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Introduction

Integrable systems :

— Field theories in 2D (up to just a few exceptions)
— Nonnecessary relativistic U — u(f ;Ij)
Example : Korteweg-de Vries (KdV) eq.

. / I/
u = 3uu’ — 2u
— Originally : dynamics of solitons on shallow water channels

— Nowadays : condensed matter, quantum optics, plasma physics, nonlinear
acoustics, atmospheric and oceanographic science, ...

— Integrable system : infinite number of conserved charges

— H(J) : nonlinear functionals of u & their spacelike derivatives

— In involution : {H(z) H(;)} p— U (Poisson bracket algebra is abelian)



Summary

Wide class of integrable systems in 2D (e.g., KdV): fully geometrized !

— Evolution of spacelike surfaces embedded in constant curvature spacetimes

GR in 3D with a suitable set of bc’s

— Einstein equations reduce to the ones of the integrable systems

Symmetries of integrable systems (non Noetherian in 2D)

— diffemorphisms preserving asympt. form of the metric
— manifestly become Noetherian in the geometrc picture !

Infinite set of conserved charges (in involution)

— Recovered in canonical approach: surf. integrals spanning the asympt. symms.

Links between soliton dynamics & black hole physics unveiled



Motivation

 Asymptotic structure of spacetime :

— ADM : lapse and shift functions (deformations of spacelike surfaces)
— Lagrange multipliers (Hamiltonian constrains)
— Assumed to be fixed to constants at infinity

— Observables (like the energy): measured w.r.t. fixed time and length scales
— Reasonable and useful practice
— Strictly, not a necessary one!

 Non standard choices of time and length scales at the boundary

— Lagrange multipliers: fixed at infinity by a precise dependence on the dynamical fields.

 Focus in GR in 3D with negative A

— Extending the standard analysis of Brown and Henneaux
— Both, metric formalism & gauge fields



Qutline

Generic choice of boundary conditions

— Chern-Simons approach (simpler)
— Asymptotic symmetries and conserved charges

Specific choices of boundary conditions

— Sensible criteria

— k =0: chiral movers (Brown—-Henneaux)

— k =1: KdV movers

— Generic k: KdV hierarchy [ Lifshitz scaling : z=2k + 1]

BTZ black hole with selected boundary conditions

— global charges and thermodynamics
— Energy, temperature and entropy: expected Lifshitz-like scalings

Anisotropic modular invariance

— Asymptotic growth of the number of states
— Generalization of Cardy formula [ depends on z, and ground state energy |
— Recovering black hole entropy



Qutline

 Results in terms of the spacetime metric
— General solution of Einstein eqgs. with A

— Spacetime metrics of constant curvature & Lifshitz scaling

« Discussion
— Geometrization of KdV : from KdV to gravitation and viceversa
— Nonrelativistic holography without Lifshitz spacetimes
— Link with “soft hair” & a fractional extension of the KdV hierarchy
— Flat limit & a new hierarchy of integrable systems
— Generalization to higher spin gravity in 3D
— Spin-3 fields & the Bousinesq hierarchy

— Integrable systems with Poisson structures given by “Flat W-algebras”






Gravitation on AdS3

I =Ios [AY] — Ies [A7]

k 2
los [A] = 47T/ <AdA+§A3> =

g=sl(2,R)® sl (2,R) Liz1=-1,0,1

(o) = tr(--) AE

g = 5 (A7 — A7) (47 = A7)



Generic asymptotic fall-off

Coussaert, Henneaux, van Driel, gr-qc/9506019
Henneaux, Pérez, Tempo, Troncoso, arXiv:1309.4362 [hep-th]

Bunster, Henneaux, Pérez, Tempo, Troncoso, arXiv:1404.3305 [hep-th]

A:I: — 9;1 (d un CL:I:) n I e:l:log(fr/ﬁ)Lg

-
at = ajjdtp + a; dt




Generic asymptotic fall-off

Coussaert, Henneaux, van Driel, gr-qc/9506019
Henneaux, Pérez, Tempo, Troncoso, arXiv:1309.4362 [hep-th]

Bunster, Henneaux, Pérez, Tempo, Troncoso, arXiv:1404.3305 [hep-th]

A:I: _ g;l (d 4+ CL:I:) i gL = et log(r/0) Lo

+
at = afjdip + a; dt

1
Cbi: — L:|:1 — Z[::EL:H ; CL?: — :|:A:|: [,ui]

1 1
A:I: [M:I:] — u:l: (L:I:l . ZJC:I:LIF1> T u:I:,LO 4 §u:|:lfL:F1

L, [v: arbitrary functions of £, ¢
Field egs.: [ := :I:Diui
D* := (0,L4) + 2L40, — 20,



Generic choice of boundary conditions

Boundary conditions :

specified only once ,u:I: are precisely chosen at the boundary

Standard choice: ,ui — ] (Brown-Henneaux)

Let’s explore the set of different possible choices of ui

(consistent with the action principle)

Chern-Simons action: already in Hamiltonian form:

[=1Ics|AT] —Ics [A7] At = AFda' + Afdt

Ios [AT] = — 47T dtd* e <AiAi Afﬁ;?>+B§g

B;Eo . Suitable boundary terms (action principle has to be well-defined)

Action attains an extremum everywhere, provided field egs. are fulfilled &

SBE — % / dtdoptoL,




Generic choice of boundary conditions

los [Ai] — 47r dtd?ae <AiAjE A;EF;,E> + Bfo

5B = - / dtdopEoL,
ST

Integrability conditions:

0°BE = ;Si / dtdpdu™ A 6Ls =0
7T

SH*
oL

with H* = [doH* Lo, LI, L1, ]

solved by ui —

assumed to be arbitrary functionals of £ and their derivatives



Generic choice of boundary conditions

Ios [AT] = — 47T dtd*ve" <AiAi A;'Ef«}?>+B§g

Boundary terms integrate as:

BE 4 / dtdyH*

Boundary conditions completely determined once the functionals

+ — ] d(b?’{i [ﬁi, £,:|:j ﬁi: e } are specified (at the boundary)
SH=

+ __
0L+

guarantees the integrability of the boundary terms

Choice of Lagrange multipliers i

[ required by consistency of the action principle ]



Asymptotic symmetries

By virtue of : A:I: — g;l (d -+ a:l:) g4+ g+ = et 1og(r/€f)Lo

The analisys can be performed in terms of at = a,ilgd(p + a,i':dt

Gauge transformations jq* = dni + [(li.. ni}

that preserve the form of a*

1
Cbi: — L:|:1 — Z[::EL:H ; CL?: — :|:A:|: [,ui]




Asymptotic symmetries

By virtue of : A:I: — g;l (d -+ a:l:) g4+ g+ = et 1og(r/€f)Lo

The analisys can be performed in terms of at = aidip + afdt

Gauge transformations da* = dn* + [Cbig ﬁﬂ

that preserve the form of a®

1
Cbi: — L:|:1 — Z[::EL:H ; CL?: — :|:A:|: [,ui]

+ + _ AT [gﬂ:]

(A, is preserved for 7] with gil: — €:|: (tj i,ﬁ’?)

Provided oL — ’D:I:g:I:




Asymptotic symmetries

By virtue of : A:I: — g;l (d -+ a:l:) g4+ g+ = et 1og(r/€f)Lo

The analisys can be performed in terms of at = aidip + afdt

Gauge transformations 5@* — dni + [Cbij ﬁﬂ

that preserve the form of a*

1
Cbi: — L:|:1 — Z[::EL:H ; CL?: — :|:A:|: [,ui]

af;Ig: Is preserved for 77:|: = A:I: [Ei] with g:I: — g:I: (tj i,ﬁ’?)
Provided 0L — DEE

+ . . .
Ae O,ui — igi ’Eiﬁi! - ,M-i*":"i! Ly = ::Dilii

SH* 0 SH*

:I: ':t / :J: :i:
= — EF = 4 I D*=
s 0L 0L+ /{Q



Conserved charges

) SH*
S A B & e lp——Dxc*
OE;E—D E Oﬁi/((‘)oﬁi

gi: generically acquire a nontrivial dependence on [, and their derivatives

Canonical generators :

. K .
0Q* [Eﬂ = —— [ dpsT5Ly
ST
Conservation in time (5@i = 0) is guaranteed for = = R L
0L+ oLy

on-shell

In order to integrate 5Qi [gﬂ one needs to know the general solution of
: 0 OH* :
= 4 /dc) —DFF with L4 = :I:Di,u,jE
0L+ 0L
for a generic choice of boundary conditions, specified by [+
this is a very hard task !




Conserved charges

Nonetheless, if /£ are indep. of time and the angle
the asymptotic Killing vectors () & ()_f
belong to the asympt. symms., one can integrate their generators:

angular momentum :

Q)= - [ doles - Lo

variation of the total energy :

0FE =0Q 0] =

K

T

/dap (,u..+5£+ + 1 5£_)
+

by virtue of ;= = @ integrates as
Ly

E —

r T+ H)

Complete analysis of the asymptotic structure:
concrete choices of boundary conditions -t [t =+

00~ || = lps=oL
(precise form of £ ) have to be given ! [ }  8x /C =







Specific choices of boundary conditions

Sensible criteria to fix the form of H=*

- Allowing as much asymptotic symmetries as possible:

h e =4+ — lop——D* ¢

for arbitrary values of £ and their derivatives

- An infinite number of asymptotic symmetries is welcome:

helps in order to explicitly find the space of solutions
that fulfill the boundary conditions.

These criteria are met in the cases that /= define integrable systems

Let’s see a few ( but still infinite ! ) number of explicit examples
with the desired features



k = 0 : chiral movers (Brown—Henneaux)

Boundary conditions specified by - — ]

L 6HF

= H +
I 5L amounts to set fdtp%

%(0) = L4




k = 0 : chiral movers (Brown—Henneaux)

Boundary conditions specified by MEIE)) =1
SH*
L +
o = N amounts to set H fdgo% (0)
+ . £
Py = A+
Field egs. : £2|: E— ::D:I:[fl: : ﬂ.i = :|:£,i|:
+
&t ii d(péH D+ ; {:::I: — ::EZI:,

0L+ 0L




k = 0 : chiral movers (Brown—Henneaux)

Boundary conditions specified by ‘U’EIE)) — ]

Ui — L amounts to set H — ]d ’H:I:
0L 7H0)
+ £
o) = £
Field egs. : £.:|: L= ::Di,ui : ﬁ.i = :|:£,i|:
) SH* 4 +7
ef=+—— [ d¢ Dt — 4
0L+ “P 0L+ = +<
Variation of global charges integrates as
0Q* [e ——/d =E0Ly : Qi 6 /d\pei[ﬁi
0Ly = D et

{Qle1], Qlea]} = 02,Qler] o _ (0,L4) +2L40), — 20

Algebra: 2 copies of Virasoro with the Brown-Henneaux central extension



k =1:KdV movers

+
Boundary conditions given by U(l) = L4

+ 5H:I: H:I: o .dm?‘[i

U = S amounts to set (1) 1— f P
+ - p2

Field egs. : £.:|: ‘= ::'D:I:u:k reduce to KdV :

Lo =4+ (3C4L —2L)

0 SH*
f=4+—— [ do

- D% reduce to
0L 4

oLy

et = £ (3L40,57 —2027)




k =1:KdV movers

We want to solve : gj:I: —
with : L1 =

(3L40,e" —202:7)

+(3C.L —2C)

KdV is an integrable system : we know the general solution for et

L

Assuming that they are local functions of £, and their derivatives :

o+ + pt
. _Z%”(j)R(ﬁ
j:

+
ﬁ(j) . constants

R?;.) . Gelfand-Dikii polynomials
Defined through : They fulfill : N
J" éH .
N R L _ )
Vel = 5717 Ho ") = 5L,

[ Normalization such that R ;) = L7 + derivatives ]



k =1:KdV movers >
- + :Z,}?:I: Ré

g . :
- (H)70)
j=0
+ J+1 4 SH*
Kol = 5,12 o) RY) = —L
27+ 1 (7) 0L
Hence, R(io) = ,u(io) =1, R(il) = ,u,ﬁ) = L , etc.
Variation of global charges integrates as
o K , _ £ [+ __i = = +
5Q* [Eﬂ =% dostoLy @ [u } — T3 ??U)H(j)
7=0

Their algebra is abelian with no central extensions

{Hi)_ H(i)} — () [ Integrable systems : conserved charges are in involution |
o .}



k =1:KdV movers

Remarks :

First four conserved charges of the series :
HE = [dece . H* = [doicd | HE = [dol (03 +oc?
(0) — AP+ (1) — ':'“V§ + (2) H’? ( + + )

H(ﬂ;) / dip i (Lﬁ +8£i£;‘—j+%£1?)

Total energy of a gravitational configuration :
sum of the energies of left & right KdV movers
Y

E= [ de (L2 + £2%)



Generic k : KdV hierarchy

L
Boundary conditions extended as : Ju.i} — Ri} — 5£( )
| +

[ K=0:Brown-Henneaux,k=1:KdV, ... etc. ]

Field egs. : £‘:|: _ :—Di}?(k)

Left and right movers :
evolve according to the k-th representative of the KdV hierarchy:

Asympt. symm. parameters :

) N S H*
= (L(P—
0L+ 0L

.+ DE_*

My

with HE — H(U



Generic k : KdV hierarchy

Lo =+D*RY
0 SH*
-+ - + _+ :
T = 4 lp——D ¢ + _— Hg*
5L+ /tf(;) 5L with H H(k)'
ot

k>1:field eqs. & contidions on £~ are severely modified
[ compared with k = 1]

Remarkable properties of the Gelfand-Dikii polynomials
imply that for k > 1, we have the same series for == (as for k = 1)

Assuming that they are local functions of £, and their derivatives :

00
+ + 4+ 77(j) . constants
== ;)R
j=0

Ré) . Gelfand-Dikii polynomials



Generic k : KdV hierarchy

: + pt oy — =R, = w
Li=+D*R} =y 5Ly
Variation of global charges then again integrates as :

L f::|: - Y =
Q] =%, 15 HG)
3=0

Abelian algebra with no central extensions

[ Generic k ] Total energy of a gravitational configuration :

sum of the energies of left & right movers (k-th KdV eq.)

be = ST H(M



Generic k : KdV hierarchy SH*

+ oS (k)
. N E =Rt = Y
L+ =+D*RY, Py = 2~ 5L,

“boundary gravitons” : anisotropic Lifshitz scaling

dynamical exponent : 2z = 2k + 1

Boundary conditions make the field egs. inv. under :

t—= XNt , o=, Lo—= ALy

Exact solutions : locally AdS spacetimes

Inherit anisotropic scaling [ induced by the choice of boundary conditions ]

Metrics are manifestly inv. under the anisotropic scaling provided

r —s )\—1,}.,
[explicitly seen later]






BTZ black hole with selected boundary conditions

BTZ fits within our boundary conditions:

L+ constants, trivially solve the field eqs. L4 = iDi}?i)

ADM form : similar than the standard one

Laspe and shift determined by H(M — [, [explicitly shown later]

AdS spacetime recovered for ﬁi = —1

Energy of left and right movers : [, = HjE
. | : 8r (k)
[ intermsof 2 = 2k + 1]

1 z4+1

K ;
2.4 1 *
ko1

Ads . EF[z] ==
’ 2z+1 [ depends on z ]




BTZ black hole with selected boundary conditions

Bekenstein-Hawking entropy ;

40 w (VE: + VD)

S =

In terms of extensive variables :

_ 2 e+1 n n
S =1k ( (z 4+ l)) (Efl + EHI)
K

Oy

S =2 (om)its (Tz LT )

Left & right temperatures 7, = _,5’;1 L By = 2 — O (2 (z+1) Ei) o

2

Expected dependence on the energy and temperature for noninteracting
left & right movers of a field theory with Lifshitz scaling in 2D

Even better : Sis precisely recovered from a generalization of the Cardy formula
in the anisotropic case!






Anisotropic modular invariance

Gonzalez, Tempo, Troncoso, arXiv:1107.3647 [hep-th]

Thermal field theories with Lifshitz scaling in 2D

defined on a solid torus with 0 < ¢ < 27

0 <tp < B

Duality between low and high temperatures :

1
5 2T\ 2
— — | — [ anisotropic S-duality ]
2T B

The partition function can then be assumed to be invariant under :

(27)1 = 1

1
[z




Anisotropic modular invariance

Independent noninteracting left and right movers with the same z

5
torus with modular parameter : 7T — 72—

27
7 . complexification of 3
high/low temperature duality now reads :

1+
T — 7 [ anisotropic S-duality ]
Tz

It can be assumed that :

izl =27 [ipr%’r_?l; ::_1]

z =1 :results reduce to the standard ones in CFT



Anisotropic modular invariance

Asymptotic growth of the number of states
at fixed left & right energies AL

Assuming that the spectrum of left & right movers possesses a gap :
At low T, the partition function becomes dominated by the ground state
assumed to be nondegenerate, with left & right energies given by —AE{E E

r

[ depend on z ]

At low T Z[’T: ] J—‘Z?ri(rﬁo[z]—?ﬁo[z])

by virtue of

high T regime :



Anisotropic modular invariance

high T regime : . -
Zlr: 2] m 27 (7% D07 ]m) 7= Bo[= 1))

Hence, at fixed energies Ay > A§ 2]

asymptotic growth of the number of states obtained evaluating Z in the
saddle point approximation : described by an entropy given by

(=) s

1 1

z+4+1 (AO [j__l} ) z A] z+1

S=2r(z+1)

+ 27 (z+ 1)
Note that Cardy formulais recovered forz=1
role of the central charges played by lowest eigenvalues of the shifted

Virasoro operators Ly — Lo — o5




Asymptotic growth of the number of states
—1 z — ;—_:'_1 z )
In terms of the (Lorentzian) left and right energies :

(|AtjlL E‘?lH)zA+ (|An :3’ H)zA

dS = BrdAy 4+ B_dA_
Ay = = (2m)F2

il
. RE lHT;

[ anisotropic version of Stefan-Boltzmann law ]

11

]

_1
z41

+ 27 (z+ 1)

_1
z+1

+ 27 (z+1)

15t law (Canonical ensemble) :
1

s = (0 (142 (15 717 + 185 )78

[ formulae reduce to standard results forz=1]






Recovering the black hole entropy

Black hole entropy, in terms of left & right energies of k-th KdV movers :

| 2 =SV 1
o ( (z 4+ l)) (Efl + Ez+1)

Precisely recovered form S of a 2D field theory with anisotropic scaling

1
+ [.—1 “ 41 — -1 z
S=2r(z+1) ('A“ E“ ”) Ayl +2m(z41) ('A“ [j ”) A
Provided one identifies : Ar = F4

Ey [2] = % 1 - (_1)2J§1 Ai [51 — _ESZ [':}




Recovering the black hole entropy

Identifying : AL = E4
AF (2] = —E5 [2]

NI}—'-

5 27| T (e

g_ oV (1 Y 1A+ -1 7% 4 IA- -1 73
S = (2m) +- ) U1AG [T + Ay ]| 12

Analogously : Ai = (Qﬂ')l+

Reduce to the ones found for the black hole:

Bye =27 (3( Jrl)Ei)

z+1

5:%@@“ @H+Tﬂ






Spacetime metric: generic fall-off

SH=
0L 4
Asymptotic structure of spacetime : reconstructed from s/ (2,IR) gauge fields

o = 7 (A7 — A7) (A — A7)

12

Generic choice of boundary conditions : U

2

gt — — (N2 — [QN\‘DQ) ;_2 + ftt + @, ('T_l)
[2

Jtr — —N(’O!? + O (?"_4)

go = N2+ fi + 0 (1)



Spacetime metric: generic fall-off

g = = (N? = PN??) 5+ fu+ O (7))
2 |
Jtr—_N(p!—"_O( )
=N + fro + O (r7) with : = = N0 £ N?
(> -
grr = T—Q + O (?ﬂ_d) ;
Gpp = 1"+ fop + O ('T_l) )

gro =0 ('T_S) ;

ADM, lapse and shift :

N+ :;N + O (-r_l) N =—rN9 4+ 0 (-r_l) ., NP =N¥Y+0 (-?"_

%)

foo = 7 (Ly + L)
(2 . 4
ftkp:_?th +fszv 4(£+—£ )N

1 (o )
" = ( NQ N@Z) f@g"‘zft\pNv _’_EQN\,JQ — NN



Results in terms of spacetime metric

g =~ (N> = PN Tt 0 ()

2
gtr — _thf% + O ('?“_4) \

gip = N?1% + fio + O (r71)
Z :

Grr = 3 + 0 ('T‘_'J) \

Gpp = 1"+ fop + O ('T_l) )

Grp = O (-r_g) ,

with : }ui :Nf'_l 4N

Einstein field egs. with negative A in vacuum are fulfilled provided

ﬁi — i'Di)ui [ same as before ]

Asymptotic form of the metric : mapped into itself under asymptotic K.V.’s

OcYuw = LG



Results in terms of spacetime metric

Asymptotic form of the metric : mapped into itself under asymptotic K.V.’s

5.59',{”/ — fgg;w

2N
EBN:,of B B NH 1 B
o [ETHE)  E ) R 00T
, 1 _ . (7 _ N
6‘*’:W[(5+—E YN — (e +e7) N7 ~ N [(5++5 V'N+e(et =)' N
¢ o 1o —
Provided : - g
0 oH
— Dt =4 lp——D ™
0Ly =D ¢ (wi/cg)M:i

[ same as before, including surface integrals (global charges) |



Results in terms of spacetime metric

General solution of the Einstein equations with generic b.c.’s (ADM) :

ds* = — (NTL)Q dt* + g;; (Nidz‘. + d;l?i) (Nj dt + d;’l?j)

spacelike geometry :

dI* = gijdr'dr’! = 2 [drz + (7 <? + ,£+)

lapse and shift :

N N¥#  N? = N¥ (%;NJFiNH)(ﬁ*_ﬁ_)_Q ]
N'" = —rN¥ , NY = N7 +




Results in terms of spacetime metric

For the specific choice of b.c.’s (k-th KdV) : Tt = Ri = OH(JE)
P . ey = B T Sz,

spacetime metrics becomes invariant under :
z —92 : . —1
t—= Nt . o= Ap ., Lo — ALy with 7 — A7

[ anisotropic Lifshitz scaling ]

BTZ black hole: [, constants

2 r o L, . Ly LON
ds* = (7 C:z + ; (dz™ ) +4(dl:)2(;2+ 16?3 )CZ‘I:+(Z‘B]

with di* = pFdt +dp , and p* = Lh

S
For a generic choice of b.c.’s, lapse & shift obtained from p:i — %*Ei

+ _ 27w
v £+

Euclidean metric becomes regular for : /4






Final remarks

 Dynamics of k-th KdV left and right movers can be fully geometrized

- Parameters of k-th KdV acquire a gravitational meaning
- Phenomena observed in KdV : interpreted in the context of gravitation
and vice versa




Final remarks

Boundary conditions (k-th KdV) :

Solutions describe constant curvature spacetimes :

Locally AdS, but with anisotropic Lifshitz scaling (z=2k +1)

Interesting possibility : nonrelativistic holography

without the need of asymptotically Lifshitz spacetimes

[ Lifshitz scaling : not necessarily requires the use of Lifshitz spacetimes ]
Black hole entropy with our boundary conditions :

Successfully reproduced from the asymptotic growth of the number of states
of a field theory with Lifshitz scaling (same z)






A different kind of asymptotic structure

A= =b; ' (d+a™)by

radial dependence,

fully captured by : b:l: — CXP ( Tl'z_ L ) CXP ( L g L—l)

— LO ( —jj: “}"’ + CZIZ d’() : “diagonal gauge”

ji; Ci : arbitrary functions of U, ©

+
J : dynamical fields

-
G : Lagrange multipliers (held fixed at the boundary)

Afshar, Detournay, Grumiller, Merbis, Pérez, Tempo, Troncoso, arXiv:1603.04824 [hep-th]

Connected with proposal about black holes with “soft hair” (soft gravitons)
in the sense of :

Hawking, Perry, Strominger, arXiv:1601.00921, 1611.09175 [hep-th]



Remarks

Soft hairy black holes in 3D :

— Stationary black holes, not necessarily spherically symmetric
— “Black flowers” do not fulfill the Brown-Henneaux boundary conditions

Asymptotic symmetries and global charges :

— Remarkably simple set of asymptotic symmetries
— Two independent affine u(1) currents (with very precise levels !)

Soft hair

— Hamiltonian commutes with the asymptotic symmetry generators

Comparison with Brown-Henneaux

— Virasoro currents turn out to be composite operators of the u(1)’s



Remarks

Highest weight gauge : ai — a;ljdip + afdt
1
+ + + [+

1 1
A:I: [,u,ﬂ — ;L:I: (L:H — Zﬁj;[q:l) + ,u,:I:’Lo + EJU’:IZHL:Fl

)u..i depend nonlocally on [

The choice of boundary conditions can be expressed through:

|
H,” — ju, — —Q . Nonlocal dependence on the dynamical fields
C held fixed at the boundary (without variation)

£ — %jQ —+ j" . Dynamical field is reexpressed



Extended KdV hierarchy

Generalizations of KdV-type of boundary conditions :

|
P’J! o j“’ — _C : Nonlocal dependence on the dynamical fields

' ' /
£ — %jQ —+ j : Dynamical field is reexpressed

Recovered through forcing the recursion relation
(Gelfand-Dikii polynomials) to work backwards !

O RT _ pEp+ + _ p= _5H(ik)
Pt G+1) T ) Fiey = He) = 524
Brown-Henneaux: KdV: ... (KdV hierarchy)

— —
G Ry = iy = L+

KdV: Brown-Henneaux (?)

— R(l) = ) = Li — R(jg) — ,u,?g) =1 —  Kernel of 'D:I:



Extended KdV hierarchy

Generalizations of KdV-type of boundary conditions :

|
/ -
o — jﬂ — _Q : Nonlocal dependence on the dynamical fields

£ — %jQ — j’ : Dynamical field is reexpressed

Precisely solve the kernel of DZI: !

[ “Precursor” of the Brown-Henneaux boundary conditions ]

Anisotropic scaling withz=0 (z=2k +1)

Labelling of this set as a member of an extended hierarchy with k = - 1/2

[ Fractional extensions of the KdV hierarchy have been studied in the literature ]






