FROM COMPACT OBJECTS TO QUASI-NORMAL MODES AND BACK

Sebastian H. Völkel Theoretical Astropyhsics University of Tübingen, Germany

9th Aegean Summer School 18-23 September 2017 Sifnos, Greece

SEBASTIAN H. VÖLKEL

UNIVERSITY OF TÜBINGEN

OVERVIEW

1 INTRODUCTION

- 2 DIRECT PROBLEM
- 3 SURPRISE?!
- 4 DETECTABILITY
- 5 CONCLUSIONS

COMPACT OBJECTS

- Neutron stars and black holes are "well known"
- Other exotic objects: boson stars, gravastars, wormholes
- \blacksquare Their properties are different from black holes and neutron stars 1
- What are their properties and how can we learn about them?

¹New review: Cardoso and Pani (2017)

QUASI-NORMAL MODES (QNM)

- \blacksquare General kind of perturbation for dissipative systems
- \blacksquare Well studied for black holes and compact stars 2

$$g_{\mu\nu} = g^{0}_{\mu\nu} + h_{\mu\nu}$$
 (1)

Now we focus on the so-called axial modes

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\psi + \left(\omega_n^2 - V(r)\right)\psi = 0 \tag{2}$$

• QNM ω_n is different for many exotic compact objects (ECOs)

²Reviews: Kokkotas and Schmidt (1999); Nollert (1999); Berti et al. (2009) SEBASTIAN H. VÖLKEL UNIVERSITY OF TÜBINGEN

POTENTIAL SCATTERING

- The QNM spectrum can be understood from potential scattering
- Different type of **potentials** and **boundary conditions** produce different spectra
- Schwarzschild black hole: single potential barrier
- Stars: repulsive barrier
- Ultra compact stars: repulsive barrier + single potential barrier

INTRODUCTION

BH vs ECO

FIGURE 1: Schwarzschild BH potential vs ECO potential for constant density star R/M = 2.26, both for l = 2.

SOLVE WAVE EQUATION

- Solve wave equation to get QNM spectrum ω_n
- Analytic, semi-analytic and numerical methods are available
- WKB method is valuable for analytic and semi-analytic work
- For analytic studies now: Bohr-Sommerfeld (BS) rule

BOHR-SOMMERFELD RULES

Well known for potential wells (bound states)

$$\int_{x_0}^{x_1} \sqrt{\omega_n^2 - V(x)} \, \mathrm{d}x = \pi \left(n + \frac{1}{2} \right) \tag{3}$$

Generalized rule for quasi-stationary states ³

$$\int_{x_0}^{x_1} \sqrt{\omega_n^2 - V(x)} \, \mathrm{d}x = \pi \left(n + \frac{1}{2} \right) - \frac{i}{4} \exp\left(2i \int_{x_1}^{x_2} \sqrt{\omega_n^2 - V(x)} \, \mathrm{d}x \right),\tag{4}$$

with turning points x_0, x_1, x_2 and $\omega_n^2 \equiv E_n$

³Popov et al. (1991)

FIGURE 2: Typical potential containing quasi-stationary states, taken from Völkel and Kokkotas (2017a).

CONSTANT DENSITY STARS

FIGURE 3: Effective potential $V(r^*)$ for axial perturbations for non-rotating constant density stars, taken from Völkel and Kokkotas (2017a).

FIGURE 4: Comparison of different Bohr-Sommerfeld results for the QNM spectrum ω_n for a constant density star with R/M = 2.26, l = 2 with full numerical results from Kokkotas (1994).

CAN ONE HEAR THE SHAPE OF A DRUM?

SEBASTIAN H. VÖLKEL

UNIVERSITY OF TÜBINGEN

FROM SPECTRUM TO POTENTIAL

Can one hear the shape of a drum?⁴

- GW observation will provide one with QNM spectrum ω_n , not V(x)
- **Can we reconstruct** V(x) from ω_n ?
- Great value of WKB/BS: **Yes, but**
- Depends on qualitative type of potential and validity of WKB/BS

⁴Kac (1966); Gordon et al. (1992)

INVERSE METHOD

How can we reconstruct the potential?

- We invert WKB/BS integral approach
- Method known for individual potential wells and barriers, respectively
- We will generalize these results for our type of potential
- Method in principle applicable for any potential of that kind

RECONSTRUCT POTENTIAL

FIGURE 5: Reconstruction of width $\mathcal{L}_1(E)$ and $\mathcal{L}_2(E)$, taken from Völkel and Kokkotas (2017b).

INVERTING INTEGRALS

■ Reconstruction of widths $\mathcal{L}_1(E)$ and $\mathcal{L}_2(E)$ possible ⁵

$$\mathcal{L}_1(E) = x_1 - x_0 = 2 \frac{\partial}{\partial E} \int_{E_{\min}}^E \frac{n(E') + 1/2}{\sqrt{E - E'}} \mathbf{d}E', \tag{5}$$

$$\mathcal{L}_{2}(E) = x_{2} - x_{1} = -\frac{1}{\pi} \int_{E}^{E_{\max}} \frac{(\mathbf{d}T(E')/\mathbf{d}E')}{T(E')\sqrt{E'-E}} \mathbf{d}E'.$$
 (6)

with turning points $x_0(E), x_1(E), x_2(E)$, spectrum n(E) and transmission T(E)

• Connection between transmission T(E) and QNM spectrum $\omega_n^2 = E_n$ found within WKB/BS ⁶

⁵Wheeler (1976); Lazenby and Griffiths (1980)
⁶Völkel and Kokkotas (2017b)

RESULTS I

FIGURE 6: Reconstruction of width $\mathcal{L}_1(E)$ for a constant density star with R/M = 2.26, l = 2, taken from Völkel and Kokkotas (2017b).

RESULTS II

FIGURE 7: Reconstruction of width $\mathcal{L}_2(E)$ for a constant density star with R/M = 2.26, l = 2, taken from Völkel and Kokkotas (2017b).

RESULTS III

FIGURE 8: Reconstruction of potential $V(r^*)$ for a constant density star with R/M = 2.26, l = 2, taken from Völkel and Kokkotas (2017b).

DISCUSSION

- Method works in principle for any potential of the type shown (between E_{min}, E_{max})
- Results are approximative: WKB/BS, (inter-/extrapolation) for n(E)
- Accuracy significantly increases with the number of trapped modes
- Birkhoff's theorem used to find unique solution
- More complicated for rotating systems

DETECTABILITY

DETECTABILITY

Could current gravitational wave detectors detect exotic compact objects?

- Project with A. Maselli ⁷ presents first simple parameter estimation for phenomenological "echo"⁸ templates
- If such objects exist and the time evolution can be sufficiently described by the templates, they should partially already be detectable with current detectors
- Exotic compact objects refer to a large class of objects, more realistic and detailed work is necessary for any serious conclusions, many unknowns

⁷Maselli, Völkel, and Kokkotas (2017)
⁸Abedi et al. (2016); Ashton et al. (2016); Abedi et al. (2017)

CONCLUSIONS

CONCLUSIONS

- WKB/BS methods are great tools to study gravitational waves of compact objects:
 - \Rightarrow There are analytic and semi-analytic ways to calculate the QNM spectrum ω_n of the object
 - \leftarrow WKB/BS methods can be used to **solve the inverse problem**, to reconstruct the potential V(x) from the spectrum ω_n
- Parameter estimation of exotic compact objects from GWs should be possible within the next years
- The presented work can be found in:

Völkel and Kokkotas, *Class. and Quant. Grav.*, 34(12):125006, 2017
 Völkel and Kokkotas, *Class. and Quant. Grav.*, 34(17):175015, 2017
 Maselli, Völkel and Kokkotas, acc. in *Phys. Rev. D*, arXiv:1708.02217

CONCLUSIONS

BIBLIOGRAPHY I

- B. P. Abbott et al. Tests of General Relativity with GW150914. Phys. Rev. Lett., 116:221101, May 2016. doi: 10.1103/PhysRevLett.116.221101. URL http://link.aps.org/doi/10.1103/PhysRevLett.116.221101.
- J. Abedi, H. Dykaar, and N. Afshordi. Echoes from the Abyss: Evidence for Planck-scale structure at black hole horizons. *ArXiv e-prints*, December 2016.
- J. Abedi, H. Dykaar, and N. Afshordi. Echoes from the Abyss: The Holiday Edition! ArXiv e-prints, January 2017.
- G. Ashton, O. Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G. D. Meadors, A. B. Nielsen, A. Nitz, and J. Westerweck. Comments on: "Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons". ArXiv e-prints, December 2016.
- E. Berti, V. Cardoso, and A. O. Starinets. TOPICAL REVIEW: Quasinormal modes of black holes and black branes. *Classical and Quantum Gravity*, 26(16):163001, August 2009. doi: 10.1088/0264-9381/26/16/163001.
- Vitor Cardoso and Paolo Pani. Tests for the existence of horizons through gravitational wave echoes. *Nat. Astron.*, 1:586–591, 2017. doi: 10.1038/s41550-017-0225-y.
- C. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains and surfaces via Riemannian orbifolds. *Inventiones mathematicae*, 110(1):1–22, 1992. ISSN 1432-1297. doi: 10.1007/BF01231320. URL http://dx.doi.org/10.1007/BF01231320.
- M. Kac. Can One Hear the Shape of a Drum? The American Mathematical Monthly, 73(4): 1-23, 1966. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/2313748.

CONCLUSIONS

BIBLIOGRAPHY II

- K. D. Kokkotas. Axial Modes for Relativistic Stars. MNRAS, 268:1015, June 1994. doi: 10.1093/mnras/268.4.1015.
- K. D. Kokkotas and B. G. Schmidt. Quasi-Normal Modes of Stars and Black Holes. Living Reviews in Relativity, 2:2, December 1999. doi: 10.12942/lrr-1999-2.
- J. C. Lazenby and D. J. Griffiths. Classical inverse scattering in one dimension. *American Journal of Physics*, 48:432–436, June 1980. doi: 10.1119/1.11998.
- A. Maselli, S. H. Völkel, and K. D. Kokkotas. Parameter estimation of gravitational wave echoes from exotic compact objects. arXiv:1708.02217, August 2017.
- H.-P. Nollert. TOPICAL REVIEW: Quasinormal modes: the characteristic 'sound' of black holes and neutron stars. *Classical and Quantum Gravity*, 16:R159–R216, December 1999. doi: 10.1088/0264-9381/16/12/201.
- V. S. Popov, V. D. Mur, and A. V. Sergeev. Quantization rules for quasistationary states. *Physics Letters A*, 157:185–191, July 1991. doi: 10.1016/0375-9601(91)90048-D.
- S. H. Völkel and K. D. Kokkotas. A semi-analytic study of axial perturbations of ultra compact stars. *Classical and Quantum Gravity*, 34(12):125006, June 2017a. doi: 10.1088/1361-6382/aa68cc.
- S. H. Völkel and K. D. Kokkotas. Ultra Compact Stars: Reconstructing the Perturbation Potential. *Classical and Quantum Gravity*, 34(17):175015, August 2017b. doi: 10.1088/1361-6382/aa82de.
- J. A. Wheeler. Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton University Press, 1976.