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Basic Horndeski Theory
Horndeski Black Hole

(1971) Lovelock: The most general metric theory to acquire second
order field equations in an arbitrary number of dimensions

(1974) Horndeski: Posed and answered the following important
question:

What is the most general scalar-tensor theory in 4-dimensional
spacetime yielding second order field equations?

Horndeski Theories belong to a general class of scalar-tensor theories with
two basic properties:

In four dimensions they give second-order field equations

A class of them possesses a classical Galilean symmetry

(Deffayet, Esposito-Farese, Vikman)
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Basic Horndeski Theory
Horndeski Black Hole

SHorndeski [χ, g] =

∫
d4x
√
−g
[
K(χ,X)− G3(χ,X)E1

+ G4(χ,X)R + G4,XE2 + G5(χ,X)Gµν∇µ∇νχ−
G5,X

6
E3

]
where

X = −1
2

(∇χ)2

En = n!∇[µ1∇
µ1χ · · ·∇µn ]∇

µnχ

and
G4,X =

∂G4

∂X

The Horndeski terms are also called generalized (arbitrary Gi) galileons
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Basic Horndeski Theory
Horndeski Black Hole

We concentrate on the term:

I =

∫
d4x
√
−g

[
R

16πG
− (gµν − G(χ)Gµν)∇µχ∇νχ

]
Cosmological applications when G(χ) is a constant:

Accelerated expansion without the need of any scalar potential
(Amendola)

Second-order field equations in accordance with Horndeski’s theory
(Sushkov)

Inflationary phase
(Sushkov, Germani, Kehagias)

Late-time cosmology
(Saridakis, Sushkov)

Particle production after inflation
(Koutsoumbas, Ntrekis, Papantonopoulos)

Reheating with Derivative Coupling
(Dalianis, Koutsoumbas, Ntrekis, Papantonopoulos)
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Horndeski Black Hole

Timelike Radial Geodesics
Timelike Non-Radial Geodesics

We consider the Lagrangian

L =
R
2
− 1

2
(gµν − zGµν) ∂µφ∂νφ = −F(r)ṫ2 + G(r)ṙ2 + r2(θ̇2 + sin2 (θ)φ̇2)

F(r) =
3
4

+
r2

12z
− 2M

r
+

√
z

4r
arctan

(
r√
z

)
, G(r) =

(r2 + 2z)2

4(r2 + z)2F(r)

Event Horizon at: ∇µr∇µr = 0→ F(r) = 0

Euler-Lagrange equations of motion:
(

Π̇q −
∂L
∂q

= 0
)

,

E = F(r)ṫ

L = r2φ̇

Radial Equation

ṙ2 =
E2

F(r)G(r)
− 1

G(r)

(
L2

r2 + h

)
L =

E2

F(r)
− G(r)ṙ2 − L2

r2 ≡ h

h = 0→ photons

h = 1→ massive particles
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ṙ2 =
E2

F(r)G(r)
− 1

G(r)

(
L2

r2 + h

)
L =

E2

F(r)
− G(r)ṙ2 − L2
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− G(r)ṙ2 − L2

r2 ≡ h

h = 0→ photons

h = 1→ massive particles

V. Zanni Geodesics, motion of a particle around a Horndeski black hole



Basic Horndeski Theory
Horndeski Black Hole

Timelike Radial Geodesics
Timelike Non-Radial Geodesics

Timelike (h = 1) radial (L = 0) geodesics: ṙ2 =
E2

F(r)G(r)
− 1

G(r)
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Timelike (h = 1) radial (L = 0) geodesics: ṙ2 =
E2

F(r)G(r)
− 1

G(r)
For large r

ri = (96Mz)
1
3

E2 = 3
4 +

(
9M2

4z

)1
3
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Figure: Orbits with respect
to τ for different values of z
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For large z:
r
√

z

4r
√

z
− 2

r
+

3
4

= 0⇒ rhorizon → 2
V. Zanni Geodesics, motion of a particle around a Horndeski black hole



Basic Horndeski Theory
Horndeski Black Hole

Timelike Radial Geodesics
Timelike Non-Radial Geodesics

Timelike (h = 1) non-radial (L 6= 0) geodesics→

ṙ2 =
E2

F(r)G(r)
− 1

G(r)

(
L2

r2 + 1
)

For small z, the radial equation takes the form

ṙ2 = 4E2 −
(

3 +
r2

3z
− 8M

r
+

√
z

r
π

2

)(
L2

r2 + 1
)

By making the transformation r = u−1,(
u

du
dφ

)2

=
(

8M −
√

z
π

2

)(
u5 − 3

8M −
√

z π2
u4 +

1
L2 u3+

4E2 − 3− L2

3z

L2
(
8M −

√
z π2
)︸ ︷︷ ︸

negative for bounded orbits

u2 − 1
3zL2

(
8M −

√
z π2
))
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For fixed ri = 2.5

→ E2 =
1
24

(
3πL2√z

r3
i

−
48L2

r3
i

+
18L2

r2
i

+
2L2

z
+

2r2
i

z
+

3π
√

z

ri
−

48
ri

+ 18
)

Bounded orbits when:
4E2 − 3−

L2

3z

L2
(

8M −
√

z
π

2

) < 0
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φ =

∫
udu√(

8M −
√

z π2

)
u5 − 3u4 +

8M−
√

z π2
L2 u3 +

4E2−3− L2
3z

L2 u2 − 1
3zL2

or φ =

∫
udu√

au5 + bu4 + gu3 + eu2 + d
, and if z << 1 then e, d >> 1

φ =

∫
udu√

(eu2 + d)

(
au5+bu4+gu3

eu2+d
+ 1
)

=−
1

2

3u(a(−15d2 − 5deu2 + 2e2u4) + 4eg(eu2 + 3d))− 8b(8d2 + 4deu2 − e2u4)

24e3
√

eu2 + d

+
1

2

3d(5ad − 4eg) log(
√

e
√

eu2 + d + eu)

8e7/2
+

√
eu2 + d

e
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Figure: Unbounded orbits for different z
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Conclusions

Radial Geodesics: As we increase z, the horizon radius becomes larger
and approaches the value 2, and the time at which particles cross the
horizon increases as well.

Non-Radial Geodesics: There are unbounded orbits. As we decrease z,
particles are falling with higher velocity towards the horizon. Their
trajectory approaches asymptotically a circle of radius the horizon
radius, too.

To be Continued...
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