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Overview

o Basic Horndeski Theory

e Horndeski Black Hole
@ Timelike Radial Geodesics
@ Timelike Non-Radial Geodesics
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Basic Horndeski Theory

Section 1

o Basic Horndeski Theory
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Basic Horndeski Theory

@ (1971) Lovelock: The most general metric theory to acquire second
order field equations in an arbitrary number of dimensions

@ (1974) Horndeski: Posed and answered the following important
question:
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Basic Horndeski Theory

@ (1971) Lovelock: The most general metric theory to acquire second
order field equations in an arbitrary number of dimensions

@ (1974) Horndeski: Posed and answered the following important
question:

What is the most general scalar-tensor theory in 4-dimensional
spacetime yielding second order field equations?
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Basic Horndeski Theory

@ (1971) Lovelock: The most general metric theory to acquire second
order field equations in an arbitrary number of dimensions

@ (1974) Horndeski: Posed and answered the following important
question:

What is the most general scalar-tensor theory in 4-dimensional
spacetime yielding second order field equations?

Horndeski Theories belong to a general class of scalar-tensor theories with
two basic properties:

@ In four dimensions they give second-order field equations

@ A class of them possesses a classical Galilean symmetry

(Deffayet, Esposito-Farese, Vikman)

| v.Zanni | Geodesics, motion of a particle around a Horndeski black hole



Basic Horndeski Theory

SHomdeski[Xyg] - /d4x\/ —g |:K(X7X) - G3(X7X)51

_ Gs,x 83]

+ Ga(X, X)R + GaxE + Gs (x, X) G VIV x — =2
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Basic Horndeski Theory

SHomdeski[Xyg] - /d4x\/ —g |:K(X7X) - G3(X7X)51

+ Ga(X, X)R + Ga,xE + Gs(x, X)Gu V¥V x — GZX 83}
where
X = —%(Vx)2
& = nlV,, V¥x---V, Vx
and 9G,
Gax = X
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Basic Horndeski Theory

SHomdeski[Xyg] - /d4x\/ —g |:K(X7X) - G3(X7X)51

+ Ga(X, X)R + Ga,xE + Gs(x, X)Gu V¥V x — GZX 83}
where
= —%(Vx)2
& = nlV,, V¥x---V, Vx
and 9G,
Gax = X

The Horndeski terms are also called generalized (arbitrary G;) galileons
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Basic Horndeski Theory

We concentrate on the term:
R
I= /d4x\/—g [7 —

nro_ nv
g (6" = G00G"),V.n
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Basic Horndeski Theory

We concentrate on the term:

R
167G

1:/d4x¢fg[

(" - G(X)G’“')Vuxvux]

Cosmological applications when G(x) is a constant:

Accelerated expansion without the need of any scalar potential
(Amendola)
Second-order field equations in accordance with Horndeski’s theory
(Sushkov)
Inflationary phase
(Sushkov, Germani, Kehagias)
Late-time cosmology
(Saridakis, Sushkov)
Particle production after inflation
(Koutsoumbas, Ntrekis, Papantonopoulos)
Reheating with Derivative Coupling

(Dalianis, Koutsoumbas, Ntrekis, Papantonopoulos)

| v.Zanni | Geodesics, motion of a particle around a Horndeski black hole



Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Section 2

e Horndeski Black Hole
@ Timelike Radial Geodesics
@ Timelike Non-Radial Geodesics
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

We consider the Lagrangian

L= g - % (g" = 2G") 0,000 ¢ = —F(n)t* + G()i* + 1*(6” + sin” (0)”)
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

We consider the Lagrangian

R 1

L= =5 (9" —26") 0u00,6 = —F(r)t* + G(r)i* + r*(” + sin” (6))
3 r 2M  \/z r (P +22)7
P =3+ iy~ 2 Y artan (). ot =
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

We consider the Lagrangian

R 1

L= =5 (9" —26") 0u00,6 = —F(r)t* + G(r)i* + r*(” + sin” (6))
3 r 2M  \/z r (P +22)7
P =3+ iy~ 2 Y artan (). ot =

Event Horizon at: V,rV*r=0 — F(r) =0
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

We consider the Lagrangian

- g - % (g" = 2G") 0,000 ¢ = —F(n)t* + G()i* + 1*(6” + sin” (0)”)

3 P 2M  Jz r (r* +22)*
F(r)=>+4 — — =— + Y= arct Gr) = 2= 2rn
(r) " + + 4 ¢ an( z)’ (r) a(r> + 2)2F(r)
Event Horizon at: V,rV*r=0 — F(r) =0

. oL
Euler-Lagrange equations of motion: (H - = 0),

° E=F(r)t
o L= r2q5
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

We consider the Lagrangian

R 1

L=3—3 (g"" — 2G") 0,0, ¢ = —F(r)i® + G(r)i® + r*(6% + sin® (0)¢?)
3 r 2M  \/z r (r* + 22)°
P =313~ T*Ea”ta“(

) 0=
0

Event Horizon at: V,rV¥r=0 — F(r) =

. oL
Euler-Lagrange equations of motion: (Hq - = 0),

9q
E? o L7
© E= t L=—~—-G -~ =h
B=Flr R A
@ L=r%p
Radial Equation @ h = 0 — photons
2 E? 1 L? @ h =1 — massive particles
P?= - = +h
F(r)G(r) G(r) \r*
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e Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Timelike (h = 1) radial (L = 0) geodesics: i* = ————— —
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Timelike (h = 1 dial (L =0 desics: 2 = ———— —
imelike ( ) radial ( ) geodesics: GO ~ G0
For large r

o r, = (96Mz)3

1
M2\ 3
4z

Figure: Orbits with respect
to 7 for different values of z
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

E? 1
Timelike (h = 1) radial (L = 0) geodesics: i* = ————— —
F(r)G(r)  G(r)

For large r For fixed r;
Q= (96Mz)% (z% arctan (%)4»1021»72)
1 _ z
oM?\ 3 °E= 2v6
@ EP=34(—
(%)
(1)

(1)

05 1.0 15 20 25 30 35

Figure: Orbits with respect to 7 for different values
of z

Figure: Orbits with respect

to 7 for different values of z
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

E’ 1
Timelike (h = 1) radial (L = 0) geodesics: i* = FG G

For large r For fixed r;
Q= (96MZ)% (z% arctan (%)+10z+72)
1 — z
L L ° E= 5
@ E2=23 + Ql 3
4 4z

r(7)

05 1.0 15 20 25 30 35

Figure: Orbits with respect to 7 for different values

' : ’ Y oofz
Figure: Orbits with respect
to 7 for different values of z
r/z 2 3
Forlarge s f - =+ Z = 0 = Thorizon —* 2
Z I
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Timelike (h = 1) non-radial (L # 0) geodesics—

2= E72 _ 1 L72 +1
F(r)G(r) G(r) \ r?
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Timelike (h = 1) non-radial (L # 0) geodesics—

L B2 1 (1 1
T F(rG(r)  G(r) \ r?
For small z, the radial equation takes the form

2 2
f2:4E27<3+;—78—M+£E) (L—Jrl)
VA

r r 2 r2
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

Timelike (h = 1) non-radial (L # 0) geodesics—

L B2 1 (1 1
T F(rG(r)  G(r) \ r?
For small z, the radial equation takes the form

2 2
'r2:4E27<3+;—78—M+£E) (L—Jrl)
VA

r r 2 r2

By making the transformation r = u™',

u% 2—(8M—\/EE> u5—;u4+iu3+
do ) 2 8M — /zZ L2

4 —3- L 2 1
L* (8M — \/z%) 3zL? (8M — /z%)
N—_——/—

negative for bounded orbits
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

For fixed ; = 2.5

1 (3wL?\/z 48L%> 18L%> 21?2 212 3m/z 48
—E?= — | ——— — —+—t 4+ —"-—+18
24 ( r$ r? r? z z I Ti
LZ
4E? -3 - —
3z

Bounded orbits when: <0

L2 <8M - \/Eg)
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

For fixed r; = 2.5

1 (37wL?\/z 48L%> 18L%> 21?2 212 3m/z 48
S Er= — | —= - — - — 18
24 ( r? r? r? T ri
L2
2 _g3_ —
3z

Bounded orbits when: <0

12 <8M - ﬁg)

parameters for Bounded Orbits

6

Figure: Parameter Space for bounded orbits
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Timelike Radial Geodesics

Horndeski Black Hole Timelike Non-Radial Geodesics
udu
¢ = =
sM—/z L% 42 3 L2
— ) 5 — 3ut 2 .3 3z 2 _ _1_
\/(SM Vzg ) u? — 3ut + 2 w + 2 u 3212
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

udu

= / D
8M—/z T 42 3 L2 L
\/(SM - ﬁ%) ub — 3ut + = 2 43 4 = 3z 42 — Tz

udu

or 45:/ s andifz << 1 then e, d>>1
aud + but + gud + eu? +d

udu

5 4 pud 4 gud
2 au® +bu tgu
\/(eu + d) < w2 Td + 1)

1 3u(a(—15d? — 5deu® + 2¢%u*) + 4eg(eu® + 3d)) — 8b(8d? + adeu® — *u)
2 24e3v\/eu? + d

)

n 1 3d(5ad — 4eg) log(+/ev/eu? + d + eu) N eu +d

2 8e7/2 e
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Timelike Radial Geodesics
Horndeski Black Hole Timelike Non-Radial Geodesics

udu

/ 2
' 8M—/z T 4E2 —3— L2
8M — 1) 5 _ 3yt 2,3 32 2 _ 1
\/( Vg ) vt e L2 W e

¢ =

udu

or (;5:/ andifz <<'1 then e,d>>1
J Vaub + but + gud + eu? + d

B

udu
5 443
2 au® +bu” tgu
\/(eu +d) ( awa 1)
2

1 3u(a(—15d? — 5deu® + 2¢%u*) + 4eg(eu® + 3d)) — 8b(8d? + adeu® — *u)

T2 24e3\/en2 + d

1 3d(5ad — 4eg) log(y/ev/eu? + d + eu) n eu? +d
2 8e7/2 e

)

Figure: Unbounded orbits for different z
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Conclusions

@ Radial Geodesics: As we increase z, the horizon radius becomes larger
and approaches the value 2, and the time at which particles cross the
horizon increases as well.

@ Non-Radial Geodesics: There are unbounded orbits. As we decrease z,
particles are falling with higher velocity towards the horizon. Their
trajectory approaches asymptotically a circle of radius the horizon
radius, too.

To be Continued...
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