

Black Holes, Integrable Systems and Soft Hair

Ricardo Troncoso

based on arXiv: 1605.04490 [hep-th]
In collaboration with : A. Pérez and D. Tempo
Centro de Estudios Científicos (CECs)

Introduction

- Integrable systems :
- Field theories in 2D (up to just a few exceptions)
- Nonnecessary relativistic $\quad u=u(t, x)$
- Example : Korteweg-de Vries (KdV) eq.

$$
\dot{u}=3 u u^{\prime}-2 u^{\prime \prime \prime}
$$

- Originally : dynamics of solitons on shallow water channels
- Nowadays : condensed matter, quantum optics, plasma physics, nonlinear acoustics, atmospheric and oceanographic science, ...
- Integrable system : infinite number of conserved charges
- $\quad H_{(j)}:$ nonlinear functionals of $\mathbf{u} \&$ their spacelike derivatives
- In involution : $\left\{H_{(i)}, H_{(j)}\right\}=0$ (Poisson bracket algebra is abelian)

Summary

- Wide class of integrable systems in 2D (e.g., KdV): fully geometrized !
- Evolution of spacelike surfaces embedded in constant curvature spacetimes
- GR in 3D with a suitable set of bc's
- Einstein equations reduce to the ones of the integrable systems
- Symmetries of integrable systems (non Noetherian in 2D)
- diffemorphisms preserving asympt. form of the metric
- manifestly become Noetherian in the geometrc picture !
- Infinite set of conserved charges (in involution)
- Recovered in canonical approach: surf. integrals spanning the asympt. symms.
- Links between soliton dynamics \& black hole physics unveiled

Motivation

- Asymptotic structure of spacetime :
- ADM : lapse and shift functions (deformations of spacelike surfaces)
- Lagrange multipliers (Hamiltonian constrains)
- Assumed to be fixed to constants at infinity
- Observables (like the energy): measured w.r.t. fixed time and length scales
- Reasonable and useful practice
- Strictly, not a necessary one !
- Non standard choices of time and length scales at the boundary
- Lagrange multipliers: fixed at infinity by a precise dependence on the dynamical fields.
- Focus in GR in 3D with negative Λ
- Extending the standard analysis of Brown and Henneaux
- Both, metric formalism \& gauge fields
- Generic choice of boundary conditions
- Chern-Simons approach (simpler)
- Asymptotic symmetries and conserved charges
- Specific choices of boundary conditions
- Sensible criteria
- $k=0$: chiral movers (Brown-Henneaux)
- $k=1$: KdV movers
- Generic k : KdV hierarchy [Lifshitz scaling : z = 2k +1]
- BTZ black hole with selected boundary conditions
- global charges and thermodynamics
- Energy, temperature and entropy: expected Lifshitz-like scalings
- Anisotropic modular invariance
- Asymptotic growth of the number of states
- Generalization of Cardy formula [depends on z, and ground state energy]
- Recovering black hole entropy
- Results in terms of the spacetime metric
- General solution of Einstein eqs. with Λ
- Spacetime metrics of constant curvature \& Lifshitz scaling
- Discussion
- Geometrization of KdV : from KdV to gravitation and viceversa
- Nonrelativistic holography without Lifshitz spacetimes
- Link with "soft hair" \& a fractional extension of the KdV hierarchy
- Flat limit \& a new hierarchy of integrable systems
- Generalization to higher spin gravity in 3D
- Spin-3 fields \& the Bousinesq hierarchy
- Integrable systems with Poisson structures given by "Flat W-algebras"

Gravitation on AdS3

$$
\begin{gathered}
I=I_{C S}\left[A^{+}\right]-I_{C S}\left[A^{-}\right] \\
I_{C S}[A]=\frac{k}{4 \pi} \int_{M}\left\langle A d A+\frac{2}{3} A^{3}\right\rangle \quad k=\frac{l}{4 G} \\
\mathfrak{g}=s l(2, \mathbb{R}) \oplus \operatorname{sl}(2, \mathbb{R}) \quad L_{i}: i=-1,0,1 \\
\langle\cdots\rangle=\operatorname{tr}(\cdots) \quad A^{ \pm}=\omega \pm \frac{e}{l} \\
g_{\mu \nu}=\frac{\ell^{2}}{2}\left\langle\left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right\rangle
\end{gathered}
$$

Generic asymptotic fall-off

Coussaert, Henneaux, van Driel, gr-qc/9506019
Henneaux, Pérez, Tempo, Troncoso, arXiv:1309.4362 [hep-th]
Bunster, Henneaux, Pérez, Tempo, Troncoso, arXiv:1404.3305 [hep-th]

$$
\begin{gathered}
A^{ \pm}=g_{ \pm}^{-1}\left(d+a^{ \pm}\right) g_{ \pm} \\
a_{ \pm}=e^{ \pm \log (r / \ell) L_{0}} \\
a^{ \pm}=a_{\varphi}^{ \pm} d \varphi+a_{t}^{ \pm} d t
\end{gathered}
$$

Generic asymptotic fall-off

Coussaert, Henneaux, van Driel, gr-qc/9506019
Henneaux, Pérez, Tempo, Troncoso, arXiv:1309.4362 [hep-th]
Bunster, Henneaux, Pérez, Tempo, Troncoso, arXiv:1404.3305 [hep-th]

\[

\]

$$
a_{\varphi}^{ \pm}=L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1} ; a_{t}^{ \pm}= \pm \Lambda^{ \pm}\left[\mu^{ \pm}\right]
$$

$$
\Lambda^{ \pm}\left[\mu^{ \pm}\right]=\mu^{ \pm}\left(L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime} L_{\mp 1}
$$

\mathcal{L}, μ : arbitrary functions of t, φ
Field eqs. : $\dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm}$

$$
\mathcal{D}^{ \pm}:=\left(\partial_{\varphi} \mathcal{L}_{ \pm}\right)+2 \mathcal{L}_{ \pm} \partial_{\varphi}-2 \partial_{\varphi}^{3}
$$

Generic choice of boundary conditions

Boundary conditions :

specified only once $\mu^{ \pm}$are precisely chosen at the boundary
Standard choice: $\mu^{ \pm}=1$ (Brown-Henneaux)
Let's explore the set of different possible choices of $\mu^{ \pm}$ (consistent with the action principle)

Chern-Simons action: already in Hamiltonian form:

$$
\begin{aligned}
& I=I_{C S}\left[A^{+}\right]-I_{C S}\left[A^{-}\right] \quad A^{ \pm}=A_{i}^{ \pm} d x^{i}+A_{t}^{ \pm} d t \\
& I_{C S}\left[A^{ \pm}\right]=-\frac{\kappa}{4 \pi} \int d t d^{2} x \varepsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle+B_{\infty}^{ \pm}
\end{aligned}
$$

$B_{\infty}^{ \pm}$: suitable boundary terms (action principle has to be well-defined)
Action attains an extremum everywhere, provided field eqs. are fulfilled \&

$$
\delta B_{\infty}^{ \pm}=\mp \frac{\kappa}{8 \pi} \int d t d \varphi \mu^{ \pm} \delta \mathcal{L}_{ \pm}
$$

Generic choice of boundary conditions

$$
\begin{gathered}
I_{C S}\left[A^{ \pm}\right]=-\frac{\kappa}{4 \pi} \int d t d^{2} x \varepsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle+B_{\infty}^{ \pm} \\
\delta B_{\infty}^{ \pm}=\mp \frac{\kappa}{8 \pi} \int d t d \varphi \mu^{ \pm} \delta \mathcal{L}_{ \pm}
\end{gathered}
$$

Integrability conditions:

$$
\delta^{2} B_{\infty}^{ \pm}=\mp \frac{\kappa}{8 \pi} \int d t d \varphi \delta \mu^{ \pm} \wedge \delta \mathcal{L}_{ \pm}=0
$$

$$
\text { solved by } \quad \mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}
$$

$$
\text { with } \quad H^{ \pm}=\int d \phi \mathcal{H}^{ \pm}\left[\mathcal{L}_{ \pm}, \mathcal{L}_{ \pm}^{\prime}, \mathcal{L}_{ \pm}^{\prime \prime}, \cdots\right]
$$

assumed to be arbitrary functionals of $\mathcal{L}_{ \pm}$and their derivatives

Generic choice of boundary conditions

$$
I_{C S}\left[A^{ \pm}\right]=-\frac{\kappa}{4 \pi} \int d t d^{2} x \varepsilon^{i j}\left\langle A_{i}^{ \pm} \dot{A}_{j}^{ \pm}-A_{t}^{ \pm} F_{i j}^{ \pm}\right\rangle+B_{\infty}^{ \pm}
$$

Boundary terms integrate as:

$$
B_{\infty}^{ \pm}=\mp \frac{\kappa}{8 \pi} \int d t d \varphi \mathcal{H}^{ \pm}
$$

Boundary conditions completely determined once the functionals $H^{ \pm}=\int d \phi \mathcal{H}^{ \pm}\left[\mathcal{L}_{ \pm}, \mathcal{L}_{ \pm}^{\prime}, \mathcal{L}_{ \pm}^{\prime \prime}, \cdots\right]$ are specified (at the boundary)
Choice of Lagrange multipliers $\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}$
guarantees the integrability of the boundary terms
[required by consistency of the action principle]

Asymptotic symmetries

By virtue of : $A^{ \pm}=g_{ \pm}^{-1}\left(d+a^{ \pm}\right) g_{ \pm} \quad g_{ \pm}=e^{ \pm \log (r / \ell) L_{0}}$
The analisys can be performed in terms of $a^{ \pm}=a_{\varphi}^{ \pm} d \varphi+a_{t}^{ \pm} d t$

Gauge transformations $\delta a^{ \pm}=d \eta^{ \pm}+\left[a^{ \pm}, \eta^{ \pm}\right]$
that preserve the form of $a^{ \pm}$:

$$
a_{\varphi}^{ \pm}=L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1} \quad ; \quad a_{t}^{ \pm}= \pm \Lambda^{ \pm}\left[\mu^{ \pm}\right]
$$

Asymptotic symmetries

By virtue of : $A^{ \pm}=g_{ \pm}^{-1}\left(d+a^{ \pm}\right) g_{ \pm} \quad g_{ \pm}=e^{ \pm \log (r / \ell) L_{0}}$
The analisys can be performed in terms of $a^{ \pm}=a_{\varphi}^{ \pm} d \varphi+a_{t}^{ \pm} d t$
Gauge transformations $\delta a^{ \pm}=d \eta^{ \pm}+\left[a^{ \pm}, \eta^{ \pm}\right]$
that preserve the form of $a^{ \pm}$:

$$
a_{\varphi}^{ \pm}=L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1} \quad ; \quad a_{t}^{ \pm}= \pm \Lambda^{ \pm}\left[\mu^{ \pm}\right]
$$

$a_{\varphi}^{ \pm}$is preserved for $\eta^{ \pm}=\Lambda^{ \pm}\left[\varepsilon^{ \pm}\right] \quad$ with $\quad \varepsilon^{ \pm}=\varepsilon^{ \pm}(t, \varphi)$
Provided $\quad \delta \mathcal{L}_{ \pm}=\mathcal{D}^{ \pm} \varepsilon^{ \pm}$

Asymptotic symmetries

By virtue of : $A^{ \pm}=g_{ \pm}^{-1}\left(d+a^{ \pm}\right) g_{ \pm} \quad g_{ \pm}=e^{ \pm \log (r / \ell) L_{0}}$
The analisys can be performed in terms of $a^{ \pm}=a_{\varphi}^{ \pm} d \varphi+a_{t}^{ \pm} d t$
Gauge transformations $\delta a^{ \pm}=d \eta^{ \pm}+\left[a^{ \pm}, \eta^{ \pm}\right]$
that preserve the form of $a^{ \pm}$:

$$
a_{\varphi}^{ \pm}=L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1} \quad ; \quad a_{t}^{ \pm}= \pm \Lambda^{ \pm}\left[\mu^{ \pm}\right]
$$

$a_{\varphi}^{ \pm}$is preserved for $\eta^{ \pm}=\Lambda^{ \pm}\left[\varepsilon^{ \pm}\right] \quad$ with $\quad \varepsilon^{ \pm}=\varepsilon^{ \pm}(t, \varphi)$ Provided $\delta \mathcal{L}_{ \pm}=\mathcal{D}^{ \pm} \varepsilon^{ \pm}$
$a_{t}^{ \pm}: \delta \mu^{ \pm}= \pm \dot{\varepsilon}^{ \pm}+\varepsilon^{ \pm} \mu^{ \pm \prime}-\mu^{ \pm} \varepsilon^{ \pm \prime} \quad \dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm}$
$\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}$
$\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}$

Conserved charges

$\delta \mathcal{L}_{ \pm}=\mathcal{D}^{ \pm} \varepsilon^{ \pm}$

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}
$$

$\varepsilon^{ \pm}$: generically acquire a nontrivial dependence on $\mathcal{L}_{ \pm}$and their derivatives

Canonical generators :

$$
\delta Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \int d \varphi \varepsilon^{ \pm} \delta \mathcal{L}_{ \pm}
$$

Conservation in time $\left(\delta \dot{Q}^{ \pm}=0\right)$ is guaranteed for $\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}$
on-shell
In order to integrate $\delta Q^{ \pm}\left[\varepsilon^{ \pm}\right]$one needs to know the general solution of

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm} \quad \text { with } \quad \dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm}
$$

for a generic choice of boundary conditions, specified by $H^{ \pm}$ this is a very hard task!

Conserved charges

Nonetheless, if $H^{ \pm}$are indep. of time and the angle the asymptotic Killing vectors $\partial_{\varphi} \& \partial_{t}$ belong to the asympt. symms., one can integrate their generators:
angular momentum :

$$
J=Q\left[\partial_{\varphi}\right]=\frac{\kappa}{8 \pi} \int d \varphi\left(\mathcal{L}_{+}-\mathcal{L}_{-}\right)
$$

variation of the total energy :

$$
\delta E=\delta Q\left[\partial_{t}\right]=\frac{\kappa}{8 \pi} \int d \varphi\left(\mu^{+} \delta \mathcal{L}_{+}+\mu^{-} \delta \mathcal{L}_{-}\right)
$$

by virtue of $\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}$integrates as

$$
E=\frac{\kappa}{8 \pi}\left(H^{+}+H^{-}\right)
$$

Complete analysis of the asymptotic structure: concrete choices of boundary conditions (precise form of $H^{ \pm}$) have to be given

$$
\delta Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \int d \varphi \varepsilon^{ \pm} \delta \mathcal{L}_{ \pm}
$$

Specific choices of boundary conditions

Sensible criteria to fix the form of $H^{ \pm}$

- Allowing as much asymptotic symmetries as possible:
knowing the general solution of $\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}$ for arbitrary values of $\mathcal{L}_{ \pm}$and their derivatives
- An infinite number of asymptotic symmetries is welcome: helps in order to explicitly find the space of solutions that fulfill the boundary conditions.

These criteria are met in the cases that $H^{ \pm}$define integrable systems
Let's see a few (but still infinite !) number of explicit examples with the desired features

k = 0 : chiral movers (Brown-Henneaux)

Boundary conditions specified by $\quad \mu_{(0)}^{ \pm}=1$

$$
\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \quad \text { amounts to set } H_{(0)}^{ \pm}=\int d \varphi \mathcal{H}_{(0)}^{ \pm}
$$

$$
\mathcal{H}_{(0)}^{ \pm}:=\mathcal{L}_{ \pm}
$$

k = 0 : chiral movers (Brown-Henneaux)

Boundary conditions specified by $\quad \mu_{(0)}^{ \pm}=1$

$$
\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \text {amounts to set } H_{(0)}^{ \pm}=\int d \varphi \mathcal{H}_{(0)}^{ \pm}
$$

$$
\mathcal{H}_{(0)}^{ \pm}:=\mathcal{L}_{ \pm}
$$

Field eqs.: $\quad \dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm} \quad: \quad \dot{\mathcal{L}}_{ \pm}= \pm \mathcal{L}_{ \pm}^{\prime}$

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm} \quad: \quad \quad \dot{\varepsilon}^{ \pm}= \pm \varepsilon^{ \pm \prime}
$$

k = 0 : chiral movers (Brown-Henneaux)

Boundary conditions specified by $\mu_{(0)}^{ \pm}=1$

$$
\begin{array}{r}
\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \text {amounts to set } H_{(0)}^{ \pm}=\int \\
\mathcal{H}_{(0)}^{ \pm}:=\mathcal{L}_{ \pm}
\end{array}
$$

Field eqs. : $\quad \dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm} \quad$:

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm} \quad: \quad \dot{\varepsilon}^{ \pm}= \pm \varepsilon^{ \pm \prime}
$$

Variation of global charges integrates as

$$
\begin{array}{cc}
\delta Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \int d \varphi \varepsilon^{ \pm} \delta \mathcal{L}_{ \pm} \quad: & Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \int d \varphi \varepsilon^{ \pm} \mathcal{L}_{ \pm} \\
\left\{Q\left[\varepsilon_{1}\right], Q\left[\varepsilon_{2}\right]\right\}=\delta_{\varepsilon_{2}} Q\left[\varepsilon_{1}\right] \quad & \mathcal{D}^{ \pm}:=\left(\partial_{\varphi} \mathcal{L}_{ \pm}\right)+2 \mathcal{D}^{ \pm} \varepsilon^{ \pm} \\
\partial_{\varphi}-2 \partial_{\varphi}^{3}
\end{array}
$$

Algebra: 2 copies of Virasoro with the Brown-Henneaux central extension

$\mathrm{k}=1$: KdV movers

Boundary conditions given by $\mu_{(1)}^{ \pm}=\mathcal{L}_{ \pm}$

$$
\begin{gathered}
\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \text {amounts to set } H_{(1)}^{ \pm}=\int d \varphi \mathcal{H}_{(1)}^{ \pm} \\
\mathcal{H}_{(1)}^{ \pm}:=\frac{1}{2} \mathcal{L}_{ \pm}^{2}
\end{gathered}
$$

Field eqs. : $\quad \dot{\mathcal{L}}_{ \pm}:= \pm \mathcal{D}^{ \pm} \mu^{ \pm}$reduce to KdV :

$$
\dot{\mathcal{L}}_{ \pm}= \pm\left(3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}\right)
$$

$$
\begin{aligned}
& \dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm} \quad \text { reduce to } \\
& \quad \dot{\varepsilon}^{ \pm}= \pm\left(3 \mathcal{L}_{ \pm} \partial_{\varphi} \varepsilon^{ \pm}-2 \partial_{\varphi}^{3} \varepsilon^{ \pm}\right)
\end{aligned}
$$

k = 1 : KdV movers

We want to solve : $\quad \dot{\varepsilon}^{ \pm}= \pm\left(3 \mathcal{L}_{ \pm} \partial_{\varphi} \varepsilon^{ \pm}-2 \partial_{\varphi}^{3} \varepsilon^{ \pm}\right)$

$$
\text { with : } \quad \dot{\mathcal{L}}_{ \pm}= \pm\left(3 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime}-2 \mathcal{L}_{ \pm}^{\prime \prime \prime}\right)
$$

KdV is an integrable system : we know the general solution for $\varepsilon^{ \pm}$
Assuming that they are local functions of $\mathcal{L}_{ \pm}$and their derivatives :

$$
\varepsilon^{ \pm}=\sum_{j=0}^{\infty} \eta_{(j)}^{ \pm} R_{(j)}^{ \pm}
$$

$\eta_{(j)}^{ \pm}$: constants
$R_{(j)}^{ \pm}$: Gelfand-Dikii polynomials
Defined through :

$$
\partial_{\varphi} R_{(j+1)}^{ \pm}=\frac{j+1}{2 j+1} \mathcal{D}^{ \pm} R_{(j)}^{ \pm}
$$

They fulfill :

$$
R_{(j)}^{ \pm}=\frac{\delta H_{(j)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}
$$

[Normalization such that $R_{(j)}=\mathcal{L}^{j}+$ derivatives]

$\mathrm{k}=1$: KdV movers

$$
\varepsilon^{ \pm}=\sum_{j=0}^{\infty} \eta_{(j)}^{ \pm} R_{(j)}^{ \pm}
$$

$$
\partial_{\varphi} R_{(j+1)}^{ \pm}=\frac{j+1}{2 j+1} \mathcal{D}^{ \pm} R_{(j)}^{ \pm} \quad R_{(j)}^{ \pm}=\frac{\delta H_{(j)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}
$$

Hence, $\quad R_{(0)}^{ \pm}=\mu_{(0)}^{ \pm}=1, R_{(1)}^{ \pm}=\mu_{(1)}^{ \pm}=\mathcal{L}_{ \pm}$, etc.
Variation of global charges integrates as

$$
\delta Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \int d \varphi \varepsilon^{ \pm} \delta \mathcal{L}_{ \pm}: \quad Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \sum_{j=0}^{\infty} \eta_{(j)}^{ \pm} H_{(j)}^{ \pm}
$$

Their algebra is abelian with no central extensions
$\left\{H_{(k)}^{ \pm}, H_{(j)}^{ \pm}\right\}=0$ [Integrable systems : conserved charges are in involution]

k = 1 : KdV movers

Remarks:

First four conserved charges of the series :

$$
\begin{aligned}
& H_{(0)}^{ \pm}=\int d \varphi \mathcal{L}_{ \pm}, H_{(1)}^{ \pm}=\int d \varphi \frac{1}{2} \mathcal{L}_{ \pm}^{2}, H_{(2)}^{ \pm}=\int d \varphi \frac{1}{3}\left(\mathcal{L}_{ \pm}^{3}+2 \mathcal{L}_{ \pm}^{\prime 2}\right) \\
& H_{(3)}^{ \pm}=\int d \varphi \frac{1}{4}\left(\mathcal{L}_{ \pm}^{4}+8 \mathcal{L}_{ \pm} \mathcal{L}_{ \pm}^{\prime 2}+\frac{16}{5} \mathcal{L}_{ \pm}^{\prime \prime 2}\right)
\end{aligned}
$$

Total energy of a gravitational configuration :
sum of the energies of left \& right KdV movers

$$
E=\frac{\kappa}{16 \pi} \int d \varphi\left(\mathcal{L}_{+}^{2}+\mathcal{L}_{-}^{2}\right)
$$

Generic k: KdV hierarchy

Boundary conditions extended as : $\quad \mu_{(k)}^{ \pm}=R_{(k)}^{ \pm}=\frac{\delta H_{(k)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}$
[$k=0$: Brown-Henneaux , k=1:KdV , .. etc.]

Field eqs. :

$$
\dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} R_{(k)}^{ \pm}
$$

Left and right movers : evolve according to the k-th representative of the KdV hierarchy:

Asympt. symm. parameters :

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}
$$

with $\quad H^{ \pm}=H_{(k)}^{ \pm}$

Generic k: KdV hierarchy

$$
\dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} R_{(k)}^{ \pm}
$$

$$
\dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm} \quad \text { with } \quad H^{ \pm}=H_{(k)}^{ \pm}
$$

$\mathrm{k}>1$: field eqs. \& contidions on $\varepsilon^{ \pm}$are severely modified [compared with $k=1$]

Remarkable properties of the Gelfand-Dikii polynomials imply that for $k>1$, we have the same series for $\varepsilon^{ \pm}$(as for $k=1$)

Assuming that they are local functions of $\mathcal{L}_{ \pm}$and their derivatives :

$$
\varepsilon^{ \pm}=\sum_{j=0}^{\infty} \eta_{(j)}^{ \pm} R_{(j)}^{ \pm} \quad \eta_{(j)}^{ \pm}: \text {constants }
$$

Generic k: KdV hierarchy

$$
\mu_{(k)}^{ \pm}=R_{(k)}^{ \pm}=\frac{\delta H_{(k)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}
$$

Variation of global charges then again integrates as :

$$
Q^{ \pm}\left[\varepsilon^{ \pm}\right]=-\frac{\kappa}{8 \pi} \sum_{j=0}^{\infty} \eta_{(j)}^{ \pm} H_{(j)}^{ \pm}
$$

Abelian algebra with no central extensions
[Generic k] Total energy of a gravitational configuration :
sum of the energies of left \& right movers (k-th KdV eq.)

$$
\begin{gathered}
E=E_{+}+E_{-} \quad \text { with } \\
E_{ \pm}=\frac{\kappa}{8 \pi} H_{(k)}^{ \pm}
\end{gathered}
$$

Generic k : KdV hierarchy

$\dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} R_{(k)}^{ \pm}$

$$
\mu_{(k)}^{ \pm}=R_{(k)}^{ \pm}=\frac{\delta H_{(k)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}
$$

"boundary gravitons" : anisotropic Lifshitz scaling
dynamical exponent : $z=2 k+1$

Boundary conditions make the field eqs. inv. under :

$$
t \rightarrow \lambda^{z} t \quad, \quad \varphi \rightarrow \lambda \varphi \quad, \quad \mathcal{L}_{ \pm} \rightarrow \lambda^{-2} \mathcal{L}_{ \pm}
$$

Exact solutions : locally AdS spacetimes

Inherit anisotropic scaling [induced by the choice of boundary conditions]
Metrics are manifestly inv. under the anisotropic scaling provided

$$
r \rightarrow \lambda^{-1} r
$$

BTZ black hole with selected boundary conditions

BTZ fits within our boundary conditions:
$\mathcal{L}_{ \pm}$constants, trivially solve the field eqs. $\dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} R_{(k)}^{ \pm}$

ADM form : similar than the standard one
Laspe and shift determined by $\mu_{(k)}^{ \pm}=\mathcal{L}_{ \pm}^{k} \quad$ [explicitly shown later]
AdS spacetime recovered for $\mathcal{L}_{ \pm}=-1$
Energy of left and right movers : $E_{ \pm}=\frac{\kappa}{8 \pi} H_{(k)}^{ \pm}$
[in terms of $z=2 k+1$]
$\mathbf{B T Z} \quad: \quad E_{ \pm}=\frac{\kappa}{2} \frac{1}{z+1} \mathcal{L}_{ \pm}^{\frac{z+1}{2}}$
AdS $: \quad E_{0}^{ \pm}[z]=\frac{\kappa}{2} \frac{1}{z+1}(-1)^{\frac{z+1}{2}}$

BTZ black hole with selected boundary conditions

Bekenstein-Hawking entropy :

$$
S=\frac{A}{4 G}=\pi \kappa\left(\sqrt{\mathcal{L}_{+}}+\sqrt{\mathcal{L}_{-}}\right)
$$

In terms of extensive variables :

$$
S=\pi \kappa\left(\frac{2}{\kappa}(z+1)\right)^{\frac{1}{z+1}}\left(E_{+}^{\frac{1}{z+1}}+E_{-}^{\frac{1}{z+1}}\right)
$$

Left \& right temperatures $T_{ \pm}=\beta_{ \pm}^{-1}: \beta_{ \pm}=\frac{\partial S}{\partial E_{ \pm}}=2 \pi\left(\frac{2}{\kappa}(z+1) E_{ \pm}\right)^{-\frac{z}{z+1}}$

$$
S=\frac{\kappa}{2}(2 \pi)^{1+\frac{1}{z}}\left(T_{+}^{\frac{1}{z}}+T_{-}^{\frac{1}{z}}\right)
$$

Expected dependence on the energy and temperature for noninteracting left \& right movers of a field theory with Lifshitz scaling in 2D

Even better : \mathbf{S} is precisely recovered from a generalization of the Cardy formula in the anisotropic case !

Anisotropic modular invariance

González, Tempo, Troncoso, arXiv:1107.3647 [hep-th]

Thermal field theories with Lifshitz scaling in 2D

 defined on a solid torus with $0 \leq \varphi<2 \pi$$$
0 \leq t_{E}<\beta
$$

Duality between low and high temperatures :

$$
\frac{\beta}{2 \pi} \rightarrow\left(\frac{2 \pi}{\beta}\right)^{\frac{1}{z}} \quad[\text { anisotropic s-duality }]
$$

The partition function can then be assumed to be invariant under :

$$
Z[\beta ; z]=Z\left[\frac{(2 \pi)^{1+\frac{1}{z}}}{\beta^{\frac{1}{z}}} ; \frac{1}{z}\right]
$$

Anisotropic modular invariance

Independent noninteracting left and right movers with the same z
torus with modular parameter : $\quad \tau=i \frac{\beta}{2 \pi}$
β : complexification of $\beta_{ \pm}$
high/low temperature duality now reads :

$$
\tau \rightarrow \frac{i^{1+\frac{1}{z}}}{\tau^{\frac{1}{z}}} \quad \text { [anisotropic S-duality] }
$$

It can be assumed that :

$$
Z[\tau ; z]=Z\left[i^{1+\frac{1}{z}} \tau^{-\frac{1}{z}} ; z^{-1}\right]
$$

$z=1$: results reduce to the standard ones in CFT

Anisotropic modular invariance

Asymptotic growth of the number of states at fixed left \& right energies $\Delta_{ \pm}$

Assuming that the spectrum of left \& right movers possesses a gap :
At low T , the partition function becomes dominated by the ground state assumed to be nondegenerate, with left \& right energies given by $-\Delta_{0}^{ \pm}[z]$ [depend on z]

At low T:

$$
Z[\tau ; z] \approx e^{-2 \pi i\left(\tau \Delta_{0}[z]-\bar{\tau} \bar{\Delta}_{0}[z]\right)}
$$

by virtue of

$$
Z[\tau ; z]=Z\left[i^{1+\frac{1}{z}} \tau^{-\frac{1}{z}} ; z^{-1}\right]
$$

high T regime :

$$
Z[\tau ; z] \approx e^{2 \pi\left((-i \tau)^{-\frac{1}{z}} \Delta_{0}\left[z^{-1}\right]+(i \bar{\tau})^{-\frac{1}{z}} \bar{\Delta}_{0}\left[z^{-1}\right]\right)}
$$

Anisotropic modular invariance

high T regime :

$$
Z[\tau ; z] \approx e^{2 \pi\left((-i \tau)^{-\frac{1}{z}} \Delta_{0}\left[z^{-1}\right]+(i \bar{\tau})^{-\frac{1}{z}} \bar{\Delta}_{0}\left[z^{-1}\right]\right)}
$$

Hence, at fixed energies $\Delta_{ \pm} \gg \Delta_{0}^{ \pm}[z]$
asymptotic growth of the number of states obtained evaluating \mathbf{Z} in the saddle point approximation : described by an entropy given by

$$
S=2 \pi(z+1)\left[\left(\frac{\Delta_{0}\left[z^{-1}\right]}{z}\right)^{z} \Delta\right]^{\frac{1}{z+1}}+2 \pi(z+1)\left[\left(\frac{\bar{\Delta}_{0}\left[z^{-1}\right]}{z}\right)^{z} \bar{\Delta}\right]^{\frac{1}{z+1}}
$$

Note that Cardy formula is recovered for $z=1$
role of the central charges played by lowest eigenvalues of the shifted
Virasoro operators $L_{0} \rightarrow L_{0}-\frac{c}{24}$

Asymptotic growth of the number of states

$$
S=2 \pi(z+1)\left[\left(\frac{\Delta_{0}\left[z^{-1}\right]}{z}\right)^{z} \Delta\right]^{\frac{1}{z+1}}+2 \pi(z+1)\left[\left(\frac{\bar{\Delta}_{0}\left[z^{-1}\right]}{z}\right)^{z} \bar{\Delta}\right]^{\frac{1}{z+1}}
$$

In terms of the (Lorentzian) left and right energies :

$$
S=2 \pi(z+1)\left[\left(\frac{\left|\Delta_{0}^{+}\left[z^{-1}\right]\right|}{z}\right)^{z} \Delta_{+}\right]^{\frac{1}{z+1}}+2 \pi(z+1)\left[\left(\frac{\left|\Delta_{0}^{-}\left[z^{-1}\right]\right|}{z}\right)^{z} \Delta_{-}\right]^{\frac{1}{z+1}}
$$

$1^{\text {st }}$ law (Canonical ensemble) : $d S=\beta_{+} d \Delta_{+}+\beta_{-} d \Delta_{-}$

$$
\Delta_{ \pm}=\frac{1}{z}(2 \pi)^{1+\frac{1}{z}}\left|\Delta_{0}^{ \pm}\left[z^{-1}\right]\right| T_{ \pm}^{1+\frac{1}{z}}
$$

[anisotropic version of Stefan-Boltzmann law]

$$
S=(2 \pi)^{1+\frac{1}{z}}\left(1+\frac{1}{z}\right)\left(\left|\Delta_{0}^{+}\left[z^{-1}\right]\right| T_{+}^{\frac{1}{z}}+\left|\Delta_{0}^{-}\left[z^{-1}\right]\right| T_{-}^{\frac{1}{z}}\right)
$$

[formulae reduce to standard results for $z=1$]

Recovering the black hole entropy

Black hole entropy, in terms of left \& right energies of k-th KdV movers :

$$
S=\pi \kappa\left(\frac{2}{\kappa}(z+1)\right)^{\frac{1}{z+1}}\left(E_{+}^{\frac{1}{z+1}}+E_{-}^{\frac{1}{z+1}}\right)
$$

Precisely recovered form S of a 2D field theory with anisotropic scaling
$S=2 \pi(z+1)\left[\left(\frac{\left|\Delta_{0}^{+}\left[z^{-1}\right]\right|}{z}\right)^{z} \Delta_{+}\right]^{\frac{1}{z+1}}+2 \pi(z+1)\left[\left(\frac{\left|\Delta_{0}^{-}\left[z^{-1}\right]\right|}{z}\right)^{z} \Delta_{-}\right]^{\frac{1}{z+1}}$

Provided one identifies :

$$
E_{0}^{ \pm}[z]=\frac{\kappa}{2} \frac{1}{z+1}(-1)^{\frac{z+1}{2}}
$$

$$
\Delta_{0}^{ \pm}[z]=-E_{0}^{ \pm}[z]
$$

Recovering the black hole entropy

Identifying : $\quad \Delta_{ \pm}=E_{ \pm}$

$$
\Delta_{0}^{ \pm}[z]=-E_{0}^{ \pm}[z]
$$

Analogously : $\quad \Delta_{ \pm}=\frac{1}{z}(2 \pi)^{1+\frac{1}{z}}\left|\Delta_{0}^{ \pm}\left[z^{-1}\right]\right| T_{ \pm}^{1+\frac{1}{z}}$

$$
S=(2 \pi)^{1+\frac{1}{z}}\left(1+\frac{1}{z}\right)\left(\left|\Delta_{0}^{+}\left[z^{-1}\right]\right| T_{+}^{\frac{1}{z}}+\left|\Delta_{0}^{-}\left[z^{-1}\right]\right| T_{-}^{\frac{1}{z}}\right)
$$

Reduce to the ones found for the black hole :

$$
\begin{aligned}
\beta_{ \pm} & =2 \pi\left(\frac{2}{\kappa}(z+1) E_{ \pm}\right)^{-\frac{z}{z+1}} \\
S & =\frac{\kappa}{2}(2 \pi)^{1+\frac{1}{z}}\left(T_{+}^{\frac{1}{z}}+T_{-}^{\frac{1}{z}}\right)
\end{aligned}
$$

Spacetime metric: generic fall-off

Generic choice of boundary conditions : $\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}$
Asymptotic structure of spacetime : reconstructed from $s l(2, \mathbb{R})$ gauge fields

$$
g_{\mu \nu}=\frac{\ell^{2}}{2}\left\langle\left(A_{\mu}^{+}-A_{\mu}^{-}\right)\left(A_{\nu}^{+}-A_{\nu}^{-}\right)\right\rangle
$$

$$
\begin{aligned}
g_{t t} & =-\left(\mathcal{N}^{2}-\ell^{2} \mathcal{N}^{\varphi 2}\right) \frac{r^{2}}{\ell^{2}}+f_{t t}+\mathcal{O}\left(r^{-1}\right) \\
g_{t r} & =-\mathcal{N}^{\varphi} \frac{\ell^{2}}{r}+\mathcal{O}\left(r^{-4}\right), \\
g_{t \varphi} & =\mathcal{N}^{\varphi} r^{2}+f_{t \varphi}+\mathcal{O}\left(r^{-1}\right), \quad \text { with }: \mu^{ \pm}=\mathcal{N} \ell^{-1} \pm \mathcal{N}^{\varphi} \\
g_{r r} & =\frac{\ell^{2}}{r^{2}}+O\left(r^{-5}\right), \\
g_{\varphi \varphi} & =r^{2}+f_{\varphi \varphi}+\mathcal{O}\left(r^{-1}\right), \\
g_{r \varphi} & =O\left(r^{-3}\right),
\end{aligned}
$$

Spacetime metric: generic fall-off

$$
\begin{array}{rlr}
g_{t t} & =-\left(\mathcal{N}^{2}-\ell^{2} \mathcal{N}^{\varphi}\right) \frac{r^{2}}{\ell^{2}}+f_{t t}+\mathcal{O}\left(r^{-1}\right) \\
g_{t r} & =-\mathcal{N}^{\varphi} \frac{\ell^{2}}{r}+\mathcal{O}\left(r^{-4}\right), \\
g_{t \varphi} & =\mathcal{N}^{\varphi} r^{2}+f_{t \varphi}+\mathcal{O}\left(r^{-1}\right), \quad \text { with }: \mu^{ \pm}=\mathcal{N} \ell^{-1} \pm \mathcal{N}^{\varphi} \\
g_{r r} & =\frac{\ell^{2}}{r^{2}}+O\left(r^{-5}\right), \\
g_{\varphi \varphi} & =r^{2}+f_{\varphi \varphi}+\mathcal{O}\left(r^{-1}\right), \\
g_{r \varphi} & =O\left(r^{-3}\right), &
\end{array}
$$

ADM, lapse and shift :

$N^{\perp}=\frac{r}{\ell} \mathcal{N}+\mathcal{O}\left(r^{-1}\right), N^{r}=-r \mathcal{N}^{\varphi \prime}+\mathcal{O}\left(r^{-1}\right), N^{\varphi}=\mathcal{N}^{\varphi}+\mathcal{O}\left(r^{-2}\right)$

$$
\begin{aligned}
f_{\varphi \varphi} & =\frac{\ell^{2}}{4}\left(\mathcal{L}_{+}+\mathcal{L}_{-}\right) \\
f_{t \varphi} & =-\frac{\ell^{2}}{2} \mathcal{N}^{\varphi \prime \prime}+f_{\varphi \varphi} \mathcal{N}^{\varphi}+\frac{\ell}{4}\left(\mathcal{L}_{+}-\mathcal{L}_{-}\right) \mathcal{N}, \\
f_{t t} & =\left(\frac{1}{\ell^{2}} \mathcal{N}^{2}-\mathcal{N}^{\varphi 2}\right) f_{\varphi \varphi}+2 f_{t \varphi} \mathcal{N}^{\varphi}+\ell^{2} \mathcal{N}^{\varphi / 2}-\mathcal{N} \mathcal{N}^{\prime \prime}
\end{aligned}
$$

Results in terms of spacetime metric

$$
\begin{aligned}
g_{t t} & =-\left(\mathcal{N}^{2}-\ell^{2} \mathcal{N}^{\varphi 2}\right) \frac{r^{2}}{\ell^{2}}+f_{t t}+\mathcal{O}\left(r^{-1}\right) \\
g_{t r} & =-\mathcal{N}^{\varphi} \ell^{\prime} \frac{\ell^{2}}{r}+\mathcal{O}\left(r^{-4}\right), \\
g_{t \varphi} & =\mathcal{N}^{\varphi} r^{2}+f_{t \varphi}+\mathcal{O}\left(r^{-1}\right), \\
g_{r r} & =\frac{\ell^{2}}{r^{2}}+O\left(r^{-5}\right), \\
g_{\varphi \varphi} & =r^{2}+f_{\varphi \varphi}+\mathcal{O}\left(r^{-1}\right), \\
g_{r \varphi} & =O\left(r^{-3}\right),
\end{aligned}
$$

$$
\text { with : } \mu^{ \pm}=\mathcal{N} \ell^{-1} \pm \mathcal{N}^{\varphi}
$$

Einstein field eqs. with negative Λ in vacuum are fulfilled provided

$$
\dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} \mu^{ \pm} \quad[\text { same as before }]
$$

Asymptotic form of the metric : mapped into itself under asymptotic K.V.'s

$$
\delta_{\xi} g_{\mu \nu}=\mathscr{L}_{\xi} g_{\mu \nu}
$$

Results in terms of spacetime metric

Asymptotic form of the metric : mapped into itself under asymptotic K.V.'s

$$
\delta_{\xi} g_{\mu \nu}=\mathscr{L}_{\xi} g_{\mu \nu}
$$

$$
\begin{aligned}
\xi^{t} & =\frac{\ell}{2 \mathcal{N}}\left[\varepsilon^{+}+\varepsilon^{-}+\frac{\ell^{2}}{2 \mathcal{N} r^{2}}\left(\mathcal{N}\left(\varepsilon^{+}+\varepsilon^{-}\right)^{\prime \prime}-\mathcal{N}^{\prime \prime}\left(\varepsilon^{+}+\varepsilon^{-}\right)\right)\right]+\mathcal{O}\left(r^{-4}\right), \\
\xi^{r} & =-\frac{1}{2 \mathcal{N}}\left[\left(\varepsilon^{+}-\varepsilon^{-}\right)^{\prime} \mathcal{N}-\ell \mathcal{N}^{\varphi \prime}\left(\varepsilon^{+}+\varepsilon^{-}\right)\right] r \\
& +\frac{\ell^{3} \mathcal{N}^{\varphi \prime}}{4 \mathcal{N} r}\left[\left(\varepsilon^{+}+\varepsilon^{-}\right)^{\prime \prime}-\left(\varepsilon^{+}+\varepsilon^{-}\right) \frac{\mathcal{N}^{\prime \prime}}{\mathcal{N}}\right] \frac{1}{r}+\mathcal{O}\left(r^{-2}\right), \\
\xi^{\varphi} & =\frac{1}{2 \mathcal{N}}\left[\left(\varepsilon^{+}-\varepsilon^{-}\right) \mathcal{N}-\ell\left(\varepsilon^{+}+\varepsilon^{-}\right) \mathcal{N}^{\varphi}\right]-\frac{\ell^{2}}{2 \mathcal{N} r^{2}}\left[\left(\varepsilon^{+}+\varepsilon^{-}\right)^{\prime \prime} \mathcal{N}+\ell\left(\varepsilon^{+}-\varepsilon^{-}\right)^{\prime \prime} \mathcal{N}^{\varphi}\right. \\
& \left.-\frac{\ell}{\mathcal{N}}\left(\varepsilon^{+}+\varepsilon^{-}\right)\left(\mathcal{N} \mathcal{N}^{\varphi \prime \prime}+\mathcal{N}^{\prime \prime} \mathcal{N}^{\varphi}\right)\right]+\mathcal{O}\left(r^{-4}\right), \quad \text { with } \varepsilon^{ \pm}=\varepsilon^{ \pm}(t, \varphi)
\end{aligned}
$$

Provided :

$$
\delta \mathcal{L}_{ \pm}=\mathcal{D}^{ \pm}{ }_{\varepsilon^{ \pm}} \quad \dot{\varepsilon}^{ \pm}= \pm \frac{\delta}{\delta \mathcal{L}_{ \pm}} \int d \phi \frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}} \mathcal{D}^{ \pm} \varepsilon^{ \pm}
$$

[same as before, including surface integrals (global charges)]

Results in terms of spacetime metric

General solution of the Einstein equations with generic b.c.'s (ADM) :

$$
d s^{2}=-\left(N^{\perp}\right)^{2} d t^{2}+g_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

spacelike geometry :

$$
d l^{2}=g_{i j} d x^{i} d x^{j}=\frac{\ell^{2}}{r^{2}}\left[d r^{2}+\ell^{2}\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{+}\right)\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{-}\right) d \varphi^{2}\right]
$$

$$
\begin{aligned}
& \text { lapse and shift : } \\
& N^{r}=-r \mathcal{N}^{\varphi \prime}, N^{\varphi}=\mathcal{N}^{\varphi}+\frac{\left(\frac{r^{2}}{\ell^{2}} \mathcal{N}+\frac{1}{4} \mathcal{N}^{\prime \prime}\right)\left(\mathcal{L}_{+}-\mathcal{L}_{-}\right)-2\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{8}\left(\mathcal{L}_{+}+\mathcal{L}_{-}\right)\right) \mathcal{N}^{\varphi \prime \prime}}{4 \ell\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{+}\right)\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{-}\right)} \\
& N^{\perp}=\frac{\left.\ell\left[\left(\frac{r^{4}}{\ell^{4}}-\frac{1}{16} \mathcal{L}_{+} \mathcal{L}_{-}\right) \mathcal{N}+\frac{1}{2}\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{8}\left(\mathcal{L}_{+}+\mathcal{L}_{-}\right)\right) \mathcal{N}^{\prime \prime}-\frac{\ell}{16}\left(\mathcal{L}_{+}-\mathcal{L}_{-}\right) \mathcal{N}^{\varphi \prime \prime}\right)\right]}{r \sqrt{\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{+}\right)\left(\frac{r^{2}}{\ell^{2}}+\frac{1}{4} \mathcal{L}_{-}\right)}}
\end{aligned}
$$

with $\quad \dot{\mathcal{L}}_{ \pm}= \pm \mathcal{D}^{ \pm} \mu^{ \pm}$

Results in terms of spacetime metric

For the specific choice of b.c.'s (k-th KdV) : $\mu_{(k)}^{ \pm}=R_{(k)}^{ \pm}=\frac{\delta H_{(k)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}$ spacetime metrics becomes invariant under :
$t \rightarrow \lambda^{z} t \quad, \quad \varphi \rightarrow \lambda \varphi, \quad \mathcal{L}_{ \pm} \rightarrow \lambda^{-2} \mathcal{L}_{ \pm} \quad$ with $r \rightarrow \lambda^{-1} r$
[anisotropic Lifshitz scaling]
BTZ black hole : $\mathcal{L}_{ \pm}$constants
$d s^{2}=\ell^{2}\left[\frac{d r^{2}}{r^{2}}+\frac{\mathcal{L}_{+}}{4}\left(d \tilde{x}^{+}\right)^{2}+\frac{\mathcal{L}_{-}}{4}\left(d \tilde{x}^{-}\right)^{2}-\left(\frac{r^{2}}{\ell^{2}}+\frac{\ell^{2} \mathcal{L}_{+} \mathcal{L}_{-}}{16 r^{2}}\right) d \tilde{x}^{+} d \tilde{x}^{-}\right]$
with $d \tilde{x}^{ \pm}=\mu^{ \pm} d t \pm d \varphi \quad, \quad$ and $\quad \mu^{ \pm}=\mathcal{L}_{ \pm}^{k}$
For a generic choice of b.c.'s, lapse \& shift obtained from $\mu^{ \pm}=\frac{\delta H^{ \pm}}{\delta \mathcal{L}_{ \pm}}$
Euclidean metric becomes regular for : $\mu^{ \pm}=\frac{2 \pi}{\sqrt{\mathcal{L}_{ \pm}}}$

Final remarks

- Dynamics of k-th KdV left and right movers can be fully geometrized
- Parameters of k-th KdV acquire a gravitational meaning
- Phenomena observed in KdV : interpreted in the context of gravitation and vice versa

Final remarks

Boundary conditions (k-th KdV) :

Solutions describe constant curvature spacetimes :

Locally AdS, but with anisotropic Lifshitz scaling ($\mathrm{z}=2 \mathrm{k}+1$)
Interesting possibility : nonrelativistic holography without the need of asymptotically Lifshitz spacetimes
[Lifshitz scaling : not necessarily requires the use of Lifshitz spacetimes]
Black hole entropy with our boundary conditions :
Successfully reproduced from the asymptotic growth of the number of states of a field theory with Lifshitz scaling (same z)

A different kind of asymptotic structure

$$
A^{ \pm}=b_{ \pm}^{-1}\left(\mathrm{~d}+\mathfrak{a}^{ \pm}\right) b_{ \pm}
$$

radial dependence,
fully captured by :

$$
b_{ \pm}=\exp \left(\pm \frac{1}{\ell \zeta^{ \pm}} L_{1}\right) \exp \left(\pm \frac{\rho}{2} L_{-1}\right)
$$

$$
\mathfrak{a}^{ \pm}=L_{0}\left(\pm \mathcal{J}^{ \pm} \mathrm{d} \varphi+\zeta^{ \pm} \mathrm{d} v\right): \text { "diagonal gauge" }
$$

$\mathcal{J}^{ \pm}, \zeta^{ \pm}$: arbitrary functions of v, φ
$\mathcal{J}^{ \pm}$: dynamical fields
$\zeta^{ \pm}$: Lagrange multipliers (held fixed at the boundary)

Afshar, Detournay, Grumiller, Merbis, Pérez, Tempo, Troncoso, arXiv:1603.04824 [hep-th]
Connected with proposal about black holes with "soft hair" (soft gravitons) in the sense of :

Hawking, Perry, Strominger, arXiv:1601.00921, 1611.09175 [hep-th]

Remarks

- Soft hairy black holes in 3D :
- Stationary black holes, not necessarily spherically symmetric
- "Black flowers" do not fulfill the Brown-Henneaux boundary conditions
- Asymptotic symmetries and global charges :
- Remarkably simple set of asymptotic symmetries
- Two independent affine u(1) currents (with very precise levels !)
- Soft hair
- Hamiltonian commutes with the asymptotic symmetry generators
- Comparison with Brown-Henneaux
- Virasoro currents turn out to be composite operators of the $\mathbf{u}(1)$'s

Remarks

Highest weight gauge : $\quad a^{ \pm}=a_{\varphi}^{ \pm} d \varphi+a_{t}^{ \pm} d t$

$$
\begin{aligned}
& a_{\varphi}^{ \pm}=L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1} ; a_{t}^{ \pm}= \pm \Lambda^{ \pm}\left[\mu^{ \pm}\right] \\
& \Lambda^{ \pm}\left[\mu^{ \pm}\right]=\mu^{ \pm}\left(L_{ \pm 1}-\frac{1}{4} \mathcal{L}_{ \pm} L_{\mp 1}\right) \mp \mu^{ \pm \prime} L_{0}+\frac{1}{2} \mu^{ \pm \prime \prime} L_{\mp 1}
\end{aligned}
$$

$$
\mu^{ \pm} \text {depend nonlocally on } \mathcal{L}_{ \pm}
$$

The choice of boundary conditions can be expressed through:
$\mu^{\prime}-\mathcal{J} \mu=-\zeta$
: Nonlocal dependence on the dynamical fields ζ held fixed at the boundary (without variation)
$\mathcal{L}=\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime} \quad: \quad$ Dynamical field is reexpressed

Extended KdV hierarchy

Generalizations of KdV-type of boundary conditions :

$$
\begin{array}{ll}
\mu^{\prime}-\mathcal{J} \mu=-\zeta & : \text { Nonlocal dependence on the dynamical fields } \\
\mathcal{L}=\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime} & : \text { Dynamical field is reexpressed }
\end{array}
$$

Recovered through forcing the recursion relation
(Gelfand-Dikii polynomials) to work backwards !

$$
\begin{aligned}
& \text { d-Dikii polynomials) to work backwards ! } \\
& \partial_{\varphi} R_{(j+1)}^{ \pm}=\mathcal{D}^{ \pm} R_{(j)}^{ \pm} \quad \mu_{(k)}^{ \pm}=R_{(k)}^{ \pm}=\frac{\delta H_{(k)}^{ \pm}}{\delta \mathcal{L}_{ \pm}}
\end{aligned}
$$

Brown-Henneaux:
$R_{(0)}^{ \pm}=\mu_{(0)}^{ \pm}=1$
... KdV:
$\rightarrow \quad R_{(1)}^{ \pm}=\mu_{(1)}^{ \pm}=\mathcal{L}_{ \pm} \quad \rightarrow \quad R_{(0)}^{ \pm}=\mu_{(0)}^{ \pm}=1 \quad \rightarrow \quad$ Kernel of $\mathcal{D}^{ \pm}$

Extended KdV hierarchy

Generalizations of KdV-type of boundary conditions :
$\begin{array}{ll}\mu^{\prime}-\mathcal{J} \mu=-\zeta & \text { : Nonlocal dependence on the dynamical fields } \\ \mathcal{L}=\frac{1}{2} \mathcal{J}^{2}+\mathcal{J}^{\prime} & \text { : Dynamical field is reexpressed }\end{array}$

Precisely solve the kernel of $\mathcal{D}^{ \pm}$!
["Precursor" of the Brown-Henneaux boundary conditions]

Anisotropic scaling with $\mathrm{z}=0 \quad(\mathrm{z}=2 \mathrm{k}+1)$

Labelling of this set as a member of an extended hierarchy with $k=-1 / 2$
[Fractional extensions of the KdV hierarchy have been studied in the literature]

