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There have been many attempts for constructing dark energy
models in the framework of scalar-tensor theories.

Spin 0

Many of them belong to the so-called Horndeski theories.

Most general scalar-tensor theories with
S = [ d*zv/—gL , ,
/ VI second-order equations of motion

e = G2(¢7 X) - G3(¢7 X)qu e G4(¢'7 X)R _ 2G4,X(gbv X) [(qu)Q B ¢;”V¢;uv]
1

+Gs(9, X)Guw ™ + 3Gs.x(4; X)[(@¢)* - 3(0¢) by ™ + 26y 7 ¢

Single scalar field ¢ with X = ¢*”0,¢0,¢

Horndeski derived this action at the age of 25 (1973).

R and G, are the 4-dimensional Ricci scalar and the Einstein tensors, respectively.
o General Relativity corresponds to G4 = M2 /2.

e Horndeski theories accommodate a wide variety of gravitational theories

like Brans-Dicke theory, f(R) gravity, and covariant Galileons.



What happens for a vector field instead of a scalar field ?

Spin 1

(1) Maxwell field (massless)

Lagrangian: Lp = _iFquW

There are two transverse polarizations (electric and magnetic fields).

(1) Proca field (massive)

Lagrangian: |p = —iFWFW — %m2AMA”

The Electric and Magnetic Fields

Introduction of the mass m of the vector field A4,, allows
the propagation in the longitudinal direction due to the
breaking of U(1) gauge invariance.

2 transverse and 1 longitudinal ~
=3 DOFs

Longitudinal
propagation



" A
Generalized Proca (GP) theories

On general curved backgrounds, it is possible to extend the massive Proca
theories to those containing three DOF's (besides two tensor polarizations).

. , L. Heisenberg (2014), G. Tasinato (2014),
Heisenberg Lagrangian (2014) J. Beltran Jimenez and L. Heisenberg (2016)

Ly =G2(X,FY),
L3 = G3(X)V, A",
Ly =Gy(X)R+ Gy x(X) [(V,A*)2 =V ,A, VI AP] |

1
L5 = G5(X)Gu V* A" — <G5, x(X)[(VuA¥)® — 3V, A"V, A, V7 AP + 2V, A, VT APV7 Ay

—g5(X)F*F8,V,Ag, } Intrinsic vector
1 e
Lo = Go(X)L"*V,4,VaAp + 5Gox(X)FP P VoA, V5A, mode

where  x= _%AMAM’ F:_iF”UFMV, Y = A*AYF,°F,, . 1 scalar,
2 vector,
v 1 v [y 1 v ’

B = rad e Rpona, P = 2¢ P Fap 2 tensor DOFs

The non-minimal derivatives couplings like G4(X )R are required
to keep the equations of motion up to second order.

Taking the scalar limit A¥ — V#r, the above Lagrangian recovers
a sub-class of Horndeski theories (with Lg vanishing).
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U(1) gauge-invariant case: constant G
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De Felice et al,

" J
JCAP 1606, 048

Cosmology in GP theories (2016)

Can we realize a viable cosmology with the late-time acceleration?

Vector field: A" = (¢(¢),0,0,0)  (which does not break spatial isotropy)

Variation of the Heisenberg action with respect to g,, on the
flat FLRW background leads to

Gy — Gax¢* — 3Gs x HP® + 6G1H? — 6(2G4 x + Ga,xx0*)H?¢* + G5 xx H*¢° + 5G5 x H*¢* = py
Go — ¢d°Gls x + 2G4 (BH? +2H) — 2G4 x ¢ (3H? ¢+ 2H + 2H ) — 4G4 x x Hoo®
+ G5 xx H?¢¢* + G5 x Ho*(2Hp + 2H? ¢ + 3HP) = — Py .

The matter density pp; and the pressure Pj; obey the continuity equation
par + 3H (par + Pag) =0
Variation of the action with respect to A* leads to
¢ (Ga,x +3G3 xH¢ +6Gy xH” +6Gs xxH*¢* —3G5 xH’d — G5 xxH?¢*) = 0.

The branch ¢ # 0 gives the solution where ¢ depends on H alone, which
allows the existence of de Sitter solutions with constant ¢ and H.




" A
Vector Galileons

The Lagrangian of vector Galileons which recover the Galilean symmetry in
the scalar limit (A, — 0, m) on the flat space-time is given by

2

M
Go(X) = b X, Gi(X)=bX, GuX)= Tpl + X2, Gs(X)=bs X2

We substitute these functions into the vector-field equation:

Gaox + 3G xHo+6G, xH> +6Gy xxH>¢* —3G5 xHp — G5 xx H¢* = 0

Taking note that X = ¢?/2, the background EOM admits the solution
¢H = constant.

s

The temporal component ¢ is small in the early cosmological epoch,
but it grows with the decrease of H.

The solution finally approaches the de Sitter attractor characterized by
¢ = constant, H = constant.
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Phase-space trajectories for vector Galileons
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The de Sitter fixed point (c) is always
stable against homogeneous perturbations,
so it corresponds to the late-time attractor.

~ [The dark energy equation of staté

- wpg is —2 during the matter era.
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(a) Radiation point: Wpg = —7/3
(b) Matter point: wpg = —2
(¢) De Sitter point: wpg = —1
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This case 1s excluded from the joint
data analysis of SN Ia, CMB, and
BAO.
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Generalizations of vector Galileons

Let us consider the case in which ¢ is related with H according to
#ocH  (p>0)

This solution can be realized for

M2
Go(X) = b XP2 . Gy(X) =03 X,  Go(X) =2 +p, X4, G5(X) = bs XP>,

2
where
) ] The vector Galileon
pszé(p+2p2—1) ,  Pa=p-+Dp2, p5=§(3p+2p2—1) .| B corresponds to
po =p=1.
The dark energy and radiation density parameters obey
= (1+ s)Qr(3+ Q, — 3QpE) There are 3 fixed points:
14+ s ’
O = ————2 = (b) (2pE, Q) = (0,0)
- (¢) (QpB.©) = (1,0)
_ P2
where s=



Dark energy equation of state

3(1+s) + 59, (a) wpg = —1 — 4s/3 in the radiation era,
WDE = — 301+ 5 Opp) E— (b) wpg = —1 — s in the matter era,
bE (¢) wpg = —1 in the de Sitter era
-0.80 I L T T R | T T T
The vector Galileon corresponds to B R s |
1. —— (i) s=1/5 |

the case po =p=1,1e., s=1.
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For smaller s = ps /p close to 0, 14 | ]
wpg = —1 — s approaches —1. = R
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For larger p the field ¢ _
evolves more slowly as 20 |
P X H_l/p, SO WDE
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Observational constraints
A. De Felice. L. Heisenberg, ST, 1703.09573.

The joint data analysis of
SN Ia, CMB shift parameter,
BAO, and HO give the bound

0.0060

0.0059
h = 0.698113:9959

% 9 _ +0.118
ol s = 0.2504" 597 -
S (95 %CL)

0/'\66)

) o The model fits the data
& better than the LCDM
S at the background level.
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Cosmological perturbations in GP theories

We need to study perturbations on the flat FLRW background to study

(1) Conditions for avoiding ghosts and instabilities,
(i1)) Observational signatures for the matter distribution in the Universe.

In doing so, let us consider the perturbed metric in the flat gauge:

ds® = —(1 +2a) dt® + 2 (0;x + Vi) dtdx’ + a*(t) (6 + hyj) da'dx?
where «, x are scalar perturbations, V; and h;; are the
vector and tensor perturbations, respectively, obeying
'V =0,
Ohi; =0,  h'=0.
We also consider the perturbations of the vector field, as

A" = o(t) + ¢,

. 1 .
A= 0 Oy 1B

where 0¢ and xy are scalar perturbations, while E; is

the vector perturbation obeying 0’ E; = 0.



Theoretical consistency and observational signatures

® There are 6 theoretically consistent conditions associated with
tensor, vector, and scalar perturbations:

No ghosts: q >0, q, >0, gs >0 .
See arX1v:1603.05806

No instabilities: ¢ >0, ¢2 >0, c2 >0 for details.

There exists a wide range of parameter space consistent with these conditions.

® The effective gravitational coupling associated with the growth of
large-scale structures can be smaller than the Newton constant.

The existence of the intrinsic vector mode can lead to

_ See arXiv:1605.05066

for details.



A model consistent with no-ghost and stability conditions

2

M
Go(X) = by X,  G3(X)=b3X",  Gu(X) = Tpl +bhXP, Gs(X) =0

Provided that 0 < 84 < 1/[6(2p + 1)], there exists the parameter space
in which all the theoretically consistent conditions are satisfied.
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Cosmic growth in GP theories  DeFeliceetal,
arXiv: 1605.05066

Under the quasi-static approximation on sub-horizon
scales, the matter perturbation obeys

5]\/[ I 2H5M — 47TGeﬁ‘pM5M ~ ()

where the effective gravitational coupling is
G — §2 + &3
&1

61 = 47T¢2 (’U)Q —I- QHQT)2 s

2
w
§2:[H(w2+2HqT)—w1+2w2+pM]¢2_q_2’
1%

1 . .
5 1 26% {qs[watin — (we — 2Hqr )ia] + prrwa[3we(ws + 2Hqr) — qs)}

5= 8H2¢2QE)§QTCS

2
— Z—Swg {w6¢(w2 + QHC]T) — ’U)Q(’U)Q — QHqT)}] .
1%

3 is positive under the no-ghost and stability conditions
(which enhances the gravitational attraction).

or smaller gy close to 0, there is a tendency that G.g decreases!
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Planck constraints on the effective gravitational coupling
and the gravitational slip parameter Ade et al (2015)

Gog /G and @ /W are assumed to be constant.
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De Felice et al,

Weak gravity in generalized Proca theories  160s.05066 016)

Gof 18 modified through the intrinsic vector mode through the quantity ¢y .

For a massive vector field with Go = F + m?X we have

qv =1—4gsHp + 2GsH” + 2Gs x H ¢

Effect of the intrinsic vector mode

or smaller ¢y approaching 0, Y e
I a) q,,=0.
the effect of the vector field N S b a0t
: o ©@ay=
tends to reduce the : - @qy=001
. . . e N (€) q,=0.0001 |
gravitational attraction. | Smaller ¢y
C\D 13
: : . E : =1/2,p=15/2, By =10"*
It 1s possible to see signatures RPN T et e |
of the intrinsic vector mode ol
in redshift-space distortion S
measurements. R
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Observational signatures in red-shift space distortions (RSD)

From the RSD measurement we can constrain the growth rate of
matter perturbations: f =9,,/(HJ,,).

( Planck best-fit value

Gyt e o8 = .87 | For smaller gy, the values
00 av=D] i 1 of fog tend to be smaller.

Jol
<
il ]
_L_
o
-y

il The present fog data alone

are not sufficient to distinguish
between the models with
different ¢y, .
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Observational constraints including the RSD data
A. De Felice, L. Heisenberg, ST, 1703.09573.

- == = = = = = = == =]

The joint analysis including
the RSD data give the bound

Qo = 0.29970-906

h= 069608 ,

5= 0.16008

(95 % CL)
The model with s > 0 stills fits

the data better than the LCDM.
However, the case of weak gravity

is not necessarily the best fit.

Best-fit: x2. = 625.6
ACDM: x2, =642.7



Healthy extension of GP theories
Heisenberg, Kase, ST, PLB (2016)

The Heisenberg Lagrangian contains the Galileon-like contributions:

. here
Ga B1-BiVi+1-"Y4 o1 o w
LYo = gi+20a;-aiyis1-va VB AT -+ Vg, A™ L ks ettt
(e 5]

= & EB1BiYit174
QYi 1 Y4 Q1 Qi Yib1 Y4

We can consider the generalized Lagrangians like

£4N — f43ﬁ1626374 AalAg1Va2Ag2Va3Ag3 ,

Qa1O2037Y4

£5N = fs Sgigzzgx%%4 A% Ap, Vo2 A, V¥ Ap, V™ Ap,

ﬁ In the scalar limit A* — V*#r, these recover the Lagrangains

of Gleyzes-Langlois-Piazza-Verinizz theories.

(healthy extension of second-order Horndeski theories)

The analysis of linear perturbations on the flat FLRW background
and on the anisotropic cosmological background shows that there
are no additional ghostly DOFs even with these new Lagrangians.



"
Anisotropic cosmology in beyond-generalized Proca (BGP) theories

Heisenberg, Kase, ST,

Four new Lagrangians : .
arXiv/1607.03175

X)gﬂlﬁzﬁs'm AouABl VazAﬁzvasAﬁa ,

Q10203774

fa(
LY = f5(X)5ﬂ162ﬁ3/5’4 A% Ag V2 Ag V3 Ap V4 Ag,

Q134

£15\T ot fS(X)Sﬁlﬂzﬁsﬁc; A% Ag V2 A%V 5 Ag V™ A,

Q120304

LY = Fo(X)EEEnEL Vi, Ap, V™ A1V 5, A%V 5, A

Q120304

Anisotropic background:

ds? = —N2%(t)dt? + e2*®) [e‘4a(t)dw2 | getE) (dy® + dz2)]
. AF = ¢(t) —a(t)+20(t)
with the vector field =\vey® v(t),0,0

The Hamiltonian constraint is

oL _ L ﬁ H = () (bounded from below)

ON
No ghost-like Ostrogradski instability



"
Observational signatures of BGP theories

Nakamura, Kase, ST, arXiv: 1702.08610
The relization of weak grav1ty like the value Geff ~ (.8G is possible.

14 | @] 070 ] [——BGP
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Ll 065 | . mCDM
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o 1ol
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1F ~ ™
040 (| | \\\
08 p 035 | |- SN
=T - - - - - — ’ : i ~ sy
o8fF T T 030 L. o y
2 -1 0 1 2 0 02040608 1 12141618 2
logyo(1+2) ~

It remains to be seen whether the BGP theories fit the data
better than the LCDM.
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Black holes in GP theories

For the U(1)-invariant massive vector field (G2 = m?X), Bekenstein|
showed that there are no hairy BH solutions (1972).

However, with derivative self interaction G4(X), the first exact hairy BH
solution was found by Chagoya et al. (2016) for the Lagrangian

Ly = Gy(X)R+ Gy x(X) [(VuA*)? — V,A, VY AH]
1 1

1
G4(X) = 5 I?l + ZX where X = _iAuAM

On a static and spherically symmetric background given by the metric

ds® = — f(r)dt® + h~ 1 (r)dr? + r?(d6? + sin® 0 dp?)

and the vector A, = (Ao, A1,0,0) , there exists the exact BH solution
2M
r
A=P+ @ 4
r

L V2P(MP + Q)r + Q2
a r—2M

A2 hA? P?
ﬁ X = 2}) — 21 = 5 — constant.
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Difference between scalar-tensor theories and GP theories

® [n shift-symmetric Horndeski theories like
where

L4 =Gy(X)R+ Gax(X) [(O¢)° — (V. V,0)(VHV"0)] X = —0"¢0,0/2
the solution to the scalar field ¢ can be generally written in the form
¢’f'(¢’; g, g’7 g”) — 0 Hui and Nicolis (2012)
The no-hair solution ¢’ = 0 follows unless we tune the function F,
e.g., negative powers of ¢'.

e.g., the Gauss-Bonnet coupling a¢G realized by G5(X) = —4aln X

Sotiriou and Zhou (2014) See also Babi.chev and Charmougis
(2014) for a time-dependent Galileon.

® In GP theories, the vector field 4, = (4o, A1,0,0) obeys
F(A1, Ao, Aps 9,9',9") =0

The existence of the temporal component Ag allows the existence of
hairy BH solutions with A; # 0 without tuning the models.
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Structure of the EOM of the longitudinal mode

A1 [P fGox —2(rf'h+ fh— f)Gax + 4h(rAoAy — rf'X — fX1)Ga,xx — hAF (3h — 1)Ge,x — 2h* X1 A7 Ge x x|
— T[T(f’X - AQAB) + 4fX1]G3,X + 2f’hX1G5,X + (A()Ag — f’X) [(1 — h)Gs,x — 2hX1G5,Xx]

(i) Theories with even subscripts: G2 4,6(X ) mm) The rhs vanishes.

The above EOM i1s written in the form
Alﬁ(AlaAOa 67979/) =0
mE) There are two branches

~

A7=0, or F—( (non-vanishing A;)
(ii) Theories with odd subscripts: G35(X) =) The Ihs vanishes.

The EOM is of the form
F(A17A07A6;gag/):() ﬁ

The general solution is

A #£0
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Searches for exact BH solutions
The BH solution found by Chagoya et al. for specific G4(X) satisfies

~ f=h,

B A2 hA? A2 —2fX,
X:2](3— 21:Xczconstant. # Alzi\/o /

“—

Let us first impose these conditions for other interactions Gs 5 ¢(X)
for the purpose of searching for exact solutions.

Consider the cubic coupling G3(X). The longitudinal mode satisfies

Gsx [f2(rf' +4f) AT +1(2f Ay — f' Ao)Ao) =0

KGR

(ii) G3.x(X.) #£0 EEp Bxtremal RN solution
| with A; =0




'_
Exact solutions for the cubic interactions

(1) For the branch G3 x(X.) = 0, the equations of motion for f, h, Ay give

Q

rAj + 245 =0, DI AOZPJF?

rPAg +2ME(f - 1) l 20 :
f, = P — h —1— Q
Ay d r oM
. . . . . A2 —9 Xc
with the non-vanishing longitudinal mode A: ==+ VA§ —2f
g long

f

This RN solution exists for the Lagrangian Gs(X) = Gs(X.)+ > bn (X — X.)" .

n=2

(11) For the branch G3 x(X.) # 0, including G3 = 53X, the solution is

(Extremal RN solution)



Exact solutions for other interactions

If we impose the two conditions f = h and X = X, the resulting
BH solutions are either Schwarzschild, RN, or extremal RN solutions.

The models giving rise to exact solutions are

(1) G4(X)=G4(Xc)+i(X—Xc)—Fan(X—XC)" where Xc:%

n=3

Schwarzschild solution with 4, —p+ % 4, -+ V2P(MP J; ﬁ)?‘ +Q?
r r—

This includes the solution of Chagoya et al (2016).

(2) Gs(X)=G5(X)+ Y b (X —X)" | where X.= M}

n=2

2MM§1 . Q ) QMSI\/2(2A42M§1 —Q2)r?
—__ P4 .

RN solution with 4, = — 5 ; — 4+ QA @M =) — Q7

(3) | Ge(X) =D bu (X —X)"|  where X.=M}
n=2

M
Extremal RN solution with 4o = £V2Mp, (1 — 7) : A =0



Geneal non-exact solutions

e would like to derive more general solutions without imposing
the conditions f = h and X = X..

For example, consider the cubic vector Galileon given by
G3(X) = B X

In this case, the longitudinal mode A; is related to Ag, f, h, as
4 i\/mo(fon — 21 Al)

fhirf +4f)
Around the BH horizon characterized by the distance rj, we expand

f,h, Ag in the form

0. @)

f:Zfi(T'—"“h)ia hzzhi(r_rh)ia A0:a0+2a¢(r—7’h)i
i=1

1=1 1=1
The eftfect of the coupling 53 works as corrections to the RN metric

T T 1s a constant between
Sn=(-2)(-2)
fx N r . r 0<pu<l.



Corrections to the RN metric induced by the cubic coupling

The solution expanded around the horizon for cubic Galileons is given by

f:ZfZ-(’r—rh)i, h:Zhi(r—rh)i, A0:a0+2ai(r—rh)i
i=1 i=1

=1

1—p V2uMy)
where fi=h = , a=-——"T-2r
Th Th
2u—1 2u—1 \/ M
fa= ﬂrg + Faf3, hy = £ s— + HaPs, as = Pl apfBs
h h i

The effect of the coupling 3 leads to the ditterence between
the two metrics f and h.

The solution around the horizon 1s expressed in terms of three constants:

fy @Q, T
The longitudinal mode around the horizon behaves as
aop
A = ﬁ The scalar product is regular:
TRl — )

A dxt = Ag(dt + dr,) = Apduy
u4 is the advanced null coordinate.



"
Solutions at spatial infinity

We expand the solutions at spatial infinity, as
_ = f; . = hy _ — @
f_1+;ri’ h_1+;ﬂ., AO_P—i_i:eri'

The iterative solutions for cubic Galileons are given by

2M J2EVE -~
f=1- — 5+ .
r 6Mp,r The two metrics
h=1 2M  P?M* P203 — are not identical.
LT 2MZ - 2073 + .. ]
PM  PM?
Ay =P — _ ..
0 r 22 +
by  M(M +2b
A, = —Z + ( - 233)
r Bsr

The solution 1s expressed in terms of three constants:

7 Related to the three parameters
M,P b, bal
, o, T, around the horizon.




Numerical solutions

10" b G3(X) = 33X 1 [The solutions in the two
-, | regimes r ~ rp, and r > 7},
I _' are connected to each other.

The constant P cannot be
fixed by M and bo, so
it is a primary hair.

The difference between the

T —f i - -
d I h f DN two metrics f and h is
—— A N large around the horizon.
3| ----- A S
ol I

—h
—h
(@)
= [
o
o

This can be potentially probed
in future measurements of
gravitational waves.

r/ry



Non-exact solutions for other derivative couplings

There are also a bunch of hairy BH solutions for other power-law couplings:
G; =6, X" where 7 =3,4,6 and n >0

For the massive vector with G5 = m?X, there is a no-hair theorem
proved by Bekenstein (1972).

For the quintic coupling G5 = 85 X™ (n > 1), the two solutions

in the regimes r ~ r, and r > 1, are disconnected due to
the divergence of A; at h=1/(2n+ 1).

For the couplings G4 = 84 X™ and Gg = fg X", there exists the
branch A; = 0 besides A; # 0. Even for the branch A; = 0, the
difference between f and A arises around the horizon.

The BH solution for the U(1)-invariant sixth-order Lagrangian Gg = S
(i.e., n = 0) was discussed by Horndeski in 1978 (before he became an artist).
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Horndeski’s paper in 1978

PHYSICAL REVIEW D VOLUME 17, NUMBER 2 15 JANUARY 1978

Static spherically symmetric solutions to a system
of generalized Einstein-Maxwell field equations

Gregory Walter Horndeski
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
(Received 28 April 1977)

In this paper I investigate the static, spherically symmetric, pure electric, source-free solutions to the most
general secong-order vector-tensor theory of gravitation and electromagnetism which is such that its field
equations are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of
charge, (iii) in agreement with Einstein’s equations in the absence of electromagnetic fields, and (iv)
compatible with Maxwell’s equations in a flat space. These solutions (which are given in series form) bear a
strong resemblance to the Reissner-Nordstrom solution (of the Einstein-Maxwell field equations) in the
asymptotic domain; however, they differ quite radically from the Reissner-Nordstrom solution in the vicinity
of the source. In addition it appears as though many of these solutions are only compatible with electric
monopoles of finite extent.

Expansion at spatial infinity done by Horndeski

B R Y R T

+0(r°),
2M (@M -C?) 4MQEME - C?) o
7 7 P These coincide

, (€1 =120°C* 4 16M1%) with our results.
74

e =1 4+

M(12C* — RC? — 64M>C? +64M*)
278

+0(r7%)




Sixth-order couplings
We also obtained BH solutions for the coupling Gg = B¢ X" with n > 1.

Gs(X)=08sX A3 =0

Even for the branch A; = 0, there
is the difference between f and h
around the horizon.

'The difference h — f rapidly approaches
0 for r > r; to recover the general
relativistic behavior.

107 i T 1 [For n > 1 the constant P at spatial

10° i h— f | infinity depends on M, @), so it is

10”7 E 1 of the secondary type.

10° | [ :

10° F RO 1 If we can precisely measure the deviation

10710 | - h-f | ‘] from GR around the horizon, it is possible
1 10 100 to distinguish between different couplings.
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Conclusions

1. Generalized Proca theories give rise to interesting cosmological solutions
with a late-time de Sitter attractor.

2. We constructed a class of dark energy models in which all the

stability conditions are satisfied during the cosmic expanssion history.

3. The joint data analysis of SN Ia, CMB, BAO, H,, and RSD show
that the model in GP theories is favored over the LCDM.

4. The healthy extension of GP theories allows the realization of

weak gravity which should be consistent with both RSD and CMB data.

5. There exist a bunch of hairy black hole solutions in generalized
Proca theories.

Let’s see whether future observations show the signature of
vector-tensor theories.




