## **Bimetric Theory**

# (The notion of spacetime in Bimetric Gravity)

#### **Fawad Hassan**

Stockholm University, Sweden

### 9th Aegean Summer School

on Einstein's Theory of Gravity and its Modifications Sept 18-23, 2017, Sifnos



## SFH & Mikica Kocic (arXiv:1706.07806)

Also based on work with:

Rachel. A. Rosen

Angnis Schmidt-May

Mikael von Strauss

Anders Lundkvist

Luis Apolo

### Outline of the talk

Motivation & Problems

Gravity with an extra spin-2 field: Bimetric Theory

Potential Issues

Uniqueness and the local structure of spacetime

Discussion

### **Bimetric gravity:**

Why study a theory of gravity with two metrics?

(Gravitational metric coupled to extra spin-2 fields)

## Outline of the talk

#### Motivation & Problems

Gravity with an extra spin-2 field: Bimetric Theory

Potential Issues

Uniqueness and the local structure of spacetime

Discussion

► GR + Λ + CDM : Very successful

- ► GR + Λ + CDM : Very successful
- Observations and theory indicate new physics

Dark matter, Dark energy (the cosmological constant problem), Origin of Inflation, The "trans-Planckian" problem, Quantum gravity, Matter-Antimatter asymmetry · · ·

- GR + Λ + CDM : Very successful
- Observations and theory indicate new physics

Dark matter, Dark energy (the cosmological constant problem), Origin of Inflation, The "trans-Planckian" problem, Quantum gravity, Matter-Antimatter asymmetry · · ·

### Theoretical (top down) approaches:

GUTs, Susy, String Theory (with or without Multiverse), Quantum Gravity, · · ·



- GR + Λ + CDM : Very successful
- Observations and theory indicate new physics

Dark matter, Dark energy (the cosmological constant problem), Origin of Inflation, The "trans-Planckian" problem, Quantum gravity, Matter-Antimatter asymmetry · · ·

### Theoretical (top down) approaches:

GUTs, Susy, String Theory (with or without Multiverse), Quantum Gravity, · · ·

But why gravity with extra spin-2 fields?



Spin (s)  $\Rightarrow$  basic structure of field equations (Klein-Gordon, Dirac, Maxwell/Proca, Einstein)

Spin (s)  $\Rightarrow$  basic structure of field equations (Klein-Gordon, Dirac, Maxwell/Proca, Einstein)

## Spin in known physics:

► Standard Model: multiplets of  $s = 0, \frac{1}{2}, 1$  fields

Multiplet structure is crucial for the viability of SM

Spin (s)  $\Rightarrow$  basic structure of field equations (Klein-Gordon, Dirac, Maxwell/Proca, Einstein)

## Spin in known physics:

- Standard Model: multiplets of s = 0, ½, 1 fields Multiplet structure is crucial for the viability of SM
- General relativity: single massless s=2 field  $g_{\mu\nu}$ Einstein-Hilbert for  $s=2\sim$  Klein-Gordon for s=0

Spin (s)  $\Rightarrow$  basic structure of field equations (Klein-Gordon, Dirac, Maxwell/Proca, Einstein)

## Spin in known physics:

- Standard Model: multiplets of s = 0, ½, 1 fields Multiplet structure is crucial for the viability of SM
- General relativity: single massless s=2 field  $g_{\mu\nu}$ Einstein-Hilbert for  $s=2\sim$  Klein-Gordon for s=0

**Low-energy** String theory, etc: single massless spin-2 + plethora of spin 0, 1/2 and 1.

Spin (s)  $\Rightarrow$  basic structure of field equations (Klein-Gordon, Dirac, Maxwell/Proca, Einstein)

## Spin in known physics:

- Standard Model: multiplets of s = 0, ½, 1 fields Multiplet structure is crucial for the viability of SM
- General relativity: single massless s=2 field  $g_{\mu\nu}$ Einstein-Hilbert for  $s=2\sim$  Klein-Gordon for s=0

**Low-energy** String theory, etc: single massless spin-2 + plethora of spin 0, 1/2 and 1.

Unexplored corner: gravity with more spin-2 fields



# Challenges in adding spin-2 fields to GR

- No multiple massless spin-2 fields
- Linear theory of massive spin-2 fields (5 helicities)

[Fierz, Pauli (1939)]

## Challenges in adding spin-2 fields to GR

- No multiple massless spin-2 fields
- Linear theory of massive spin-2 fields (5 helicities)

[Fierz, Pauli (1939)]

► Ghosts in nonlinear theory (5 + 1 helicities)

[Boulware, Deser (1972)]

Ghosts in theories with multiple spin-2 fields

## Challenges in adding spin-2 fields to GR

- No multiple massless spin-2 fields
- ► Linear theory of massive spin-2 fields (5 helicities)

  [Fierz. Pauli (1939)]
- ► Ghosts in nonlinear theory (5 + 1 helicities)

  [Boulware, Deser (1972)]
- Ghosts in theories with multiple spin-2 fields

Can such theories exist or is GR unique?

Consequences?



## The Ghost Problem

**Ghost:** A field with negative kinetic energy

Example:

$$\mathcal{L} = T - V = (\partial_t \phi)^2 \cdots$$
 (healthy)

But

$$\mathcal{L} = T - V = -(\partial_t \phi)^2 \cdots$$
 (ghostly)

Consequences:

## The Ghost Problem

**Ghost:** A field with negative kinetic energy

Example:

$$\mathcal{L} = T - V = (\partial_t \phi)^2 \cdots$$
 (healthy)

But

$$\mathcal{L} = T - V = -(\partial_t \phi)^2 \cdots$$
 (ghostly)

Consequences:

- Instability: unlimited energy transfer from ghost to other fields
- Negative probabilities, violation of unitarity in quantum theory

## Outline of the talk

**Motivation & Problems** 

Gravity with an extra spin-2 field: Bimetric Theory

Potential Issues

Uniqueness and the local structure of spacetime

Discussion

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L}=m_p^2\sqrt{-g}R-$$

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} V(g^{-1} f) +$$

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} V(g^{-1} f) +$$

No dynamics for  $f_{\mu\nu}$ : Massive Gravity

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} V(g^{-1} f) +$$

No dynamics for  $f_{\mu\nu}$ : Massive Gravity

## Overcoming the ghost in massive gravity:

[Creminelli, Nicolis, Papucci, Trincherini, (2005)] [de Rham, Gabadadze, Tolley (2010)] [SFH, Rosen (2011); SFH, Rosen, Schmidt-May (2011)]

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} V(g^{-1} f) + \mathcal{L}(f, \nabla f)$$

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} \ V(g^{-1} f) + \mathcal{L}(f, \nabla f)$$

- what is  $V(g^{-1}f)$  ?
- ▶ what is  $\mathcal{L}(f, \nabla f)$  ?
- proof of absence of the Boulware-Deser ghost

A dynamical theory for the metric  $g_{\mu\nu}$  & spin-2 field  $f_{\mu\nu}$ 

$$\mathcal{L} = m_p^2 \sqrt{-g} R - m^4 \sqrt{-g} \ V(g^{-1} f) + \mathcal{L}(f, \nabla f)$$

- what is  $V(g^{-1}f)$  ?
- ▶ what is  $\mathcal{L}(f, \nabla f)$  ?
- proof of absence of the Boulware-Deser ghost

 $V(g^{-1}f)$  for a ghost-free theory: [SFH, Rosen (2011); de Rham, Gabadadze, Tolley (2010)]

# Digression: elementary symmetric polynomials $e_n(S)$

Consider matrix S with eigenvalues  $\lambda_1, \dots, \lambda_4$ .

$$\begin{split} &e_0(S)=1\,,\qquad e_1(S)=\lambda_1+\lambda_2+\lambda_3+\lambda_4\,,\\ &e_2(S)=\lambda_1\lambda_2+\lambda_1\lambda_3+\lambda_1\lambda_4+\lambda_2\lambda_3+\lambda_2\lambda_4+\lambda_3\lambda_4\,,\\ &e_3(S)=\lambda_1\lambda_2\lambda_3+\lambda_1\lambda_2\lambda_4+\lambda_1\lambda_3\lambda_4+\lambda_2\lambda_3\lambda_4\,,\\ &e_4(S)=\lambda_1\lambda_2\lambda_3\lambda_4\,. \end{split}$$

# Digression: elementary symmetric polynomials $e_n(S)$

Consider matrix S with eigenvalues  $\lambda_1, \dots, \lambda_4$ .

$$\begin{split} e_0(S) &= 1 \,, \qquad e_1(S) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \,, \\ e_2(S) &= \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 , \\ e_3(S) &= \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4 \,, \\ e_4(S) &= \lambda_1 \lambda_2 \lambda_3 \lambda_4 \,. \\ e_0(S) &= 1 \,, \\ e_1(S) &= \operatorname{Tr}(S) \equiv [S] \,, \\ e_2(S) &= \frac{1}{2} ([S]^2 - [S^2]), \\ e_3(S) &= \frac{1}{6} ([S]^3 - 3[S][S^2] + 2[S^3]) \,, \\ e_4(S) &= \det(S) \,, \\ e_n(S) &= 0 \quad \text{(for} \quad n > 4) \,, \end{split}$$

$$\det(\mathbb{1}+S)=\sum\nolimits_{n=0}^{4}e_{n}(S)$$

$$\det(\mathbb{1}+S)=\sum\nolimits_{n=0}^{4}e_{n}(S)$$

$$V(S) = \sum_{n=0}^{4} \frac{\beta_n}{\beta_n} e_n(S)$$

Where:

$$S=\sqrt{g^{-1}f}$$

square root of the matrix  $g^{\mu\lambda}f_{\lambda\nu}$ 

Real? Unique?

How to make sense of it? (to be answered later)

## Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]

Ghost-free combination of *kinetic* and *potential* terms:

$$\mathcal{L} = m_g^2 \sqrt{-g} R_g - m^4 \sqrt{-g} \sum_{n=0}^4 \beta_n \, e_n(\sqrt{g^{-1} f}) + m_f^2 \sqrt{-f} \, R_f$$

"bimetric" nature forced by the absence of ghost

## Ghost-free "bi-metric" theory

[SFH, Rosen (1109.3515,1111.2070)]

Ghost-free combination of kinetic and potential terms:

$$\mathcal{L} = m_g^2 \sqrt{-g} R_g - m^4 \sqrt{-g} \sum_{n=0}^4 \beta_n e_n (\sqrt{g^{-1}f}) + m_f^2 \sqrt{-f} R_f$$

"bimetric" nature forced by the absence of ghost

### Hamiltonian analysis:

7 = 2 + 5 nonlinear propagating modes, no BD ghost!

• 
$$C_1 = 0$$
,  $C_2 = \frac{d}{dt}C_1 = \{H, C\} = 0$ 

Detailed analysis of constraints [SFH, Lundkvist (to appear)]



# Mass spectrum & Limits

$$ar{f} = c^2 ar{g} \,, \quad g_{\mu 
u} = ar{g}_{\mu 
u} + \delta g_{\mu 
u} \,, \quad f_{\mu 
u} = ar{f}_{\mu 
u} + \delta f_{\mu 
u}$$

### Linear modes:

# Mass spectrum & Limits

$$ar{f} = c^2 ar{g} \,, \quad g_{\mu 
u} = ar{g}_{\mu 
u} + \delta oldsymbol{g}_{\mu 
u} \,, \quad f_{\mu 
u} = ar{f}_{\mu 
u} + \delta oldsymbol{f}_{\mu 
u}$$

#### Linear modes:

Massless spin-2: 
$$\delta G_{\mu\nu} = \left(\delta g_{\mu\nu} + \frac{m_f^2}{m_q^2} \, \delta f_{\mu\nu}\right)$$
 (2)

Massive spin-2: 
$$\delta M_{\mu\nu} = \left(\delta f_{\mu\nu} - c^2 \delta g_{\mu\nu}\right)$$
 (5)

 $g_{\mu\nu}$ ,  $f_{\mu\nu}$  are mixtures of *massless* and *massive* modes

# Mass spectrum & Limits

$$ar{f} = c^2 ar{g} \,, \quad g_{\mu 
u} = ar{g}_{\mu 
u} + \delta g_{\mu 
u} \,, \quad f_{\mu 
u} = ar{f}_{\mu 
u} + \delta f_{\mu 
u}$$

#### Linear modes:

Massless spin-2: 
$$\delta G_{\mu\nu} = \left(\delta g_{\mu\nu} + \frac{m_f^2}{m_0^2} \, \delta f_{\mu\nu}\right)$$
 (2)

Massive spin-2 : 
$$\delta M_{\mu\nu} = \left(\delta f_{\mu\nu} - c^2 \delta g_{\mu\nu}\right)$$
 (5)

 $g_{\mu\nu}$ ,  $f_{\mu\nu}$  are mixtures of *massless* and *massive* modes

The General Relativity limit:  $m_g = M_P$ ,  $m_f/m_g \rightarrow 0$  (more later)



# Mass spectrum & Limits

$$ar{f} = c^2 ar{g} \,, \quad g_{\mu 
u} = ar{g}_{\mu 
u} + \delta oldsymbol{g}_{\mu 
u} \,, \quad f_{\mu 
u} = ar{f}_{\mu 
u} + \delta oldsymbol{f}_{\mu 
u}$$

#### Linear modes:

Massless spin-2: 
$$\delta G_{\mu\nu} = \left(\delta g_{\mu\nu} + \frac{m_f^2}{m_g^2} \delta f_{\mu\nu}\right)$$
 (2)

Massive spin-2: 
$$\delta M_{\mu\nu} = \left(\delta f_{\mu\nu} - c^2 \delta g_{\mu\nu}\right)$$
 (5)

 $g_{\mu\nu}$ ,  $f_{\mu\nu}$  are mixtures of *massless* and *massive* modes

The General Relativity limit:  $m_g = M_P$ ,  $m_f/m_g \rightarrow 0$  (more later)

Massive gravity limit:  $m_a = M_P$ ,  $m_f/m_a \rightarrow \infty$ 



## Can Bimetric be a fundamental theory?

Similar to Proca theory in curved background,

$$\sqrt{|\det g|}( extit{F}_{\mu
u} extit{F}^{\mu
u}- extit{m}^2\,g^{\mu
u} extit{A}_{\mu} extit{A}_{
u}+ extit{R}_g)$$

May need the equivalent of Higgs mechanism with the extra fields for better quantum or even classical behaviour

## Some features

1) Ghost-free Matter couplings, same as in GR:

$$\mathcal{L}_{g}(g,\phi) + \mathcal{L}_{f}(f, ilde{\phi})$$

#### Some features

1) Ghost-free Matter couplings, same as in GR:

$$\mathcal{L}_{g}(g,\phi) + \mathcal{L}_{f}(f,\tilde{\phi})$$

- 2)  $\beta_1,\beta_2,\beta_3$ : effective cosmological constant at late times (protected by symmetry, like fermion masses)
- 3) Massive spin-2 particles: dark matter (stable enough)

### Some features

1) Ghost-free Matter couplings, same as in GR:

$$\mathcal{L}_{g}(g,\phi) + \mathcal{L}_{f}(f,\tilde{\phi})$$

- 2)  $\beta_1,\beta_2,\beta_3$ : effective cosmological constant at late times (protected by symmetry, like fermion masses)
- 3) Massive spin-2 particles: dark matter (stable enough)
- 4) Some blackhole and cosmological solutions explored
- 5) Gravitational waves?
- 6) Generalization to more than 2 fields

## **GR** limit

The General Relativity limit:

$$\emph{m}_{\emph{g}} = \emph{M}_{\emph{P}} \, , \quad \alpha = \emph{m}_{\emph{f}} / \emph{m}_{\emph{g}} 
ightarrow 0$$

Cosmological solutions in the GR limit:

$$3H^{2} = \frac{\rho}{M_{Pl}^{2}} - \frac{2}{3} \frac{\beta_{1}^{2}}{\beta_{2}} m^{2} - \alpha^{2} \frac{\beta_{1}^{2}}{3\beta_{2}^{2}} H^{2} + \mathcal{O}(\alpha^{4})$$

The GR approximation breaks down at sufficiently strong fields

## Outline of the talk

**Motivation & Problems** 

Gravity with an extra spin-2 field: Bimetric Theory

#### Potential Issues

Uniqueness and the local structure of spacetime

Discussion

#### Potential Issues

- $\triangleright$  (1) g, f: incompatible notions of space and time?
- ▶ (2) nonunique  $\sqrt{g^{-1}f}$ : ambiguity in defining the action?
- Causality: local closed timelike curves (CTC's) ?
- The initial value problem?
- Faster than light possible in the gravitational sector (good or bad?)
- Analogue of "energy conditions" and global "bi"hyperbolicity?

## Problem of incompatible spacetimes

**Problem 1:**  $g_{\mu\nu}$  &  $f_{\mu\nu}$  have Lorentzian signature (1,3). But may not admit compatible 3+1 decompositions



Then, no consistent time evolution equations, no Hamiltonian formulation.

## Nonuniqueness, Reality and Covariance

#### **Problem 2:**

- $S = \sqrt{g^{-1}f}$  is not unique,
- May not be real, covariant

To properly define the theory (V(S)):

- (a)  $S^{\mu}_{\ \nu}$  needs to be specified uniquely,
- (b) Restrict  $g_{\mu\nu}$ ,  $f_{\mu\nu}$  so that S is real, covariant

What are the restrictions on g & f?
Can they be imposed meaningfully & consistent with dynamics?

### Outline of the talk

**Motivation & Problems** 

Gravity with an extra spin-2 field: Bimetric Theory

Potential Issues

Uniqueness and the local structure of spacetime

Discussion

## Uniqueness and the local structure of spacetime

#### Natural requirements:

- General Covariance:  $S^{\mu}_{\ \nu}$  must be a (1,1) tensor
- ► S must be real

#### Implication:

**Problem 2** (*reality, uniqueness*) has a natural solution.

This also solves **Problem 1** (*compatible spacetimes*).

[SFH, M. Kocic (arXiv:1706.07806)]

## Solution to the uniqueness problem of V(S)

#### Matrix square roots:

- Primary roots: Max 16 distinct roots, generic
- Nonprimary roots: Infinitely many, non-generic (when eigenvalues in different Jordan blocks coincide)

# Solution to the uniqueness problem of V(S)

#### Matrix square roots:

- Primary roots: Max 16 distinct roots, generic
- Nonprimary roots: Infinitely many, non-generic (when eigenvalues in different Jordan blocks coincide)

**General Covariance:**  $A^{\mu}_{\ \nu}=g^{\mu\rho}f_{\rho\nu}$  is a (1,1) tensor,

$$x^{\mu} 
ightarrow \tilde{x}^{\mu} \Rightarrow A 
ightarrow Q^{-1}AQ$$
, for  $Q^{\mu}_{\ 
u} = \frac{\partial x^{\mu}}{\partial \tilde{x}^{\nu}}$ 

## Uniqueness of S

$$S^{\mu}_{\ \nu}=(\sqrt{A})^{\mu}_{\ \nu}$$
 :

- ► Primary roots:  $\sqrt{A} \rightarrow \sqrt{Q^{-1}AQ} = Q^{-1}\sqrt{A}Q$
- ► Nonprimary roots:  $\sqrt{Q^{-1}AQ} \neq Q^{-1}\sqrt{A}Q$

## Step 1:

General covariance  $\Rightarrow$  only primary roots are allowed.

A Consequence: Examples of backgrounds with local CTC's correspond to nonprimary roots and are excluded

## Uniqueness of S

$$S^{\mu}_{\ \nu}=(\sqrt{A})^{\mu}_{\ \nu}$$
 :

► Primary roots:  $\sqrt{A} \rightarrow \sqrt{Q^{-1}AQ} = Q^{-1}\sqrt{A}Q$ 

► Nonprimary roots:  $\sqrt{Q^{-1}AQ} \neq Q^{-1}\sqrt{A}Q$ 

### Step 1:

General covariance  $\Rightarrow$  only primary roots are allowed.

A Consequence: Examples of backgrounds with local CTC's correspond to nonprimary roots and are excluded

#### Step 2:

Only the *principal root* is always primary. Hence, *S* must be a principal root.

(Nonprincipal roots degenerate to nonprimary roots when some eigenvalues coincide).



## Reality of S

Real  $S = \sqrt{g^{-1}f} \Rightarrow$  simple classification of allowed g, f configurations

[SFH, M. Kocic (arXiv:1706.07806)]

## Reality of S

Real  $S = \sqrt{g^{-1}f} \Rightarrow$  simple classification of allowed g, f configurations

[SFH, M. Kocic (arXiv:1706.07806)]

**Theorem:** Real  $S = \sqrt{g^{-1}f}$  exist if and only if the null cones of g and f (i) intersect in open sets, or, (ii) have no common space nor common time directions (Type IV)



## Reality of S

Real  $S = \sqrt{g^{-1}f} \Rightarrow$  simple classification of allowed g, f configurations

[SFH, M. Kocic (arXiv:1706.07806)]

**Theorem:** Real  $S = \sqrt{g^{-1}f}$  exist if and only if the null cones of g and f (i) intersect in open sets, or, (ii) have no common space nor common time directions (Type IV)



<sup>\*</sup>Types I-III: proper 3+1 decompositions, primary roots, allowed.

<sup>\*</sup>Type IV: only nonprimary real roots! (excluded).



# Choice of the square root

#### **Reality** + **General Covariance** ⇒

- \* Real principal square root (unique),
- \* Compatible 3+1 decomposition

$$h_{\mu
u}=g_{\mu
ho}(\sqrt{g^{-1}f}\,)^{
ho}_{\phantom{\rho}
u}$$

*h* null-cones for the principal root (except for the last one)



Useful for choosing good coordinate systems, The specific, existing local CTC's in massive gravity rulled out.

## Consistency with dynamics

Type IV metrics arise as a limit of Type IIb metrics. But in the limit, S has a branch cut. Then, for the principal root, the variation  $\delta S$  is not defined at the cut  $\Rightarrow$  Eqns. of motion not valid for Type IV. Hence cannot arise dynamically.

# Consistency with dynamics

Type IV metrics arise as a limit of Type IIb metrics. But in the limit, S has a branch cut. Then, for the principal root, the variation  $\delta S$  is not defined at the cut  $\Rightarrow$  Eqns. of motion not valid for Type IV. Hence cannot arise dynamically.

#### A simple mechanical example:

$$A = \int dt \left( \dot{x}^2 / 2 - \lambda \sqrt{x^2} \right) , \qquad \sqrt{x^2} = |x|$$
 (1)

$$\ddot{x} = -\lambda(x > 0), \qquad \ddot{x} = \lambda(x < 0) \tag{2}$$

(no equation at x = 0)

Implication for some acausality arguments (CTC's) in massive gravity



## Outline of the talk

**Motivation & Problems** 

Gravity with an extra spin-2 field: Bimetric Theory

Potential Issues

Uniqueness and the local structure of spacetime

Discussion

### Discussion

The beginning of understanding theories of spin-2 fields beyond General Relativity.

### Discussion

# The beginning of understanding theories of spin-2 fields beyond General Relativity.

- Superluminality? (yes, but not necessarily harmful, replacement for inflation?)
- Causality? (needs to be investigated further)
- Energy conditions, global "bi-hyperbolicity"
- A more fundamental formulation
- Application to cosmology, blackholes, GW, etc.
- Extra symmetries ⇒ Modified kinetic terms? much less understood. [SFH, Apolo (2016)]

## Thank you!

## The Hojman-Kuchar-Teitelboim Metric

General Relativity in 3+1 decomposition  $(g_{\mu\nu}: \gamma_{ij}, N, N_i)$ :

$$\sqrt{g}R\sim\pi^{ij}\partial_t\gamma_{ij}-NR^0-N_iR^i$$

Constraints:  $R^0 = 0$ ,  $R^i = 0$ .

Algebra of General Coordinate Transformations (GCT):

$$\begin{aligned} \left\{ R^{0}(x), R^{0}(y) \right\} &= -\left[ \frac{R^{i}(x) \frac{\partial}{\partial x^{i}} \delta^{3}(x - y) - R^{i}(y) \frac{\partial}{\partial y^{i}} \delta^{3}(x - y) \right] \\ \left\{ R^{0}(x), R_{i}(y) \right\} &= -R^{0}(y) \frac{\partial}{\partial x^{i}} \delta^{3}(x - y) \\ \left\{ R_{i}(x), R_{j}(y) \right\} &= -\left[ \frac{R_{j}(x) \frac{\partial}{\partial x^{i}} \delta^{3}(x - y) - R_{i}(y) \frac{\partial}{\partial y^{j}} \delta^{3}(x - y) \right] \end{aligned}$$

 $R_i = \gamma_{ij} R^j$ ,  $\gamma_{ij}$ : metric of spatial 3-surfaces.

- Any generally covariant theory contains such an algebra.
- ► HKT: The tensor that lowers the index on *R*<sup>i</sup> is the physical metric of 3-surfaces.



# The HKT metric in bimetric theory

Consider 
$$g_{\mu\nu}=(\gamma_{ij},$$
  $N,$   $N_i)$  and  $f_{\mu\nu}=(\phi_{ij},$   $L,$   $L_i),$  
$$\mathcal{L}_{g,f}\sim\pi^{ij}\gamma_{ij}+p^{ij}\phi_{ij}-M\tilde{R}^0-M_i\tilde{R}^i$$

On the surface of second class Constraints. GCT Algebra:

$$\begin{split} \left\{ \tilde{R}^{0}(x), \tilde{R}^{0}(y) \right\} &= -\left[ \tilde{R}^{i}(x) \frac{\partial}{\partial x^{i}} \delta^{3}(x - y) - \tilde{R}^{i}(y) \frac{\partial}{\partial y^{i}} \delta^{3}(x - y) \right] \\ \left\{ \tilde{R}^{0}(x), \tilde{R}_{i}(y) \right\} &= -\tilde{R}^{0}(y) \frac{\partial}{\partial x^{i}} \delta^{3}(x - y) \end{split}$$

 $ilde{R}_i = \phi_{ij} ilde{R}^j, \, \phi_{ij}$ : the 3-metric of  $f_{\mu 
u}$ , or  $ilde{R}_i = \gamma_{ij} ilde{R}^j, \, \gamma_{ij}$ : the 3-metric of  $g_{\mu 
u}$ .

The HKT metric of bimetric theory is  $g_{\mu\nu}$  or  $f_{\mu\nu}$ , consistent with ghost-free matter couplings

[SFH, A. Lundkvist (to appear)]