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Motivation

Motivation

Black strings/ branes are objects with extended singularities. In our case,
the black string metric is obtained by adding an extra dimension to the
Schwarzschild-Tangherlini black holes.

Perturbation equations of Schwarzschild black holes have been studied for
years. But the addition of extra dimensions as in black strings/branes
makes the perturbation equations considerably more complex.

Spherically symmetric perturbations of black strings have been studied
extensively. Particularly the Gregory-Laflamme instability and its end point.

However so far the the non-spherically symmetric perturbations of black
strings were intractable. In this talk I will present these perturbations in
simplest form to date.

We will analyse them in large dimension limit of General Relativity.
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The Perturbation Equations

Obtaining The Equations-I

The black string metric is D = n+ 3 dimensional, obtained by adding a flat
extra dimension to an n + 2 dimensional Schwarzschild-Tangherlini metric.

gMNdx
MdxN = −

(
1− bn−1

rn−1

)
dt2 +

(
1− bn−1

rn−1

)−1

dr 2 + r 2dΩ2
n + dz2;

(1)

Where dΩ2
n = γijdỹ

idỹ j is the metric of a n-dimensional sphere of unit

radius. We shall denote f (r) =
(

1− bn−1

rn−1

)
The perturbed metric is ḡAB = gAB + h̄AB . The linearised Einstein
equation for the black string perturbations is

δRMN = 0 (2)
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The Perturbation Equations

Obtaining The Equations-II

We make the gauge choice h̄Mz = 0 and make the ansatz
h̄µν(y , z) = e iλzhµν(y). The perturbation hµν is only on the black hole
part of the metric.

The gauge choice we made earlier implies that hµν is transverse and
traceless. Putting this in (2), we reduce this equation to

δGµν = −1

2
λ2hµν ; (3)

where δGµν is the first variation of the Einstein tensor on the
Schwarzschild-Tangherlini background.

We use the variables introduced by Ishibashi and Kodama for studying
black hole perturbations to analyse our black string perturbation equations.
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The Perturbation Equations

Vector Perturbation variables

The indices a, b denote the (r , t) part of the metric and i , j are indices on
the n-sphere.

We choose

hab = 0 hai = rf vectora Vi hij = 2r 2Hvector
T Vij .

Here f vectora ,Hvector
T are functions of r , t. Vector harmonics Vi and Vij are

defined by

(∆̂ + k2
v )Vi = 0, D̂iV

i = 0 (4)

Vij = − 1

2kv
(D̂iVj + D̂jVi ). (5)

k2
v = `(`+ n − 1)− 1 and ` = 2, .... We denote ∆̂ = γ ij D̂i D̂j .

We now form a new variable

Fa = f vectora +
r

kv
DaH

vector
T (6)
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The Perturbation Equations

Scalar Perturbation variables

We choose

hab = fabS hai = rfaSi hij = 2r 2(HLγijS + HTSij)

S , Si and Sij are scalar harmonics satisfying

(∆̂ + k2)S = 0 Si = − 1

k
D̂iS Sij =

1

k2
D̂i D̂jS +

1

n
γijS S i

i = 0

k2 = `(`+ n − 1) and ` = 0, 1, 2....

To construct gauge invariant variables for scalar perturbations (not defined
for ` = 0 and ` = 1),first we define

Xa =
r

k

(
fa +

r

k
DaHT

)
(7)

In terms of Xa, the new variables are

Fab = fab + DaXb + DbXa (8)

F = HL +
1

n
HT +

1

r
DaXa (9)
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The Perturbation Equations

Vector Perturbation Equations

We write the equations δGai = − 1
2
λ2hai and δGij = − 1

2
λ2hij in terms of

the IK variables. Combining the two equations, we get

�Fa − DbDaFb + DaD
bFb + n

DbrDbFa

r
− 2

DbrDaFb

r

− �r

r
Fa − n

(Dr)2

r 2
Fa − (n − 2)

DbrDar

r 2
Fb +

DbDar

r
Fb

+ (n − 1)
DaD

br

r
Fb −

α

r 2
Fa = λ2Fa (10)

where α = k2
v − (n − 1).

Explicitly evaluating the covariant derivatives, we get a system of coupled
partial differential equations for Fr and Ft . We then do a modal
decomposition of Ft and Fr .

Ft = A(r)e iωt = A(r)eΩt Fr =
B(r)

f (r)
e iωt =

B(r)

f (r)
eΩt (11)
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The Perturbation Equations

Vector Perturbation Equations II

The resulting equations for A(r) and B(r) are:

d2A

dr 2
+

n

r

dA

dr
+

(
− n

r 2
− α

fr 2
− λ2

f
+
ω2

f 2

)
A

=

(
2

rf
− (n − 1)bn−1

f 2rn

)
iωB (12)

d2B

dr 2
+

(n − 2)

r

dB

dr
+

(
−2(n − 1)

r 2
− α

fr 2
− λ2

f
+
ω2

f 2

)
B

= − (n − 1)bn−1

f 2rn
iωA (13)

For discussions on stability, we need to investigate if there are normalizable
solutions to the set of coupled equations that are regular at the horizon
with Ω positive.

In order to analyse these equations, we have to resort to large n limit,
where n is the number of dimensions the sphere part of the metric (1).
This limit was employed to study higher dimensional black holes by
Emparan et. al, Kol et. al.
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Large Dimension Limit

The large n limit

In the large n limit, the function f (r) =
(

1− bn−1

rn−1

)
increases steeply from

zero in the interval b < r < b + b
n

and is almost constant for r > b
n

.

This step-like behaviour of f (r) divides the spacetime in two different
regions.

We define a near-horizon region and far region as:

Near region r − b � b, Far region r − b � b

n − 1

The two regions overlap in b
n−1
� r − b � b.

We define a new coordinate R = ( r
b

)n−1. In the near-region
approximation, r can be written in terms of R as

r ∼ b

[
1 +

lnR

n − 1

]
(14)
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Large Dimension Limit

The large n limit

Figure: f(r) for n=2 and n=50
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Analysis of Vector Perturbations

Equations in Large n

We use the notation k2
v /n

2 = k̂v
2
, λ2/n2 = λ̂2, iω = Ω and Ω2/n2 = Ω̂2.

We expand A and B as,

A =
∑
i≥0

Ai

ni
B =

∑
i≥0

Bi

ni
(15)

The leading order near region equations then become,

d2A

dR2
+

2

R

dA

dR
−

[
k̂2
v

R(R − 1)
+

λ̂2b2

R(R − 1)
+

Ω̂2b2

(R − 1)2

]
A = − Ω̂bB

R(R − 1)2

(16)

d2B

dR2
+

2

R

dB

dR
−

[
k̂2
v

R(R − 1)
+

λ̂2b2

R(R − 1)
+

Ω̂2b2

(R − 1)2

]
B = − Ω̂bA

R(R − 1)2

(17)
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Analysis of Vector Perturbations

Far Region Equations

The far region is defined by r � b + b
n

. Therefore, in this limit f → 1 as

(bn−1/rn−1) ∼ e−n ln r is a small quantity for large n and large r .

The equations in the far region hence can be obtained by setting the terms
with f ′(r) to zero.

We shall assume A and B to be of the similar r behaviour. The far region
equations in this case are,

d2A

dr 2
+

n

r

dA

dr
+

(
−k2

v

r 2
− λ2 − Ω2

)
A =

(
2

r

)
ΩB (18)

d2B

dr 2
+

n

r

dB

dr
+

(
−k2

v

r 2
− λ2 − Ω2

)
B = 0 (19)
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Analysis of Vector Perturbations

Stability of Vector Perturbations

For the desired range of parameters Ω ≥ 0 and ` > 2, the solutions from
near and far region do not match.

This implies that there are no normalisable solutions for A and B that are
growing in time.

Here Ω, λ and ` are at least O(n), but this result is true when the
parameters are of O(1).

The analysis of scalar perturbations also shows that there are no
normalisable solutions for Ω ≥ 0.

In particular, in the static limit, with Ω = 0, we have no instability. This is
proof that the Gross-Perry-Yaffe mode for semiclassical black hole
perturbations is the unique unstable mode even in the large dimension
limit.
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Analysis of Scalar Perturbations

Scalar Perturbation Equations

From the components of the IK variables Fab and F , we construct new
variables

W = rn−2(F t
t − 2F ) Y = rn−2(F r

r − 2F ) Z = rn−2F r
t . (20)

Traceless part of the eigenvalue equation 2δGij = −λ2hij give us relation
between these variables.

W + Y + 2nF = 2λ2 r
2

k2
HT (21)

Using this relation we write the four IK variables (Frr ,Frt ,Ftt ,F ) in terms
of (W ,Y ,Z ,HT ).

Substituting our new variables in the eigenvalue equations
2δGµν = −λ2hµν , we obtain six equations. But these equations have
terms containing HT .

We can eliminate the unwanted HT factors by further combining the six
equations. The three final equations are written completely in terms of
W ,Y and Z .
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Analysis of Scalar Perturbations

Scalar Perturbation Equations II

Our later computations are made simpler by the further change of
variables:

ψ̂ =
f 1/2

r (n−4)/2
W φ̂ =

f 1/2

rn/2
Y η̂ =

1

r (n−2)/2f 1/2
Z . (22)

We can assume a time dependence of the form ψ̂(r , t) = e iωtψ(r) for all
three variables. Finally, the three coupled perturbation equations are:

− d2ψ

dr 2
+

[
n3 − 2n2 + 8n − 8

4nr 2
+

f ′2

4f 2
− (n2 + 2n − 4)

2n

f ′

fr
− f ′′

2f

− 2(n − 1)

nr 2f
+

k2

fr 2
+
λ2

f
− ω2

f 2

]
ψ =[

4

f
− 2f ′r

f 2

]
(iω)η +

[
2(n − 1)

nf
+

2

n
− n + 2

n

rf ′

f
− r 2f ′′

f
+

f ′2r 2

2f 2

]
φ

(23)
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Analysis of Scalar Perturbations

Scalar Perturbation Equations III

− d2φ

dr 2
+

[
n3 − 2n2 + 8n − 8

4nr 2
+

f ′2

4f 2
− (n2 + 2n − 4)

2n

f ′

fr
− f ′′

2f

− 2(n − 1)

nr 2f
+

k2

fr 2
+
λ2

f
− ω2

f 2

]
φ =

2f ′

f 2r
η(iω) +

[
2(n − 1)

nr 4f
− 2(n − 1)

nr 4
− 2− n

nr 3

f ′

f
− f ′′

r 2f
+

f ′2

2f 2r 2

]
ψ (24)

− d2η

dr 2
+

[
n2 − 2n

4r 2
− (n + 2)f ′

2rf
+

3f ′2

4f 2
− 3f ′′

2f
+

k2

fr 2
− ω2

f 2
+
λ2

f

]
η

=

[
f ′

f
− 2

r

]
r(iω)

f
φ− f ′

f 2

(iω)

r
ψ (25)
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Quasinormal Modes of Black Strings

Quasinormal Modes in Large n

We can find the quasinormal modes of flat black strings/branes using the
perturbation equation obtained for vector and scalar case. We can
systematically add corrections of the order 1/n to the find the modes at all
orders.

In the large n limit, depending on the n-dependence of λ, ` and Ω we get
different classes of quasinormal modes. Most notable among them are the
modes having all the parameters of O(1) called the decoupled modes and
the modes for which all the parameters are of O(n) called the
non-decoupled modes.

Decoupled modes are localized in the near region where f (r) is steeply
increasing. In the far region these modes decay rapidly.

The non-decoupled modes obey quasinormal mode boundary conditions at
both horizon and infinity.

Analysis of the decoupled modes for black holes in large n has been done
in many papers by various authors.

For λ = 0, our results so far have reproduced the old results in decoupled
sector and we have managed to get the leading order answer in the
non-decoupled case.
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Quasinormal Modes of Black Strings

Thank you
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Quasinormal Modes of Black Strings

Near Region Solutions

The expansion of A and B in (15) implies that the leading order n
behaviour of the two variables has to be equal.

We define

ξ = (R − 1)−Ω̂b(A + B) ζ = (R − 1)Ω̂b(A− B)

The equations for ξ and ζ are decoupled and can be written as
hypergeometric equations.

The solution for ξ is,

ξ = C1F (p, q, 2Ω̂b; 1−R) +C2(R−1)1−2Ω̂bF (2−p, 2−q, 2−2Ω̂b; 1−R);
(26)

where

p =
1

2

[
1 + 2Ω̂b +

√
1 + 4Ω̂2b2 + 4(k̂2

v + λ̂2b2)

]
q =

1

2

[
1 + 2Ω̂b −

√
1 + 4Ω̂2b2 + 4(k̂2

v + λ̂2b2)

]
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Quasinormal Modes of Black Strings

Near Region Solutions II

We want A,B to be, at the very least, finite at the horizon. This implies
C2 = 0.

Hence the solution for (A + B) is,

(A + B) = (R − 1)Ω̂bC1F (p, q, 2Ω̂b; 1− R) (27)

We now need to extend the near region solution to overlap region. This is
done by using the transformation properties of hypergeometric functions.
In overlap region,

A + B = C1
Γ(p + q − 1)Γ(q − p)

Γ(q)Γ(q − 1)
R−

1
2
−

√
1+4Ω̂2b2+4(k̂2

v +λ̂2b2)

2 +

C1
Γ(p + q − 1)Γ(p − q)

Γ(p)Γ(p − 1)
R−

1
2

+

√
1+4Ω̂2b2+4(k̂2

v +λ̂2b2)

2 (28)
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Quasinormal Modes of Black Strings

Far Region Solutions

The general solution for B is given in terms of modified Bessel functions of

order ν =
√

(n−1)2

4
+ k2

v as

B = r
1−n

2 [D1Iν(
√
λ2 + Ω2r) + D2Kν(

√
λ2 + Ω2r)] (29)

The modified functions have large order and large argument in large n

limit. Let us define a new coordinate z =

√
λ2+Ω2

ν
r .

In this limit, as r →∞, Iν(νz) ∼ eνz →∞ and Kν(νz) ∼ e−νz → 0.
Normalizability thus implies in (29) that D1 = 0.

Rewriting the solution in terms of R, we get,

B = D1R
− 1

2
−

√
1+4Ω̂2b2+4(k̂2

v +λ̂2b2)

2 (30)
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