhole

The study of wormholes in physics finds its origins in 1935, when Einstein together with
Rosen published an article in which they try to describe particles (neutral and charged)
under the prism of field theory. This was a part in the attempt for a «unified foundation
on which the theoretical treatment of all phenomena could be based»[1]. Contrary to the
perception of physicists who interpreted particles as singularities of the fields, Einstein
and Rosen argue that «a singularity brings so much arbitrariness into the theory that
it actually nullifies its laws». So, «Every field theory [...]| must therefore adhere to the
fundamental principle that singularities of the field are to be excluded».

Todays, it is clear along the physicist community the distinction between the curvature and
the coordinate singularities. Curvature singularities are intrinsic to the geometry, while
coordinate singularities can be eliminated by coordinate transformations. However, at the
years that the paper was written this distinction was not clear and many physicist assumed
that the coordinate singularity of the Schwarzschild metric, i.e. the event horizon, was
the singularity [2|. Having these in mind, in this paper we see an attempt to eliminate
the coordinate singularity of the Schwarzschild and the Reissner—Nordstrém metric, by
a coordinate transformation which seems to lead to a bridge in spacetime. That is, a
connection between two asymptotically flat spacetimes. Let’s see the main idea behind
this, in the case of the Schwarzschild metric!, because in here is stated the basic wormhole
concept in its "immature state". The Schwarzschild metric is the following;:

R, dr?
ds® = — (1 - 7) dt* + : _T& + r2dQ? (1.1)

Of course, the coordinate singularity is for r = R,. If you take the transformation:

v? = r — R, then the metric becomes:

2
ds® = —21—Rdt2 +4(0% + Ry)dv? + (v° + R,)*dQ (1.2)
v s

!Einstein and Rosen are making a similar transformation to the Reissner-Nordstrém metric and they
find similar results. They conclude to a similar kind of bridge, with which they argue that charged
particles can be described. What we are considering about, although, are wormholes and the reason why
this "charged bridge" is not a wormhole is exactly the same. So, we left it out for thriftiness.



Indeed Einstein and Rosen accomplished their goal. The above metric is free of singu-
larities; the singularity of » = R, have been replaced with v = 0, for which no infinity is
present. According to the relation between v and r, we see that the above metric is able
to cover only the region r > R,. Hence, the singularity (curvature) at r = 0 disappeared,
too. In addition, with v defined in (—oo, +00), at each limit of v to +oo, the metric
describes an asymptotically flat spacetime. For this reason, the region near v = 0 was
named, by Einstein and Rosen, as a "bridge", which connects two asymptotically flat
spacetimes. In addition, by taking ¢ = const and u = const the above metric describes
spherical surfaces of radius u? + R,. The surface with u = 0 corresponds to the minimum
radius of Ry; that is, the bridge is the narrowest part of the geometry.

In the above paragraph we see two crucial points. The first one is that the metric is
free of singularities, while the second one is that the metric describes two asymptotically
flat regions of spacetime, which are connected by the narrowest part of the geometry.
The wormhole physics can be considered as a trial to avoid the curvature singularity at
the center of the spacetime?, r = 0, and this is the point that connects wormholes with
the above consideration of Einstein and Rosen about the description of particles. It is
true that singularities in a field theory have posed many problems through out the years.
Beyond wormholes, the exclusion of possible singularities in gravity was tackled with the
concept of regular black holes, in which we try to either regularize the center (r = 0) of
the black hole or to avoid the center by building a spacetime without one. For the latter,
the idea is similar to the definition of the bridge that we stated above. In order to avoid
the center, we can constraint the geometry of spacetime to have a minimum radius larger
than zero, r > ry > 0. The study of wormholes and regular black holes, although, show
that this is not something that can be done without producing other issues. We see that
in order to avoid a singular center of the spacetime, "exotic matter" has to be introduced
(this will be clear in the subsequent chapters); that is, matter distributions that do not
correspond to any classical form. But more about this later.

However, the Einstein-Rosen bridge does not describe a traversable wormhole. We can
argue for this in many ways. Visser in his textbook about the Lorentzian Wormbholes [2],
argues that the bridge described by (1.2) is just a coordinate artifact. That this metric
describes just a black hole where a "bad" coordinate system is enforced, which doubly
covers the exterior of the event horizon. A few lines, above we imposed a way in order
to avoid the center; that is, constrain the narrowest part of the geometry to be a sphere
of non-vanishing radius. Someone could tell that the transformation that Einstein and
Rosen took (namely, v? = r — R,) does exact this work and constraints r to be larger than
R,. But this is not true. The Schwarzschild metric is a vacuum solution to the Einstein
equations defined for r € (0,4+00). For r > R, the metric is static, while for r < Rj is
not. A transformation like that of Einstein and Rosen does not constraint the geometry
of the spacetime. It just ignores a part of the geometry. Specifically ignores the non-static
part of the Schwarzschild metric, which is a part of the underlined geometry and cannot
be excluded by just a coordinate transformation. This is why the Einstein-Rosen bridge
is just a coordinate artifact and if you try to cross the v = 0 hypersurface you will not
go to an other flat spacetime (as you do in wormbholes), but instead, you will fall into the
singularity.

The other argument, which is actually the most common one, is stated in view of the

2For a definition of the center of the spacetime, see Chapter 2



Kruskal diagram of the Schwarzschild metric and does not concern the metric (1.2) explic-
itly. It is an argument that the underlined spacetime of the Schwarzschild metric actually
contains two asymptotically flat regions, albeit disconnected. The Kruskal diagram of
the Schwarzschild metric presents the maximal extension of the underlined spacetime, in
which we see four regions(see figure (1.1)). The two diagonal lines represent the future
and past event horizons,which are lines of 45° degrees. Regions I and II are the expected
regions of the exterior and the interior of the black hole, respectively . The regions III and

Figure 1.1: The regions of the Kruskal diagram.(This graph has been taken from [3])

IV are in someway unexpected. Region III can be thought of as the time reversal of the
IT; that is, a region from which things can emerge to region I, but nothing can get into it.
This is the so called white hole. The shaded regions present the singularities in the center
of the black and the white hole. Region IV is an other asymptotically flat spacetime region
identical to I. Thence, it seems that in the Schwarzschild metric we find two asymptoti-
cally flat regions, which seems to be connected. But are they truly connected? If we take
a slice of t = const, this hypersurface in the Kruskal diagram corresponds to a horizontal
line passing through the point that the two diagonal lines are crossed, from region I to
region IV. The spatial geometry of the ¢ = const hypersurface is of course given by (1.1)
with dt = 0. If we make the embedding diagram of this spatial geometry, what we get is
indeed a wormhole-like geometry, that we present in figure (2.1). However, if a particle
could travel through this hypersurface, it would mean that this particle had exceeded the
speed of light. But as we know this is forbidden in principle. In other words, the
trajectories that connect the two asymptotically flat regions are spacelike. This is easily
be shown by the Kruskal diagram, in which the null paths are lines of 45° degrees, like
in Minkowski spacetime. Hence, as any timelike trajectory have to be inside the future
lightcone, there is no way for a particle to have a worldline that crosses the left tilted
horizon. For a photon, the best that can be done is to move parallel with that horizon; a
path that leads it directly through the black hole. Thence, it is the principle of general
relativity, which implies that a black hole is not a traversable wormbhole!

The aim of this thesis

The reason that I chose to start the introduction with the Einstein-Rosen bridge is dual.
The first one is that even today there is a lot of students that when they hear about
wormbholes, they have in mind the work of Einstein and Rosen. So, I find it important to
make clear that the Einstein-Rosen bridge is not a traversable wormhole. The second is,
that neglecting the fact that the Einstein-Rosen bridge is not a true traversable wormhole,
the basic concept of a wormhole is stated there. The crucial boost to this topic of research
was set my Morris and Thorne in 1988 [4].



It is not accidental that this thesis starts in someway with this paper. Morris and Thorne
stated the criteria for a geometry in order to describe a wormhole, which has similar char-
acteristics with the Einstein-Rosen bridge, but with the difference that those wormholes
are truly traversable. So, in chapter 2 we introduce the basic criteria for a wormhole
geometry to be traversable in principle. I do not use from the ground up the formalism of
Morris and Thorne, but instead that of Bronnikov in [5]. The reason for that is that the
notation of Bronnikov is quite more general, something that can help us to understand
better the definitions, like as the centre of the spacetime or that of the throat of the
wormhole. The advantage of this formalism is highlighted at the flaring out condition,
in which we see how the latter is already guaranteed by the geometrical demands for the
existence of the throat, something that follows from a discussion that in someway explains
why the form of the metric given by Morris and Thorne is necessary.

In the following, we are concerned with the technique of Simpson and Visser introduced
in [6] for the regularization of a black hole metric. This procedure produces new regular
spacetimes, from a regular black hole to a traversable wormhole. In this thesis we focus
on the construction of traversable wormholes. Specifically, we present the technique in
its general state; that is, by starting from an arbitrary spherical symmetric black hole
metric and then we state how we regularize this metric in order to construct a traversable
wormhole. This generalization allows us to extend the technique of Simpson and Visser to
more spacetimes rather than the Schwarzschild one. Moreover, by this general treatment
we investigate the close relation between the no horizon condition and the flaring out
condition. We extend this procedure by introducing a cosmological constant and charge
(Reissner—Nordstrom). To these specific examples, we check the regularity of the space-
time by checking mainly the components of the Riemann tensor, we check the asymptotic
behaviour far from the throat and we see how the NEC is violated in each case. For the
asymptotic behaviour we see that in the case of a cosmological constant the two connected
regions of spacetime are asymptotically dS or AdS. In the case of a positive cosmological
constant (dS), we see that the NEC is not violated at the cosmological horizon.

In the last chapter, we see a way for distinguishing the initial black hole and the final
traversable wormhole constructed by the Simpson and Visser technique by the location or
even the existence of a photon sphere or ISCO. In order to do that, the effective potential
for null and timelike geodesics is extracted for the general spherically symmetric and static
metric and then is applied to the Schwarzschild and Reissner—Nordstrom cases, for which
we applied the aforementioned technique.

Notations and Conventions

In this thesis the natural units G = ¢ = 1 are enforced. Hence, the Einstein’s field
equations are:

G = 81T}, (1.3)
where

1
GW’ = ij — §Rg,w

is the Einstein tensor and 7T, the Stress-Energy tensor, while g,, is the metric tensor
with signature: (—, 4+, +, +)



Chapter 2

A review of Morris and Thorne
traversable wormholes

Morris’s and Thorne’s paper [4] is considered to be the renaissance of the wormhole study
in general relativity. With this paper, the two physicists institute the basic criteria of a
traversable wormhole, able for interstellar travel. The following study will not examine
all of the 9 criteria, as the main focus shall be the examination of a wormhole geometry
being traversable in principle, regardless of a human’s ability to ford it or not. Thence,
we will examine only the first four criteria, the so called “basic wormhole criteria”. For
each of these, a specific subsection will be allotted. Each section here forth will be named
after one of these four criteria.

2.1 The metric should be static and spherically sym-
metric

This criterion is put forth for the sake of simplicity, as both Morris and Thorne underline.
It is not necessary to take this criterion for granted as we begin our search. It is, however,
wieldy. The static and spherically symmetric metrics are widely used, so their closer
examination might be of great value in this early stage of our study. In general, spherical
symmetric space times can be described by the following metric [5] :

ds® = —e2dt* + *du® + 2PdQ? | dQ* = db® + sin*(0)dp? (2.1)

where «, [, 7 are functions of the radial and time coordinates v and t, respectively. It
is convenient to substitute r = e® and then r corresponds to the radius of the coordinate
sphere u = const, t = const. If, in addition, the space time is static, there is always
a coordinate system in which the functions «, [, =~ are t independent. With the u
coordinate still remaining unspecified, a particular relation between «, [, v can fix the
radial coordinate. Some examples are the following:

e The tortoise coordinate: o(u) = v(u)

e The curvature coordinate: u =1 and v = y(r),a = a(r)



e The quasiglobal coordinate u, a(u) = —y(u)

A note: For the curvature coordinates we have actually taken f(u) = In(u), while the
relation of v and «a remains unspecified. To the quasiglobal coordinate u, we constrained
only the functions o and « and not the [ function. This means that the quasiglobal and the
curvature coordinate can be combined, having u = r and o = —~, simultaneously.

Killing vectors and symmetries

We think of the spacetime as a 4 dimensional manifold. The symmetries in General Rel-
ativity are characterized by the Killing vectors, that we can define on this manifold. The
Killing vectors found in the spherical symmetry are those exact ones that also characterize
the rotational symmetries of the S? (2-D sphere). For that, in a manifold with spherical
symmetry, the following Killing vectors (R, S,T') are defined: |[3|

R =0,
S = cosp Oy — coth sing Oy (2.2)
T = —sing 0y — cotl cosp Oy

The forenamed form, though, is coordinate dependent, since the Killing vectors are being
expressed in terms of the coordinate dependent basis vectors d, and 9. The coordinate
independent relations that characterize the forenamed vectors are their exact commutation
relations, which compose the structure of symmetry transformations and are the following:

R,S] =T
S, 7] =R (2.3)
IT,R] = S

In group theory, this is called as the Lie algebra of the symmetry generators. Killing vec-
tors characterize symmetries of the spacetime and symmetries imply constants of motion,
that is, conserved quantities. A vector K is a Killing vector, if it satisfies the Killing’s
equation:

V(Ko =0 (2.4

[The conserved quantity| The symmetry that the Killing vector K implies, produces
a conserved quantity along a geodesic trajectory given by K*P,; that is, the projection of
the tangent vector to the Killing vector.

Proof. Let x#(\) be a path, with a tangent vector P* = dz*/d\. Now take the scalar
K*"P, and see how it changes along a geodesic trajectory. To see this, we have to calculate
the directional covariant derivative of K*P, along the path 2*()), as:

D 14

BB = PUVL(K'F)

) (2.5)
= (K"P,) = P"P*V, K, + K. P*V, P"

The first term in right hand side contains a multiplication of a purely symmetric tensor
PYP*# with a purely anti-symmetric tensor V, K, as the Killing’s equation (2.4) implies.
Hence, the first term vanishes. In the second term, the directional derivative of the tangent
vector of the path, P*V,P", appears. But a geodesic is a path that parallel transports



its tangent vector; that is, the directional derivative of its tangent vector vanishes. So,
the second term vanishes, too. Thus,

D
S (K"B) = PV, (K"P,) =0 (2.6)

So, K*P, is conserved. [ |

Ezxample. Take for example the Killing vector R. In Cartesian coordinates, this vector
is expressed as follows:
R =0y = —y0, + 0, (2.7)

That is pretty straightforward and could be easily explained by just a coordinate trans-
formation from polar to Cartesian coordinates. Hence, in component form:

R = —yol + xdl) (2.8)
So, the conserved quantity is
R'P, = —yP, + zP, (2.9)

This is the well-known z-component of the angular momentum of a particle. Therefore,
the rotational symmetry around the z-axis implies conservation of the z-component of the
angular momentum, as was expected. Similar results are produced for the other Killing
vectors.

The timelike Killing vector

The fact that the metric is static, reflects the symmetry under time translation, which
means that the Killing vector that generates this symmetry is:

K =0, (2.10)
This Killing vector in component form is written as:
K" =6} (2.11)
It is a timelike vector as long as the v function is finite, because:
9 KM KY = g,,01'6) = g = —€* (2.12)

Actually, this is not sufficient for the metric to be static. The existence of a time-like
killing vector and consequently symmetric under time translations renders the metric
stationary. In order for it to be static, one more condition is necessary. This condition
refers to the timelike Killing vector and implies that this Killing vector is orthogonal to a
class of hypersurfaces. This means that: [3]

KV, K, =0 (2.13)

Together with the Killing’s equation (anti-symmetry of V,K,) we have:

K.V, K, + K,V,K, + K,V K, =0 (2.14)




So, if the timelike Killing vector satisfies the above equation, the metric is static. In the
form of the metric that its components are t-independent, the class of the hypersurfaces
that K is orthogonal are those defined by ¢t = const. This feature is reflected to our metric
by the fact that no-cross terms between the ¢- coordinate and any spatial coordinate are
present. Thus, the only ¢ term is the dt?, which is also invariant under time reversal.
Therefore, we can think of a static metric as a stationary one (a time-like Killing vector
exists) and invariant under time reversal transformation. Keep in mind these equations.
It will help us afterwards to define and exclude possible horizons of the metric.

Regularity and centre of the spacetime

As we know, the regularity of the spacetime is checked by the scalar invariants produced
by the Riemann tensor. If the scalar invariants are finite for all of the space time points
(events), then the space time is regular. Scalar invariants are produced by the contractions
of the Riemann tensor or the Ricci tensor. One of them, is the Ricci scalar or scalar
curvature, R = R¥,. Of course, this scalar has to be finite all along the space time for a
regular manifold, but it is not a useful candidate for checking the regularity. The most
helpful candidate is the Kretschmann scalar, defined as:

K = Rap s R (2.15)
For the static and spherically symmetric metric [5]
K = 4K} + 8K; + 8K; + 4K} (2.16)

where
Kl — efaf'y(ry/e'yfa)/ — —ROI(H

K2 — 6—2045/ I _]%0202 — _ROSOS
K3 _ 670{76(’}/667&)/ _ _R1212 — —R1313
Ky=e¢ P 4 e72(8)? = —R%)4

More precisely, the geometry is regular if any non-zero component of the Riemann tensor
is finite all along. This is a stronger statement than that of the scalars because, as we
said, the scalar invariants are produced by the components of the Riemann tensor. Hence,
if every component (non-zero) of the Riemann tensor is finite at some point, then every
scalar invariant is finite too. The Kretschmann scalar contains all the non- vanishing
components of the Riemann tensor squared and summed. Hence, if K is finite at some
point, then every non-vanishing component of the Riemann tensor is finite too. This
means, we could check for the regularity by computing only one scalar. That is, if
is finite for every point in space time, the space time is regular. Sometimes, although,
it is more useful to calculate just the components of the Riemann tensor and check the
regularity of each component. Then, you can check the regularity without calculation of
any scalar.

(2.17)

The most common singular point is the center of the metric. With the term “center”, we
mean a point defined by
r=e’=0 (2.18)

That is, the coordinate spheres (u = const,t = const) represented by points rather than
2D spheres. Of course, a center should be regular-nonsingular. The conditions under
which a center is regular could be found in [5]. However, it is not necessary for a center
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to be present in our geometry. We can define a geometry without center by demanding
that:
r=e’ #0Vu (2.19)

Then, every (u = const,t = const) hypersurface is a 2D sphere.

Wormbholes are spacetimes without center; r takes a minimum value larger than zero. This
minimum value is the throat of the wormhole, which we will examine in the following.
Remember the discussion for the Einstein Rosen bridge. The above constraint is not just a
coordinate artifact. It is a constraint of the geometry that is reflected to our coordinates.
There is nothing beyond ry, that we ignore. The manifold itself has no center. In
addition, there are spacetimes without centers containing horizons, called “black bounce
space times”, which are actually black holes without the singular center and an expanding
universe beyond them (black universes).

2.2 For a wormbhole solution, there must be a throat
connecting two spacetime regions

In a wormhole geometry two spacetime regions are separated and connected with a throat
in between. A throat corresponds to the minimum value of the function r = r(u). As we
said, the wormhole geometry describes a spacetime with a metric without centre. Hence,
this minimum value is larger than zero and, of course, is a regular minimum. The two
different spacetime regions are determined from the sign of the u-coordinate. Specifically,
for u > 0 we define the "one region",as for u = 0 we define the throat, o = r(u = 0),
while for u < 0 we define "the other region".

If the wormhole connects two different spacetimes, usually referring to two universes, or
two regions of the same spacetime (the same universe), it is a matter of global topology,
something that does not affect the physics "near the throat". In this sense, even if we
talk about two universes or two regions of the same spacetime, we are consistent for the
purposes of this essay. What we are interested about, is the physics around the throat of
the wormhole; hence, we are not concerned about issues of global topology.

However, as we go forth, we will come across the issue of the space time far from the
throat. Meaning, we will wonder if it is asymptotically flat, dS or AdS. In the original
paper of Morris and Thorne, we can see that the space time far away from the throat is
flat, meaning Minkowski, either if we move towards one region ( positive u) or towards the
other (negative u). The statement “away from the throat”, is mathematically expressed
as the limit of u to +00. This statement is not in contradiction with the previous one, in
which we constrained our study near the throat, neglecting the issues of global topology.
The fact that we take the limit of the u coordinate to infinity , does not mean that
we cover all the manifold-spacetime. This limit just means the end of the region of the
manifold that we can cover with this specific coordinate system. The situation is almost
alike with the case of the Schwarzschild black hole. In Schwarzschild coordinates, the
coordinate time that is elapsed for a particle to cross the event horizon is infinite, which
seems like the particle never reaches the event horizon. But, of course, this is not the
case, as the proper time interval for the crossing is finite. That is one weakness of the
Schwarzschild coordinate system. We have to change coordinate system, in order to cover
all the spacetime manifold and then successfully describe this event. So, the fact that we
are taking the limit to infinity does not mean that no event beyond that exists.



Moreover, the two connected space times are not necessarily asymptotically flat. They
could also be asymptotically dS or AdS. Even more, the two spacetimes do not need to
behave alike away from the throat in both directions. Let’s remember our metric. It
contains 3 functions, which define the specific form of the geometry. These functions
are dependent from the coordinate u. If, for example, we take a(u) # a(—u), then the
behavior of the metric will be different to both directions. Conclusively, there is a chance
that the throat is connecting an asymptotically flat spacetime and a dS space time or
even an AdS space time. We restrict ourselves to the case of the «, £,y functions to be
evern.

Let’s now see the restrictions that must be imposed to our metric coefficients by the
existence of the throat. As we previously said, the throat is the minimum of the function
r = r(u) which is taken to v = 0. This minimum is different from zero; a spacetime
without a center. So the constraints of the r(u) are:

Tmin = To 7é 0

dr ,

Zlu=0 =10 or §(0)=0 (2.20)
d2

d_zz;’“:() >0 or B"(0)>0

The embedded diagram

An other basic feature of the wormhole geometry is the spatial representation of the
throat as a 2D Euclidean surface. These are the so called mathematics of embedding,
with which we constraint two dimensions in order to represent the metric as surface in
three dimensional space. Spherical symmetry allows us to constraint one angle coordinate
to a constant value. The usual constraint is § = 7/2, as it leaves the solid angle to take
the simple form of dQ2?> = d¢?. Up to this constraint ds® represents a (2+1) dimensional
space. Our purpose is to represent the spatial geometry of the throat. Hence, we “take a
picture” of the metric at a time ¢t = const, leaving in this way the metric to represent a
2-dimensional surface:

ds? = W du? 4 r?dp* (2.21)

In cylindrical coordinates the 3D Euclidean metric is:
ds% = dz* 4 dri + r?d¢> (2.22)

So, a 2D surface defined by z = z(rg) takes the form: (having used the chain rule

(dz = ﬁ—zdrE):
dz \?
1 el
+ <d7”E)

Hence, in order to make the embedding, we have to express the metric (2.21) in terms of
the r coordinate rather than w. This can be done only if we assume that the function of
r in respect to u is reversible and u = u(r) can be defined. In addition, we assume that
the derivative of u in respect to r is also defined. Thus,

dst, = dry, + 5 dog, (2.23)

2
ds? = 2" (%) dr? + r*d¢? (2.24)
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What remains is to find the correspondence between (2.23) and (2.24). The matching of
coordinates is r <» rg and ¢ <> ¢g, giving us:

dz du\?
4 2a(r) [ ZZ -1 2.25
dr \/6 (dr) (2.25)

In the previous discussion we saw that at the throat, the first derivative of r in respect to
u has to be zero. This condition implies that the derivative of u in respect to r reaches
infinity: du/dr|,—,, — +00. Hence, for a finite value of a(r) at the throat we see that
(2.25) blows up to infinity at the throat; that is, the embedded surface is vertical at
the throat. The only way with which (2.25) does not tend to infinity at the throat is
a(rg) — —oo. But the perpendicularity of the diagram at the throat is a demand for a
wormhole geometry; that is, a(r) is constrained to be finite at the throat.

For an asymptotically flat spacetime, far from the throat, (2.25) has to vanish. However,
in the case that a cosmological constant is introduced, the limit of (2.25) at r — +o00 takes
imaginary values. This reflects the statement that the validity of (2.25) is constrained near
the throat [7]. Consequently, we can trust this equation only near the throat. The question
of the asymptotic behavior is treated by the Ricci scalar and not by the embedding
diagram, in general.

The shape of the embedded surface is presented in the following figure:

Figure 2.1: The embedding diagram of a two-dimensional section along the equatorial
plane (t = const, 0 = w/2) of a traversable wormhole. For a full visualization, of the
surface sweep through a 2m rotation around the z-axis, as can be seen from the graphic
above.(This graphic has been taken from [8])
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The flaring-out condition

Another demand of critical role about the embedding diagram is the flaring-out condition.
This condition requires that the throat is open and imposes:

d*r
@hhroat >0 (2.26)

Inverting the equation (2.25) we get:

dr du\? e
= <e2a<’“> <%) — 1) (2.27)

which is a function of r rather than z. So, in order to calculate the second derivative in
respect to z, we use the chain rule d/dz = dr/dz d/dr, which gives us:

— ) 5 (2.28)
T e ]

Br_ e i
dr dr — dr?

Suppose that we take o = 0 (this is not a random choice, it will be the case in the
subsequent sections). Then, the above equation simplifies to the following one:

d? 1 du d?

Sl A S it (2.29)

dz? du)? _ dr dr?

(%) —

So, what happens at the throat? We know that du/dr becomes infinite at r = ry. Taking
du/dr large, equation (2.29) looks like:

d?r ~ 1 d*u

(g

(2.30)

The infinities in the above equation have to be eliminated, if we want to keep d?z/dr?
finite and positive (non-zero), as the flaring-out condition implies. In order to elimi-
nate the infinities, there must be a specific relation between d*u/dr? and du/dr; namely,
they have to be proportional. If the equations (2.20) constraint the possible rela-
tions between u and r, the latter requirement constraints this relation much
more.

Let’s see how this work. Assume h(r) to be a function of r. Then, if we take du/dr = h™(r),
the second derivative becomes:

d2

d_yg = b/ ()R (r) (2.31)
where prime denotes d/dr. The above has to be proportional to h3"(r), which constraints
n by n — 1 = 3n, giving n = —1/2. So, the du/dr must be of the following form:

du_ 1

& T (2.32)
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with h(r) some unspecified function of r. Substitution to (2.29) gives:

d*r n'(r)
dz22  2(1— h(r))? (2.83)

Moreover, if we calculate d?r/du® (using again the chain rule) according to (2.32), we

take:
o

du? 2

(2.34)

Hence,
d*r 1 d*r

d2 ~ (1—h(r)?du?
But from the beginning of this section, we have constrained d?r/du® to be positive at the
throat. So, the latter equation implies that the flaring out condition is guaranteed
by the constraints of the r = r(u) function ab initio.

(2.35)

Having now, the specific form for du/dr and consequently for dr/du, it is more useful
to express the constraints (2.20) with respect to the function A(r) rather than 5(r).
Combining (2.20) and (2.32) we get:

h(’l"g) =0

(o) > 0 (2.36)

2.3 For a traversable wormhole, no horizon should be
present

Beyond the curvature singularities, there are also the coordinate singularities. They are
singularities which we can eliminate by just a coordinate transformation. Event horizons
are of these kind of singularities of the metric and it is widely known, that they are closely
related with the black holes; so, in order to distinguish a black hole from a wormhole
geometry, we demand that no horizon has to be present near the throat.

Our metric (2.1) has signature (—,+,+,+). The crucial point of the signature is to
distinguish the (one) time from the (three) spatial coordinates. The time coordinate
corresponds to the negative sign, while the three spatial coordinates correspond to the
three positive signs. These signs refer to the sign of the spacetime interval ds* along
the direction of each coordinate. If, for example, we take dr = d€) = 0, then we have
ds? = —e?*dt? < 0. Meaning, if we move along a worldline in which only the t-coordinate
changes (i.e. the worldline of a static point in space), then the spacetime interval is
negative. We then say that the t-coordinate is timelike. If we do the same thing for
the other coordinates, we will ascertain that the spacetime interval is positive; these
coordinates are spacelike. Similarly, null coordinates are those with a zero spacetime
interval. It is hard to think about of a world with two or more time directions, while
the phenomena that we want to describe are taking place in space with three dimensions.
Hence, we ascribe to time only one dimension and to space three dimensions by having in
the metric signature always one negative and three positive signs; that is, our metric has a
Lorentzian signature. However, there is no restriction for the character of each coordinate.
It is possible for a spacelike coordinate to be transformed to a timelike coordinate and

13



vice versa. The Lorentzian signature, although, cannot be changed. This means
that a change of character of some coordinate comes with a change of character of an
other coordinate. For example, if the t-coordinate changes to be spacelike, then some of
the three spatial coordinates have to be changed and be timelike. Actually, this happens
beyond an event horizon. In the case of the Schwarzschild metric, we have the following
diagonal components:

B (2.37)

R,
g = — (1 - —)
;

The event horizon is the sphere of radius r = R,. So , for r > R,, the tf component
is negative (g < 0), while the rr component is positive (g.. > 0); the t-coordinate
is timelike, while the r coordinate is spacelike. On the other hand, for r < R, the tt
component is positive, which means that the ¢ coordinate becomes spacelike and the rr
component is negative, which means that the r coordinate becomes timelike. Hence,
beyond the horizon the coordinates have changed their character, with the Lorentzian
signature preserved. This changing of characters makes the r coordinate temporal, from
which follows that the » = 0 point stands in the future of an incoming observer; this is,
an explanation of why everything is doomed to fall into the singularity » = 0. The other
interesting fact is that the metric is no longer static. Indeed, beyond the event horizon
the Killing vector 0; is spacelike rather than timelike, which means that for r < R,, no
timelike killing vector is defined. So, it is not stationary, too. With this in mind, the
restriction that prevents any event horizon preserves the demand of the first
criterion.

Identification of an event horizon

How do we identify an event horizon in a spherical symmetric and static metric? The
answer to this question comes from the Indian physicist C.V. Vishveshwara in 1968 [9].
As it is clear even from the title of the paper, the event horizon of the Schwarzschild
metric has been taken as the starting point and, through it, Vishveshwara makes the
generalization to an arbitrary static and spherically symmetric metric. In order to make
this generalization, we have to identify the main characteristics of this surface and then
to define same surfaces for the metric (2.1). These characteristics are the infinite redshift
that is observed at » = R, and the fact that this surface is a null surface.

Null surfaces in a spherically symmetric and static metric can be defined with the aim of
the timelike killing vector (2.10), by searching for surfaces for which K*K, = 0 (Killing
Horizon). Consider the family of surfaces defined by the scalar K#K, = const. For these
surfaces, the normal vector is:

1
n, = §VM(K”KV) —n, =(V,K,)K" (2.38)
The above, combined with (2.14) and (2.4), gives for the length of the vector:

nnt = (V,K,)K* (V" K,)K°
= K"K, (V,K,)(V"K°)
= —(K"K,)(V,K,)(V*K’) — K"K, (V,K,)(V"K°)
= (K"K,)(V,K,) (VO K") — K"(V,K,)K,(V°K")

(2.39)
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The last term in the right hand side is equal to n,n*. Hence, we take:
1
nan’ = E(K”Kg)(VVKM)(V”K“) (2.40)
Thence, nyn? is proportional to (K, K") , which means that from (K,K*) = 0 follows that

nan* = 0, too. Hence, hypersurfaces defined by (K,K") =0 are null hypersurfaces.

Let’s see now how (K,K*") = 0 affects the redshift of a static observer. A static source
or observer is defined by the following (normalized) 4-velocity:

KO&
. (2.41)

V—K°PKj,

Then, for a light ray with a 4-velocity P%, the observer with the above velocity measures
a frequency given by:[10]

K°P,
/—KPK,

Labeling with "s" the rest frame of the source and with "o" the rest frame of the observer,
we get the following ratio of the two frequencies:

v=—v'P,>v=— (2.42)

Vo (K“Py)o (_Kval(oz);/2 (2 43)
Vs o (Kozpa>s (_KaKa)tly/Q .

The observer’s and the source’s worldlines are connected by the null geodesic of the
light ray. So, (K“P,), and (K“P,)s are calculated on the same null geodesic. But
in the previous section we proved that K*P, is conserved along a geodesic. Hence,
(K*P,), = (K“P,)s, leaving us with:

a 1/2
Vo _ _(ZKKa)s Ka):! (2.44)
1/2 :
Vg (_KaKa)O

So, it is obvious that the ratio of the frequencies is inversely proportional to (— K aKa)(l)/ 2,
Consequently, for an observer approaching a null hypersurface defined by K*K,, = 0, this
ratio approaches infinity; that is, an infinite redshift is adopted.

In that way, Vishveshwara concludes that the two basic properties of the Schwarzschild’s
event horizon are satisfied by the null hypersurfaces, defined by K*K, = 0 (Killing
horizon), for a general spherically symmetric and static metric. Thence, event horizons
are identified by setting the ¢¢ component of the metric equal to zero (see eq. (2.12)):

KuKM = g — 0 (245)

Exclusion of event horizons and the traversability problem

If we want to avoid any event horizon in our geometry we have to keep gy strictly negative
or that the v function has to remain finite everywhere:

g <0 — ¥ >0 (2.46)
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However, it is not necessary for the above requirement to be satisfied far away from the
throat. For example, if the spacetime far away from the throat is asymptotically de Sitter,
a cosmological horizon is present and g;; vanishes. The problem lies at the horizons near
the throat. Not only for the distinction of wormholes from black holes, but due to the
traversability problems that event horizons produce.

When we refer to the traversability of the wormhole, we mean that if a particle (with
a timelike trajectory) or a photon (with a null trajectory) crosses the throat and then
is transferred from the one region to the other, it has to be able to come back. Event
horizons, though, constitute the boundary of the spacetime, beyond which the points of
the spacetime are not able to be connected with the infinity via null or timelike trajectories.
In other words, if a particle or a photon passes the event horizon from the region of the
spacetime connected with infinity, it is impossible to come back to the exterior from which
it came. As is commonly said, an event horizon is a one-way membrane. But instead,
we want a two-way traversable wormhole. So, event horizons near the throat have to be
excluded.

2.4 The wormhole metric has to satisfy Einstein’s field
equations (The Stress Energy Tensor)

Of course, our metric has to satisfy the field equations of General Relativity. This means
that we move in the context of the General Relativity and its equations. From Birkhoft’s
theorem, it is known that a spherically symmetric and static metric is the general solution
of the Einstein’s equation in vacuum; that is, for a vanishing stress-energy tensor (For
Birkhoff’s theorem search any textbook for GR).However, it is possible to get a spherically
symmetric and static metric with a non-vanishing matter distribution. One of these cases
is that of the wormhole. Moreover, the non-vanishing stress-energy tensor describes “exotic
matter”; as it is called in the case of matter distributions with a stress-energy tensor which
violates the Null Energy Condition (NEC).

Two separate paths could be followed in order to solve the Einstein equations. The
first one begins by the definition of 7},,, meaning the clear determination of the matter
field (e.g. dust, electromagnetic fields etc.). Through this step, the specification of the
geometry is guaranteed by the field equations; namely the metric to which the specific
T, is matched. The second path could start in reverse. Commencing from a specific
geometry, which we aim (theoretically) to construct, and via the field equations, we find
the necessary matter distribution. We pose as an ansatz the desired metric components,
Juv, and via the field equations the corresponding 7),, is derived. This procedure should
provide too bizarre matter fields, depending on the metric we have ascribed. Matter
fields in which, for example, a negative energy density should arise. These matter fields
are called “exotic”, due to the fact that no classical form of matter can have this property
and arise as necessary for the wormhole construction.

The constraint to 7),, that the Einstein’s equations demand

Einstein’s field equations is the relativistic generalization of the Newtonian theory of grav-
ity. Relativistic means that the form of the equations is tensorial, while generalization
of the Newtonian gravity means that under some conditions we reduce to the Poisson
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equation of the gravitational field. These conditions include the limit of low velocities (in
respect to the speed of light) and the assumption of weak and static fields. However, in
contrast to the equations of Newtonian gravity, in the context of the General Relativity
we are facing with non-linear differential equations, which are much more difficult to be
solved. This set of non-linear differential equations that are produced contains magni-
tudes concerning the geometry of the spacetime (constructed by the metric), as well as
magnitudes concerning the matter involved (the Stress-Energy tensor). So, they describe
how the spacetime responds to the existence of matter and how the matter moves in
respect to the spacetime geometry.

Despite this, the only constraint for the Stress-Energy tensor that the field equations
demand, is that it is conserved. Before we proceed, let’s see how this works. The Stress-
Energy tensor is proportional to the Einstein tensor (1.3), which is constructed by the Ricci
tensor and the Ricci scalar. Ricci scalar and tensor are constructed by contracting the
Riemann tensor. One very important property of the Riemann tensor, which is actually
our starting point for the proof, is the Bianchi identity[3]:

ViaRouw + VelRypuw + V,Roxnw =0 (2.47)
We first take the contraction with ¢g**, getting:
V¥R oo + Vo R + VR =0 (2.48)
Substituting the Ricci tensor R, = Rf,, and using the anti-symmetry of the Riemann
tensor to have R}, = —RK,,, = —R,,, we take:
V*Rpop + VoRp — V Ry, =0 (2.49)
To the latter equation, we take the contraction with ¢g*?:
V*R,, +V'R,,—V,R=0 (2.50)

For the first term we used the symmetry of the Riemann tensor in interchange of the
indices of the first pair together with an interchange between the indices of the last pair,
in order to take the Ricci tensor, i.e. R}, = R",, = R,,. Before that, we made use of
the metric compatibility (V,g,, = 0), which allows us to lower and raise indices of the
Riemann tensor inside the covariant derivative, i.e. ¢""V*R,,, = V¥R, . For the last
term we made use again of the metric compatibility in order to raise the first index of the
Ricci tensor, from which the Ricci scalar appeared. Finally, in the second term we just
raised the index of the covariant derivative. Using now the symmetry of the Ricci tensor
under interchange of its indices, we see that the first two terms are identical. Then, it is
straightforward to gain the following equation:

1
V'R~ 5V,R=0 (2.51)

Now it is time to go back at the Einstein tensor. If we take its divergence and make use
of the metric compatibility again, we take:

1
VG = V' Ry — 5V R (2.52)

Thus, it is obvious that the Einstein tensor is divergenceless, i.e. covariant conserved.
Hence, the Stress-Energy tensor is covariant conserved, too:

VAT, =0 (2.53)

The above set of four differential equations is the relativistic generalization of the energy
(v = 0) and momentum (v = 1,2,3) conservation, in curved spacetime.
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Energy conditions and NEC violation

However, as we said, nothing beyond that is constrained for 7},,,. If this is the case, for any
metric a conserved energy-momentum tensor is obtained, without any physical feature to
be tested. But of course, this is not the case. Physical criteria have been formulated in
the shape of energy conditions, that "realistic" or classical forms of matter satisfy. There
are several energy conditions. Some of them are: the Null Energy Condition (NEC),
the Weak Energy Condition (WEC), the Strong Energy Condition (SEC) e.t.c. All of
them are conditions about scalars (in order to be coordinate independent) constructed
by the Energy-Momentum tensor and timelike or null vectors. In wormhole physics, we
are mainly concerned of the NEC, because its violation at the throat is a characteristic
feature. In addition, NEC violation implies violation of the other conditions, too.[2]

The NEC postulates:
"For any null vector k" : T),,k"k” > 0" (2.54)

For a general spherically symmetric and static metric, the most general Stress-Energy
tensor is anisotropic (7%, # T%) and has the following form/|5|:

1%, = diag(—p,p1, p2, p2) (2.55)

The choice of the mixed components is not accidental. Due to the diagonal form of the
metric, the mixed components of any tensor are in some kind coordinate independent,
in the sense that they are unchangeable under coordinate transformations that preserve
the diagonal form of the metric. Therefore, the mixed terms are the same as if we had
expressed them on any orthonormal (not just orthogonal) basis. Moreover, they are the
same with those components expressed on the orthonormal basis that construct the local
Lorentz frame; that is, the orthonormal basis for which the metric takes the form of the
Minkowski one. So, as this corresponds to an observer remaining at rest, we can make
the following interpretation of the components: p is the proper energy density, while p; o
are the tension per unit area and the radial pressure, respectively. Our goal is to examine
how NEC constraints the possible relations between these components.

Take the following null vector:
k= (e7,e7%,0,0) (2.56)

It is easy to prove that this vector is null:

Gu ki = —e?e ™ + e ¥ = () (2.57)

Let’s see now what 1!k, ki gives. With a diagonal T}, only p = v terms survive,
implying:

T kvky = p+ (2.58)

Take now the null vector kb = (e77,0,e7?,0) and do the same. What we get is the second
relation:
Tk = p+ ps (2.59)

Hence, NEC implies that for the Stress-Energy components two conditions must be ful-
filled, which we call NEC1 and NEC2, respectively:

20
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It’s time to become more precise. For the metric (2.1) the Stress-Energy components are
the following:

Ttt = —p= % [_6—2,3 + 6—204 (_20/5/ + 3(/8/)2 + 2&//)}

T == g [~ + (9 + 267)] (2.61)
1

Tee _ T(f = py = g [6_2a ((B/)2 + ﬂ/’)/ _ BICY/ + B// + (7/)2 _ "}/O/ + 7//)}

where prime denotes d/du. Hence, NEC1 implies:

—2«

ptp = [Ba/ = (8)+ By =] 20 (2.62)
Remember the constraints of the § function, necessary for the throat existence. For u = 0
(throat) and (2.20), we get:

672a6//

47

In the view of (2.20) the above is clearly negative. A condition that obviously implies
violation of the NEC1. Thus, the existence of a throat to our geometry implies
NEC wviolation, which consequently means that no classical form of matter is
able to construct a wormhole. "Exotic" matter is unavoidable. NOTE: If the
throat was null; that is, if the throat was an event horizon, NEC would not be violated.
To see this, enforce the quasiglobal coordinated for which & = —~. For an event horizon
v — —oo. Thus, o — 400. So, if at the throat we have an event horizon p + p; = 0 and
the NEC is not violated.

ptpr=— (2.63)

In the next section, we will see that this violation has as consequence that very fast
observers measure a negative energy density at the throat. Moreover, for the radial
pressure, it is straightforward to see that:

1

o 2
87

= (2.64)

Hence, the radial pressure is necessarily negative at the throat.

2.5 Morris and Thorne metric

Let’s proceed now to the specific metric that Morris and Thorne proposed in their paper
[4], which is the standard form of a wormhole metric in literature. It is written down
in terms of the Gaussian coordinates (see [5]), in which, we have e* = 1. Then, the
coordinate wu is labeled as [ and is called as the proper radial coordinate, while the metric
has the following form [2]:

ds* = —e**Wdt? + di* + r*(1)dQ? (2.65)

The function ®(1) is the previously noted as - function. It is called the redshift function,
as it determines the redshift between static observers and sources. This is clear from the
section [2.3]. Hence, ®(1) has to be finite near the throat.(for more details see section
[2.3])
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The shape of the wormhole is determined by the specification of the relation between r
and [. In section [2.2], we saw that in the case of o = 0, this relation is determined from
the derivative of [ in respect to r and specifically to have the form of (2.32). In literature
the function h(r) is taken to be:

h(r)=1- b(r) (2.66)

From the mathematics of embedding, we saw that the embedded diagram is specified from
(2.25). Substituting to the latter equation, the e* = 1 ansatz and (2.32) in terms of b(r),
we get:

dz r

—== (% - 1) o (2.67)

Hence, exact specification of the b(r) function, provides exact specification of the shape
of the wormhhole. Due to that, b(r) is called the shape function.

Using the chain rule dl = %dr, we can write the metric (2.65) in terms of the r-coordinate:

dr?
1 b0

r

ds® = —e®*a? + + r2dQ? (2.68)

Notice that we wrote & = ®(r) rather than & = ®(). This can be done because the func-
tion r = r(l) is reversible, which means that [ = [(r) is defined, too. Hence, dependence
on [ can be replaced with dependence on 7.

The throat is at [ = 0, in which the nonzero minimum, rq, of » = r(l) is placed. Thus,

T d /
I(r) = i/ S — (2.69)
o 4 /1 — L’”/I)
Moreover, at the throat h(r) is constrained by (2.36), which implies for b(r):
b(?"o) =T0
2.70
b/(’l“o) <1 ( )

These are the necessary constraints for b(r), in order to describe the wormhole by this
metric. Notice, that the condition (2.70) makes the g, component to blow up to infinity
at the throat. This infinity does not denote any horizon (the identification of horizons
concerns ¢y) or a curvature singularity. It is a coordinate singularity and nothing be-
yond that; meaning, our metric does not behave well near the throat using the r-radial
coordinate. The problem is solved if we transform to the proper radial coordinate.

In addition, we have to mention that in order to the radial distance (2.69) be well defined,
there must be this additional constraint:

b(r) <r,vr (2.71)

where the equality holds for r = rg. In the section [2.2] we proved that in the case of & = 0
the flaring-out condition is guaranteed by the constraints of the r = r(u) function. For
this metric, as we said, we work in the Gaussian radial coordinate; that is, by definition
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e*=1— a=0. So, we claim that the flaring out condition is fulfilled by (2.70). Indeed,
if we calculate d?r/dz* from (2.67), using the chain rule again, we take:

d*r b(r) —rb'(r)

— = 2.72

dz? 20%(r) (2.72)
It is straightforward that the above is positive at the throat, as it provides exactly the
same constraint with (2.70).

In the previous chapter, we expressed the Stress-Energy tensor components in terms of
the a, 3,7 functions of the metric (2.1). For the metric of Morris and Thorne we have
replaced v with ®, while the o function has been taken to zero. What is left over is the g
function, which obviously can be derived from dr/dl. However, there is no need for this
messy work. We are able to express the Stress-Energy components in respect of r = ¢”
rather than [. Remember, though, that primes in (2.61) denote derivatives in respect to
[ (or u, it’s the same). These derivatives have to be changed to derivatives of r, using the
chain rule. What we get is:

1
goxlf1-0
r r
y  3b—rb —2r
==
2r (2.73)
Y P L
7 rdr
" b b—rt dd d*P
v=\1--||775—F—+—
r) |2(r2 —rb) dr ~ dr?
Substituting these to (2.61), we get the following equations of structure:
b/
A —
1 [b b\ 1
== —2(1-2) -%
e L8 (1) 1] -
1 b b—0br 1 br—10b
- 1__ (b// @/2 —®I _q)/_—
P2 = 8 ( 7’) [ @)+ 2r2(1 —b/r) * r 2r3(1 —b/r)

where primes now denote derivatives in respect to r. Sometimes in literature (like in [8])
is is preferable to use the radial tension 7(r) rather than the radial pressure p;(r), where

7(r) = —pu(r).

It is clear now what we meant at the beginning of this chapter about the path of solving
the Einstein’s equations for a wormhole. We argued that we first specify our desired
geometry and then we find the matter field that is needed. Indeed, if we observe the
equations above, it is obvious that specification of the functions b(r) and ®(r), which are
related with the geometry of the wormhole, automatically specify the energy density and
the pressures of the matter field.

With b(rg) = rg at the throat, from the above expression of pq, it is easy to verify that
indeed the radial pressure is negative and equal to —(87rZ)~!. Look now at the energy
density. Its sign depends on the sign of ¥'(r). The only constraint that we have at the
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throat about b'(rp), is given by (2.70). So, as there is no restriction for the sign of o'(ry),
there is no restriction for the sign of the energy density. It can be either negative or
positive.

Negative energy density

However, this is true for our static observer at the throat. What about a traveler who
cross the throat with a non-zero velocity @ ?! In order to answer this question, we have
to apply a Lorentz boost to the Stress-Energy tensor and see how it looks like for this
boosted frame. For a boost to the radial direction we have the following matrix:

v v 0 0
yo v 0 0

AR = 2.
0 0 01

where v = (1 —v)/? and v is the traveler’s velocity. We can calculate the inverse boost

by A/ = n,an"" A, with n,, be that of a Minkowski spacetime. What we get is:

v —yv 0 0

v - Y 00
A= 45 o 10 (2.76)

0 0 01

Pay attention here. The above Lorentz boost is defined for a flat spacetime, rather
than curved. Mathematically, is defined in such a way that the Minkowskian metric is
invariant under these transformations, i.e. A/A,/nz5 = 1,,. So, these transformations are
not defined for the metric (2.1). In order to apply this Lorentz boost, we have to change
basis and go to the orthonormal basis in which the metric is equal to 7,,; that is, the
local Lorentz frame. (A capability provided by the Equivalence Principle). However, as
we said in section [2.4| the mixed components of any tensor are the same as if we were in
this orthonormal basis. Thus, we can apply the Lorentz boost to the mixed components
of the Stress-Energy tensor. If 7%, are the boosted components, then:

", = AN TH, (2.77)
The energy density corresponds to the purely temporal component, 7}°. What we get is:
_pl _ TIOO _ AoﬂAoﬁTﬂg

—p' =7"(p + v’p1)

Hence, for sufficiently high velocities (v — 1) the energy density p' tends to v*(p + p1),
which is negative, as the NEC1 violation implies (see eq.(2.58)). Thus, a negative energy
density will be measured by these travellers.

(2.78)

IThis is not a traversability condition for a human being. The purpose of this paragraph is to
designate the consequences of NEC violation.
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The simplest example of a Morris and Thorne wormhole

The simplest example of a traversable wormhole is given by Morris and Thorne in the
box 2 of [4], with a metric:

ds® = —dt* + dI* + (r3 + 1*)dQ? (2.79)

Comparing with (2.68), it is obvious that we are in Gaussian coordinates, while for the
redshift function, we have ® = 0. The function r(l) is:

r(l) = /15 + 2 (2.80)

a1 (2.81)

or

Hence, we speak for a shape function:

2
_

b(r) (2.82)

-
The constraint of no horizons is obviously fulfilled, as the redshift function is constant
and zero. What remains are the constraints of the shape function. The first constraint
(2.70) it is satisfied, easily checked by just a substitution of r = ry to (2.82). The first
derivative of the shape function is:

Vir)y=—— (2.83)

Hence, for r = rg, we get:
b (ro) = —1 (2.84)

So, (2.70) is satisfied, while in view of the (2.74), we see that in this case the energy
density is negative at the throat, even for the static observer standing there.

2.6 The causal structure of a traversable wormhole

In this section we proceed to the construction of the Penrose diagram for the metric (2.65).
In general, the Penrose diagram of some metric is an attempt to draw in a finite piece of
paper the entire spacetime, preserving the causal relations between the events (spacetime
points). The causal relations are not determined, although, by the whole metric, but
instead from the dt and dl part. We constrain then the angular part by taking d2 = 0,
leaving:

ds? = —e**Oat? 4 di? (2.85)

where t,] € (—o0,+00). Under this constraint when we will draw the corresponding
diagram each point on it it would represent a 2D sphere of radius r(l), rather than a
point.

Even from Special Relativity we know that the causal relation between events is deter-
mined by angles in the spacetime diagram. To be more precise, we know that if we attach
a point in the spacetime diagram, the events that are in causal relation with it are those
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lying inside the past or future lightcone. For a Minkowski spacetime the null paths that
shape the lightcones at every point are lines of 45° degrees. This feature of the Minkowski
spacetime is very useful due to the fact that the causal relations between points is easily
identified. So, if we are able to make the above metric look like the Minkowski metric the
causal relations would be easily identified. The other main goal is to make the range of the
coordinates finite in order to draw the entire spacetime in a finite portion of paper.

The above considerations will be accomplished by successive coordinate transformations,
which we will present in steps. The key transformation, although, is not a coordinate
transformation; is the so called conformal transformation and is the key transformation
because it preserves angles. So, by this kind of transformation we will be able to "com-
pactify" the coordinates, while preserving the casual relations, at the same time. For this
reason we also refer for these diagrams as conformal diagrams.

[Conformal Transformation| Given a spacetime M with metric g,,, we may construct
a new metric §,, by a conformal transformation:

G (2) = Q*(2) g, (7) (2.86)
where Q(x) a smooth, non-vanishing function.

Let’s start. Before we proceed to the steps, we define the connected spacetime regions as:
region 1 for [ < 0 and region 2 for [ > 0.

e Change the radial coordinate: Make a coordinate transformation to the metric
(2.85), by changing the [ radial coordinate to the [, related by:

dl ®
0 2.87
Then the metric becomes (this is the so called tortoise radial coordinate):
ds® = &>V (—dt? + dI?) (2.88)

The derivative of [, with respect to [ is strictly positive as ®(1) is a finite function
of [. This means, that with an appropriate constant of integration we can set [ =0
matching with [, = 0. In this way, we identified the connected regions of spacetime
and the throat in the new radial coordinate as follows:

l, =0: throat
[, <0:regionl

l, >0 :region2

e Make the first conformal transformation: Here, is the first time to make a
conformal transformation. As we know ®(l) is a finite function, which means that
we can choose the ) function of the conformal transformation to be equal with
e~®0 . Hence, our metric will be conformally mapped to the following one:

ds* ~ —dt* + dI? (2.89)

where ~ denotes that the metric in the right hand side is a conformal map of the
initial metric. Our metric has already the form of (1+1) Minkowski spacetime.
So, the next steps can be assumed as the steps for the construction of the Penrose
diagram of the (1+1) Minkowski spacetime.
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Transform to a pair of null coordinates: We transform now to the null coor-
dinates (v, w), defined by:

1
t==(v+w)
2 (2.90)
le==(v—w)
2
Then we get:
ds* ~ —dvdw
v =w : throat
v <w:regionl (2.91)

v > w:region?

v, w € (—00, +00)

"Compactify" the coordinates: The above two coordinates are still ranging from
minus to plus infinity. Now it is time to compactify them, by making the following

coordinate transformation:
v = tan
(») (2.92)
w = tan(q)
With these coordinates the £o00 of the (v, w) coordinates is mapped to +m/2 of the
(p, q) coordinates, having:

2 dpdq
ds* ~ ——————
cos*(p)cos*(q)
p=q:throat

p < q:regionl (2.93)

p > q:region2
p,q € (—7/2,+7/2)

One more conformal transformation: As cos(z) is a non-vanishing function in
the interval (—7n/2,7/2), we can make again a conformal transformation, having
Q = cos*(p)cos®(q). This leaves us with the following metric:

ds®> ~ —dpdq (2.94)

Transform back to timelike and spacelike coordinates: Let’s make the fi-
nal coordinate transformation, in order to make the metric to have the form of
Minkowski spacetime. Define two coordinates (7', X) as:

1
T=5P+aq
1 (2.95)
X==(p-
50— 4)
So, we get the following metric:
ds® ~ —dT? + dX? (2.96)

25



which is like that of (1+1) Minkowski spacetime, with 7" having the role of the time
coordinate, while X that of the spatial coordinate.
From (2.95) we can easily identify the regions and the boundaries as follows:

X =0:throat

X < 0:regionl
X > 0:region2
1< X, T <+

(2.97)

Putting T" on the vertical axis and X on the horizontal axis, we get a diamond of equal
sides that represents the whole spacetime as pictured in figure 2.2. This graph represents
the causal structure of a traversable wormhole, which however is the same as that of a
(1+1) Minkowski spacetime, but with a different interpretation. The throat which is the
X = 0 vertical line is a timelike hypersurface which can be crossed by any timelike or null
trajectory from each side. If we take two arbitrary points from each side and draw their
future lightcones (see figure 2.2 ) we see that these lightcones intersect both regions. This
means that the two regions are causal related; that is, signals can travel from region 1 to
region 2 and vice versa. This is the situation for a traversable wormhole. If we go back
to the discussion of why a black hole is not a traversable wormhole, now it is more clear
why it’s not. No future lightcone from a point at region IV intersects the region I and
vice versa. Regions IV and I in figure (1.1) are not causally connected.

Part of region 1
causal related with 4N
the point in region 2«70

Part of region 2
causal related with

he point in region 1

-

Point
in region 2

Point
in region 1

Figure 2.2: The causal structure of a traversable wormhole. Each point in the diagram
correspond to a 2D sphere.
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Chapter 3

The Simpson - Visser Traversable
Wormbholes

A few months ago, Simpson and Visser published a paper [6] in which they propose a
candidate metric for a regular black hole. In the same vein of Einstein and Rosen, the
regularization of the black holes is crucial in General Relativity, with the history of this
research coming by Bardeen in 1968 until today'. When we refer to regularization, we refer
to the special treatment of the curvature singularity at the centre of the black holes. As
we previously mentioned, this can be done in two ways. We can either state some specific
conditions for the centre of the spacetime in order to be regular or we can construct a
spacetime without centre, i.e. to exclude the centre out of the spacetime. The second
way is already known by the construction of the wormholes that we previously studied.
The existence of the throat in the wormhole geometry leaves out the centre (r = 0) of
the spacetime and this particular singular point is no longer part of the spacetime. In
this way, we overcome the problems that the singular points introduce to the theory.
However, by doing that, an other issue appears. The exclusion of the singular point by
the introduction of a throat comes up with the necessity of exotic matter.

This is true not only for the wormholes but for the regular black holes, too. As is shown
in the paper of Simpson and Visser the regularization of the metric implies NEC violation
through all of the spacetime except for the possible horizons. What we are going to
see in this chapter is the technique of Simpson and Visser in order to regularize the
Schwarzschild metric by the introduction of some parameter 7. Specifically, on the values
of this parameter depends the kind of the geometry that the metric describes, starting
from the original Schwarzschild black hole to a traversable wormhole. The intermediate
"states" are those of a regular black hole and a one way traversable wormhole. Of course,
as this thesis concerns wormholes we will emphasize in how we can construct traversable
wormholes using this technique.

Firstly, we present the technique in its general state; that is, by starting from an arbitrary
spherical symmetric black hole metric and then we state how we regularize this metric
in order to construct a traversable wormhole. This generalization allows us to extend
the technique of Simpson and Visser to more spacetimes rather than the Schwarzschild
one. Namely, we extend this procedure by introducing a cosmological constant and charge

'For references see [6]
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(Reissner—Nordstrém). To these specific examples, we check the regularity of the space-
time by checking mainly the components of the Riemann tensor, we check the asymptotic
behaviour far from the throat and we see how the NEC is violated in each case. For the
asymptotic behaviour we see that in the case of a cosmological constant the two connected
regions of spacetime are asymptotically dS or AdS.

3.1 The technique of Simpson and Visser

We can think of the technique of Simpson and Visser as a procedure, which has a spherical
symmetric black hole as an input and a traversable wormhole as an output. We start with
a metric of the following form:

1
F(r)

ds* = —F(r)dt* + dr? + r2dQ? (3.1)

where the coordinates are running through the following intervals:
r € (0,400), t € (—o0,+00), 0 € [0,7], ¢ € (0,27]

This particular choice of metric is not accidental. It is a form of a metric that includes the
well known metrics of Schwarzschild, Reissner—Nordstréom with or without a cosmological
constant. So, by describing the technique of Simpson and Visser over this metric we can
extend this idea beyond the Schwarzschild metric. Keeping the characteristics of these
black holes, we assume for the above metric to have an event horizon at r,, meaning
F(ry) = 0, while, also, that it haves a singular center r = 0.

The crucial step to this technique is to make the function F'(r) not depending just to r,
but instead to /72 + n2. Be careful! This is not a coordinate transformation; it is just an
ansatz substitution, by which we introduce a new parameter . Having now the function

F ( r2 + 772> it is obvious that we can extend the range of the variable r to cover all of

the real axis, having an even function and consequently a symmetric metric for r < 0 and
r > 0.

Notation attention! Under this extension of the range of the initial variable r» we change
notation and from now on we speak of a variable u € (—o0, +00) rather than r. This is
made just for convenience with the previous discussion, leaving r to denote just the radius
of the (t = const,u = const) 2D coordinate spheres. Hence, we take the following metric
as an output:

ds® = —F (\/m) dt? + - ( :2 - n2> du? + r2d0? (3.2)

where the coordinates are running through the following intervals:

u € (—00,+00), t € (—o0,+0), 0 € [0,7], ¢ € (0,27]

Comparing with metric (2.1) of the previous chapter, we speak of a metric written down
in the quasiglobal coordinate with:

o) = —~(u) = —% nF (Va4 77) (3.3)

28



Moreover, we impose a relation between v and r of the form:

r? =u?+ n2 (3.4)

This relation, under the prism of the previous discussion about wormholes, can be under-
stood as a constraint for r, that makes it to have a minimum at v = 0, r,,,;,, = n; that is,
n corresponds to the throat of the wormhole, that we want to construct. Actually, this is
exactly the same relation with the one we imposed in the simplest example of a Morris
and Thorne wormhole with metric (2.79). However, the latter metric is more trivial than
(3.2), with the main difference that in (2.79) we speak of a vanishing redshift function.
In this case, we can speak of a non vanishing redshift function, given by ~(u) in (3.3).
Thence, we can see the metric (3.2) as a combination of the initial-input metric and the
trivial wormhole example of Morris and Thorne.

In the previous chapter, we saw that for a wormhole to be traversable in principle two
conditions are necessary to be satisfied. The first one is the necessary absence of any
event horizon; a condition that we call as no horizon condition, while the second one is
the so called flaring out condition, which implies that the throat of the wormhole must
be open. Let’s see how these conditions are implied for this metric.

The no horizon condition

With the aforementioned substitutions, we introduced the parameter n in the metric,
with which the metric becomes regular all along the interval of w. Firstly, if n = 0 the
spacetime has center, because r can reach the zero value. Secondly, it has a singular
center at |u| = r = 0. In other words, taking n # 0, it is a way to avoid the geometrical
singularity at the center of the spacetime by avoiding this center. Although, beyond that,
we have to avoid any event horizon of the new metric, too. If the exclusion of the center
of the spacetime is done by simple imposing 7 # 0, the exclusion of any event horizon is
not accomplished for any non-vanishing value of 7.

If rj, is the event horizon of (3.1), then F(r,) = 0. Denoting with w;, any possible event
horizon of the metric (3.2), we have that F(y/u} + n?) = 0, which means that:

up = 4/ —n? (3.5)
as by definition F(r,) = 0. Hence, u; cannot be defined if the throat radius, 7, is bigger

than r,. Thus, we conclude that the no horizon condition constraints the parameter 7 as
follows:

>
T (3.6)

where 7}, is the event horizon of the initial metric.

The flaring out condition

Previously, we had a discussion for the flaring out condition for which we concluded that
this is satisfied from the appropriate relation between v and r ab initio. However, we
prove that in the case of the Gaussian coordinates for which we have a vanishing « of the
general metric (2.1). Here, this is not the case as we work in the quasiglobal coordinate
with a(u) given by (3.3). So, we have to see what we get for this case.
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The u(r) = £+4/r? — n? function is of course reversible, giving us r = /u? + n%. Hence,
in respect with r, for the o function we have a(r) = —4 In F(r). Substituting these to the

general expression of (2.28), we take:

&r o PF(r) +r(r? —n*)F'(r))

L 3.7
B2 (2 ) ) o
The throat is located at r = 7, giving us:
d*r F(n)
d22 |thr0at = 1 (38)

By definition we have n > 0. Moreover, remember that the ¢¢ component of the metric
(3.2) is gy = —F(y/u? +n?). Thence, the flaring out condition imposes a constraint
for g;; at the throat:

(9tt ) throar < O (3.9)

A constraint about gy is close related with horizons. So, it seems that the flaring out
condition is closely related with the no horizon condition. Remember our discussion in
chapter 2 about the event horizons. We said that they are the g, = 0 hypersurfaces
for some r = ry,, which diverge the metric in two pieces. The static piece in which we
have g, < 0 for » > r, and the non static piece for which we have g; > 0 for r < 7.
So, the throat is constrained by the flaring out condition to be in the static
piece strictly. Moreover, consider two facts: (a) As we said in the previous chapter the
exclusion of any event horizon preserves the metric to be strictly static; that is, g; < 0
everywhere. (b) The throat is the minimum radius r of the geometry, which means that
the constraint (3.9) constraints gy to be negative everywhere.? So, the no horizon
condition and the flaring out condition are too closely related, with the one
implying the other.

The Stress-Energy Tensor and the NEC violation

Our goal for this paragraph is to see how the NEC is violated, according to the general
metric (3.2).

For a Stress-Energy tensor in the form of (2.55), the calculations give us:
(207 + ) (/P 7P) + (04 ) (/e )~ 1)
8 (u? 4 n?)?

o PP + 0+ ) (PP~ 1) (3.10)

87 (u? + n?)?

_ PPV 4+ ?) + (07 4 ) QuB (VR + %) + (i + u) F7 (VP + %))

pr= 167 (u? 4 n?)?

where prime denotes derivative in respect with w.

2We are not concerned in this discussion about cosmological horizons that appear in the case of a
negative cosmological constant.
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For NEC1, we get:

7’ F(\/u? + 1)

A (n? + u?)?
2

p+p=—

(3.11)
—ptp=

4m(n? + u2)29tt

In the previous discussion we saw that g;; has to be negative everywhere. So, it is ob-
vious that NEC is violated not only at the throat, but instead, through out all of the
spacetime.

However, in the case that we introduce a positive cosmological constant, a cosmological
horizon will appear far from the throat. Then, this will make ¢, to reach the zero
value which means that NEC1 is not anymore violated. So we conclude that at the
cosmological horizon the NECI1 is not violated.

NEC beyond the cosmological horizon

Beyond the cosmological horizon where g;; > 0, our metric is not static and the ¢ coordi-
nate is spacelike, while the u coordinate timelike. This swapping of the timelike/space-
like character between the t and u coordinate affects the interpretation of the Energy-
Momentum components. Instead of (2.55), beyond the cosmological horizon we have:

1%, = diag(p1, —p, p2, D2) (3.12)

giving us:

(2P + )PP FP) + (1 + ) (' (P 7P) — 1)

b= 8m(u? + n?)?

. CEu+n?) + (0 + ) (uF (Ve +?) — 1) (3.13)
87T(u2 +772)2

p, = ZEEW2 4+ 1%) + (0 + ) RuE (V2 + %) + (0 + u*) ' (/u? + 7))

167 (u? + n?)?

which yields:
PE(Vu? +1°)
A (n? 4+ u?)?
2

p+p=

(3.14)

=P+ pL=— 5 gt

I + @)

for the region beyond the horizon where ¢;; > 0. Hence, we can combine (3.11) and (3.14)
in one expression which holds through out all of the spacetime:

2

! 5 lgu| Vu € (—o0, +00) (3.15)

S TR

Thus, the NEC is violated through out all of the spacetime, except for any
possible horizon, where g, = 0 and then p+ p; = 0.
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3.2 From Schwarzschild black hole to traversable worm-
hole

In this case, we have as an input metric that of the Schwarzschild given in (1.1). Hence,
the output metric is®:

2M du?
ds? = — <1 - —) 2+ — 4202
Vu?+n? 1 - S (3.16)

where 72 = u? + n* and u,t € (—o0, +00)

Of course, the event horizon of (1.1) is located at r, = 2M. So, the no horizon condition

implies:
(3.17)

It is obvious that: 1 —2M/n > 0 ,¥n > 2M; that is, the flaring out condition is ful-
filled.

Regularity

For the components of the Riemann tensor we have:

M(n* — 2u?) Mu?
Rtuu — _ Rt@ — Rt¢ —
t ,'72 + u2 o tp (U2 + 772)5/2 (3 18)
goo _2M@ ARt u? e 2Mn? = Mu? — e '
0¢ (u? + 2)5/2 uf ugp (U2 + 12)5/2
Giving
4 [8M172(u2 —n?)\u? + %+ 3nt(u? + n?) + 3M?*(4u* — 4un? + 3774)}
K= EEE (3.19)
Everything above is regular. So, no curvature singularity is present.
Asymptotic behaviour
For the Ricci tensor only diagonal terms are non-vanishing:
Mn? 3M 2
Ri= b RY=1p -
(uZ + 12)3/2 (W2 + 252 (12 + n?)?
M (3.20)
RY% = R%, =

Giving for the Ricci scalar:

R 202(3M — \/n? + u?) (3.21)

(% + u?)5/2

3We substituted R, = 2M, with M > 0
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The Ricci scalar depends only on u?. Thus, for v — d00: R — 0. So, the two connected
regions of spacetime are asymptotically flat. Additionally, for an asymptotically flat
spacetime it must be r? ~ u? for large values of u. This is obviously satisfied for 72 =
u?+n?. This condition ensures a correct circumference to radius ratio of coordinate circles
equal to 27 and is true to all of the following cases (asymptotically flat/dS/AdS), so it
will not mentioned again.

Stress-Energy tensor and NEC violation

Like the Ricci tensor, the Stress-Energy tensor is diagonal, too.

AM — \Ju? + n? n?

Tt — = n? ™, =p=———"——
t= P =1 87 (u? + n?)>/2 b 8m(u? + n?)? (3.22)
0= P2 = ¢ =1 87T<U2+772)5/2
According to (3.15):
tp = i 2M (3.23)
pTP1= A (u? + 12)? S 1 2 o .

So, NEC1 is clearly violated for n > 2M, as it is shown in figure 3.1. There is no horizon
for n > 2M, so the above is strictly negative.

For NEC2, we take:
3Mn?

8 (u? + n?)>/?
Unlike NEC1, NEC2 is not violated for any u € (—o0, +00).

(3.24)

p+p2=

NEC Violation

Schwarzschild case, A=0

T
0.0000 -
-0.0005+

-0.0010+ /

=0.0015+

P+p

-0.0020+

— n=2

— n=2.3M
n=2.6M

— n=2.9M

-0.0025+

-0.0030} L L ) )
=10 -5 0 5 10

Figure 3.1: In this graph we see how p + p1 behaves with respect to the radial coordinate
u, for M = 1 and some different values for n. For n = 2M we see that the NEC is
not violated at w = 0, as the latter is a null hypersurface. For n > 2M we see the NEC
violation to be mazximized at the throat as we grow the throat radius n. Far from the throat
p + p1 goes to zero in all cases, which means that a minimal violations occurs.
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3.2.1 Introducing a negative cosmological constant

The Schwarzschild metric with a cosmological constant corresponds to a metric of the
form of (3.1), with:

2M A,
— 4+ 5T

F(r)=1 " 3 (3.25)
where we have a negative cosmological constant: A = —|A| < 0. Again, there is only one
event horizon r;, given by (A.10). Hence, the no horizon condition implies:

2 r

n > ——sinh [—smh (3]\/[\/ ]A\)]
A3 (3.26)

8
or n>2M — §M3|A| for 9OM?|A| << 1

The largest root of F'(r) is the ry, while for large values r the function is obviously positive.
Hence, F'(a) > 0 Va > rj, and the flaring out condition is fulfilled.

The wormhole metric is:

2M A du?

/12 + 2 3 2M |A] (u2 4 1?)

T Vue 3
where r* = u? +n? and u,t € (—o0, +-00)

(3.27)

Regularity

The components of the Riemann tensor are similar with (3.28), but with an extra term,
denoting the existence of the cosmological constant. Referring to the corresponding terms
of a vanishing A with a subscript "0", we have the following:

A Alu?
Rtutu — (Rtutu)o . |3| Rt&t@ — Rt¢t¢ — (Rt9t9>0 . 3 |2 ‘ -
0 [AJu? 0 é 0 Al 3
- 0 ul  _ pud w
R = (R0~ 50y + B = B = (R)y = o5

The Kretschmann scalar is enormous, ugly and for these reasons useless in order to be
written down. It contains three terms. The first one is the Kretschmann scalar in the
case of zero cosmological constant, the second one is proportional to |A|, while the third
one is proportional to [A|?. But it is obvious even from the components of the Riemann
tensor that spacetime is regular, as no component becomes infinite. Regularity is guar-
anteed.

Asymptotic behaviour

The components of the Ricci tensor are:

3u? + n? v "
Ry = (RY)y — ———T_|A|  R% = (R%)o— A
3(u? 4 n?)
(3.29)
R% = R% = (R%) _M|A|
P T IR 3w )
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Giving a Ricci scalar:

R =Ry + 2—772—4 |A| (3.30)
— 1w n2 + u? :

Taking the limit u — 400, we take R — —4|AJ; that is, a constant negative scalar curva-
ture, which corresponds to an AdS spacetime. Meaning, that in this case the wormhole
connects two asymptotically AdS spacetimes.

Stress-Energy tensor and NEC violation

The components of the Stress-Energy tensor are:

3u? + 2n? u?
—Th=p=py— —L—|A| T% =p, = — _|A
t P £o 247T(U2 +n2)2| | h (pl)() + 87T(U2 +n2)| | (3 31)
Ty = = (o + o A |
According to (3.15):
2
Ui 2M Al 2
= — 11— — 3.32

In the case of a negative cosmological constant, there in no horizon for n satisfying (3.26).
If we plot the graph of p+p; for this case, this is qualitatively the same as 3.1, but shifted
downwards.

For NEC2, we get:

p+p2=(p+p2)o (3.33)

So, the introduction of the cosmological constant does not affect the NEC2.

3.2.2 Introducing a positive cosmological constant

Introduction of a positive cosmological constant affects the above work by a change of
sign: —|A] = 4+A. The wormhole metric is:

2M A
— —(u*+ n2)> dit? +

ds? = — [ 1 - ————
S ( /u2+n2 3

where r* = u? +n? and u,t € (—o0, +00)

(3.34)
The crucial difference is the existence of the cosmological horizon, beyond the event
horizon. If r, is the cosmological horizon, for r > r. the corresponding F(r) function
is negative. Hence, according to (3.9) the throat radius 7 has to be in-between the event
and the cosmological horizon given by (A.14). Thus:

%sm Esm—l <3M\/K>] <n< %sm Esm-l (3M\/K) + %ﬂ} (3.35)

35



We are not going to present any tensor component for this case. As we said, just make
the sign change to the cosmological constant and you will find them. I will mention only
the important things.

For the Ricci scalar, we have that at the limit of u — 400 tends to 4A; that is, a
constant positive scalar curvature, which corresponds to a dS spacetime. Thence, the two
connected regions of spacetime are asymptotically dS.

The other important feature comes to the NEC1. The aforementioned change of sign
cosmological constant, gives us:

2 2M A
ptp=—— 1— — () (3.36)

@ +Pr | e sp 3

For every n satisfying (3.35) a cosmological horizon is defined far from the throat at which
the NECT1 is not violated. We plot the above behaviour in figure 3.2.

For NEC2, we see even from the previous results that is independent of A. So, nothing
changes about NEC2 in this case. NEC2 is satisfied through all of the spacetime.

NEC Violation in Schwarzschild case with A>0
— n=2.02TM
— n=2.32TM

n=2.627TM
— N=2.927TM

NEC Violation around the throat NEC Violation around the Cosmological Horizon

0.0000

-0.0005
-5.x107

-0.0010

+Pq

< -0.0015

&
-0.0020 -1.5x10

-0.0025 108

=20 =10 0 10 20 15 20 25 30 35 40 45 50
u u

Figure 3.2: This graph represents the NEC violation in the case that a positive cosmological
constant is introduced, for M =1 and A = 0.01. For these values the event and the cosmo-
logical horizon of the initial black hole are located at ry, =~ 2.027TM and r. ~ 16.217M. In
the first graph we see the behaviour of p+ py around the throat, which s like that of figure
3.1, albeit with different values of n, adapted according to the location of the initial event
horizon. However, there is a cosmological horizon for each value of n. The behaviour of
p + p1 around the cosmological horizon is presented to the second graph, for uw > 0 (The
behaviour for uw < 0 is symmetrical). At the cosmological horizon p + p; reaches the zero
value, while beyond the cosmological horizon we see that remains negative, with a negative
minimum value and then goes to zero for large values of the coordinate u.

36



3.3 From Reissner—Nordstrom black hole to traversable
wormbhole

In this case, we have as an input metric that of the Reissner—Nordstrom given in (B.5).
Hence, the output metric is:

2M 2 2
ds® = — (1 _ LY )dt2+ 1 du + 2402

VR EXTRC

- \/u2+772 + uZ+n2 (337)
where 72 = u? + n* and u,t € (—o0, +00)

We consider the case of M? > Q? (see Appendix B). So, the event horizon of (B.5) is
located at r, = M + y/ M? — (% and the no horizon condition implies:

n> M+ /M2 — Q2 (3.38)

In order to the flaring-out condition be satisfied, g;; has to be negative Vn > rj. In the
Appendix B we see that 7, is the largest root of gy for (B.5), while for r — +o0o tends to
—1, imposing that g is purely negative after its largest root . Thence, g4 (n) < 0, ¥ > 1,
and the flaring-out condition is fulfilled.

Regularity
For the components of the Riemann tensor, we have:

M2u* —n%)  n*—3u?

Rtuu — 2
t (u2 + 12)5/2 + (uQ—I—n?)?’Q
Mu? u?

Rt9 — Rt¢ - + 2

t0 to (W2 + 232 " (W2 + 772)362 (3.39)
RI6 n*\/u? + %+ 2Mu? u2Q)? '

00 — (u2 + 12)5/2 - (u2 + n2)5/2
Ru9 = Rud’ — M(27]2 — u2) — 7]2 u2 + T]Z U2 B /'72 QQ

u ug (u2 + 772)5/2 (u2 + 772)3

Without calculation of any scalar, it is obvious from the above simple and useful compo-
nents that the spacetime does not contain any singular po<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>