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Introduction Introduction

Introduction

Newton-Cartan gravity is a diffeomorphism covariant description of Newtonian
gravity, akin to General Relativity. Uses Newton-Cartan geometry.

Old topic (Cartan, 1923) (Cartan, Dautcourt, Duval, Ehlers, Künzle, Trautman). Recently
received renewed attention in the context of condensed matter physics. Why?

Motivation 1 : holography, AdS/CFT. (Maldacena)
(quantum) gravity in asymptotically AdSd+1 = CFT in d dimensions
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Introduction

In practice, asymptotic values of fields of gravitational theory = sources for
operators in CFT (holographic dictionary) (Gubser, Klebanov, Polyakov, Witten)

〈e
∫

ddxJ(x)O(x)〉CFT =

∫
DφeiSbulk[φ(x,r)]

∣∣∣
φ(x,r→∞)=J(x)

.

E.g. arbitrary Lorentzian metric g(0)
µν (x) = gµν(x, r →∞) is source for Tµν .

Generalized for non-relativistic CFTs (Kachru, Liu, Mulligan; Son). Instead of AdS,
uses so-called Lifshitz space-times. Non-relativistic causal structure at the
boundary. Absolute time.

How to generalize the holographic dictionary? What is analog of g(0)
µν ? Leads to

Newton-Cartan geometry with torsion (Christensen, Hartong, Obers, Rollier; Hartong, Kiritsis,

Obers).

Motivation 2: effective field theories for condensed matter systems. E.g.
Unitary Fermi gas, Fractional Quantum Hall Effect. (Abanov, Geracie, Golkar, Gromov,

Hoyos, Jensen, Prabhu, Roberts, Son, Wingate, Wu, Wu)
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Introduction

Geometric implementation of Galilean symmetry, via coupling a field theory to
an arbitrary Newton-Cartan background, encodes transport properties (e.g. Hall
viscosity).

Inclusion of torsion is necessary for correct definition of energy current. How to
do this?

Motivation 3: extend useful techniques for relativistic field theories to
non-relativistic realm.

E.g. supersymmetric field theories on supersymmetric curved backgrounds can
often be treated exactly via localization (Pestun). Supergravity techniques are
handy for these constructions (Festuccia, Seiberg). Generalization to non-relativistic
theories?

For these applications, extensions of the usual Newton-Cartan framework are
required. Here, discuss three extensions:

• Inclusion of torsion
• Inclusion of supersymmetry
• Non-relativistic gravity with an action
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Outline Outline

Outline

Torsion in non-relativistic gravity and its uses

Torsionfull Newton-Cartan gravity

d = 3 Newton-Cartan supergravity

Extended Bargmann supergravity

Conclusions and outline for future work
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Newton-Cartan with torsion Newton-Cartan with torsion

Torsionless Newton-Cartan geometry review

Described in terms of time-like vielbein τµ, spatial vielbein eµa, gauge field mµ
associated to mass or particle number. Note: µ = 0, · · · , d and a = 1, · · · , d.
Projective inverses τµ, eµa:

τµτµ = 1 , τµeµa = 0 , τµeµa = 0 ,

eµaeνa = δνµ − τντµ , eµaeµb = δb
a .

Then: V0 = τµVµ, Va = eµaVµ.

2 spin connections ωµab, ωµa. Obtained by solving

Rµν(Pa) ≡ 2∂[µeν]a − 2ω[µ
abeν]b − 2ω[µ

aτν] = 0 ,
Rµν(Z) ≡ 2∂[µmν] − 2ω[µ

aeν]a = 0 .

Furthermore impose: Rµν(H) = 2∂[µτν] = 0.
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Torsion in non-relativistic gravity

In relativistic gravity, torsion appears on the right-hand-side of the first
Maurer-Cartan structure equation

Rµν(PA) ≡ 2∂[µEν]A − 2Ω[µ
ABEν]B = TµνA .

Can be absorbed in the connection. Part of the specification of Ωµ
AB.

Non-relativistically, the analog of the first Maurer-Cartan structure equations
with torsion reads

Rµν(H) ≡ 2∂[µτν] = Tµν (0) ,

Rµν(Pa) ≡ 2∂[µeν]a − 2ω[µ
abeν]b − 2ω[µ

aτν] = Tµνa ,

Rµν(Z) ≡ 2∂[µmν] − 2ω[µ
aeν]a = Tµν (c) .

Only Tµνa and Tµν (c) can be absorbed in the connections. Tµν (0) represents an
additional geometric datum! (Geracie, Prabhu, Roberts)
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Newton-Cartan geometry without or with torsion

There are three types of Newton-Cartan geometry that can be distinguished.
• Torsionless : ∂[µτν] = 0.
• Twistless torsional : τ[µ∂ντρ] = 0.
• Arbitrary torsion.

Torsionless : ∂[µτν] = 0. This implies that the time interval between two events

∆t =

∫
C

dxµτµ

is independent of the path C taken between the two events. Absolute time.

τµ

absolute time

spatial slice (d-dimensional)

∂[µτν] = 0
⇒ τµ = ∂µt
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Newton-Cartan geometry without or with torsion

Twistless torsional :

τ[µ∂ντρ] = 0 ⇔ τab = eµaeνb∂[µτν] = 0 .

Time interval between two events is now path dependent: no absolute time. The
space-time still admits a foliation in spatial slices : absolute space. Newtonian
causality still holds.

τµ

spatial slice (d-dimensional)

Arbitrary torsion. A point p where τ[µ∂ντρ] 6= 0 has a neighbourhood where
each point lies in both the future and past of p. Acausal.
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The need for torsion

In holographic applications, the need for torsion is easily understood.
Asymptotic data are only defined up to local dilatations

δτµ = λ2
D(x)τµ , δeµa = λD(x)eµa .

The condition ∂[µτν] = 0 is however not invariant such dilatations, hence the
need for (twistless) torsion.

In effective field theories, one can implement Galilean symmetry via a
non-relativistic version of minimal coupling to a gravitational background. E.g.

∂t → τµDµ (Dµ = ∂µ − i M mµ) .

One can then consider a matter Lagrangian density L(Φ, τµ, eµa,mµ) and
define an energy-current via

tµ =
δL
δτµ

.

This variation is unconstrained and hence presupposes torsion. In order to
calculate Ward identities, transport properties,... one should couple to torsional
backgrounds.
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Newton-Cartan gravity with torsion

Gauging the Bargmann algebra leads to torsionless Newton-Cartan geometry.

R0a(Ga) = 0 , R0b(Jba) = 0 , Rac(Jcb) = 0 ,

only consistent in torsionless case.

Newton-Cartan gravity can be obtained from a null reduction of GR (Julia, Nicolai;

Bergshoeff, Chatzistavrakidis, Romano, Rosseel). Ansatz in coordinates adapted to a null
Killing vector ξ = ∂v:

EM
A =

( a − +

µ eµa τµ −mµ
v 0 0 1

)
.

Breaks Lorentz transformations to spatial rotations and Galilean boosts.

Off-shell, there is no constraint on τµ.

Reducing the equations of motion however leads to conditions that put the
torsion to zero. Needed for consistency (boost invariance of the e.o.m.s).

Other strategy needed!
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The conformal method

Relativistic gravity is equivalent to a real, compensating scalar φ coupled to
conformal gravity (gauging of conformal algebra)

δφ = wλDφ , DMφ = (∂M − wbM)φ .

Action

S = −1
2

∫
dDx E φ2Cφ ,

2Cφ = EAM (∂MDAφ− (w + 1)bMDAφ+ ΩMABDBφ+ 2wfMAφ
)
,

EA
MfMA = − 1

4(D− 1)
R .

The Einstein-Hilbert action is then obtained by gauge fixing dilatations via the
choice φ = constant. GR = gauge equivalent to a conformally coupled scalar.
Non-relativistic case : consider a complex scalar, coupled to non-relativistic
‘conformal’ gravity, obtained by gauging the Schroedinger algebra.
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Torsion and the Schrödinger algebra

The z = 2 Schrödinger algebra is an extension of the Bargmann algebra, with a
dilatation generator D and special conformal transformation K.

[D,H] = −2H , [H,K] = D , [D,K] = 2K ,

[D,Pa] = −Pa , [D,Ga] = Ga , [K,Pa] = −Ga .

Gauging (Bergshoeff, Hartong, Rosseel)

symmetry generators gauge field parameters curvatures

time translations H τµ ζ(xν) Rµν(H)

space translations Pa eµa ζa(xν) Rµν
a(P)

boosts Ga ωµ
a λa(xν) Rµν

a(G)

spatial rotations Jab ωµ
ab λab(xν) Rµν

ab(J)

central charge transf. Z mµ σ(xν) Rµν(Z)

dilatations D bµ ΛD(xν) Rµν(D)

spec. conf. transf. K fµ ΛK(xν) Rµν(K)
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Torsion and the Schrödinger algebra

Impose constraints such that ωµab, ωµa, ba = eµabµ and fµ become dependent.
Transformation rules of independent fields τµ, eµa, mµ, b0 = τµbµ:

δτµ = 2λDτµ , δeµa = λa
beµb + λaτµ + λDeµa ,

δmµ = ∂µσ + λaeµa , δb0 = τµ∂µλD + λK − λaba .

In particular, one imposes

R0a(H) ≡ τµeνa
(
2∂[µτν] − 4b[µτν]

)
= 0 ⇒ ba = −τµeνa∂[µτν] .

One still keeps Rab(H) = 2eµaeνb∂[µτν] 6= 0!

Set of (in)dependent gauge fields that can be used to covariantize derivatives.

Only implement Jab and Ga and fix K, D and Z. Fix K by imposing b0 = 0. To
fix D and Z we introduce two scalars φ and χ

δφ = λDφ ⇒ Dµφ = ∂µφ− bµφ ,

δχ = Mσ ⇒ Dµχ = ∂µχ−Mmµ .
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Newton-Cartan gravity with torsion

There exists a boost invariant connection for spatial rotations ω̃µab. Build
curvature Rµν(ω̃ab) and impose

R0b(ω̃ba) = 0 , Rac(ω̃
cb) = 0 ,

as torsionful equivalent of corresponding Newton-Cartan e.o.m.s.
In three dimensions

D0D0φ−
2
M

(D0Daφ)(Daχ) +
1

M2 (DaDbφ)(Daχ)(Dbχ)

− 1
M3 (Daχ)(Daχ)(Dbχ)τb

cDcφ+
1

4M4 (Daχ)(Daχ)(Dbχ)(Dcχ)τb
dτcdφ = 0

is Schroedinger invariant. Note that D0D0φ contains a term

τµfµφ with τµfµ =
1

d − 1
R′0a(Ga) + torsion terms .

Other e.o.m. found by imposing gauge fixing conditions

φ = 1 , χ = 0 .
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Newton-Cartan supergravity

Inclusion of supersymmetry. Done by algebra gauging in 3d.

Look at N = 2 version (Lukierski,Prochnicka,Stichel,Zakrzewski):

[Jab,Pc] = −2δc[aPb] , [Jab,Gc] = −2δc[aGb] ,

[Ga,H] = −Pa , [Ga,Pb] = −δabZ ,

[Jab,Q±] = −1
2
γabQ± , [Ga,Q+] = −1

2
γa0Q− ,

{Q+
α , Q+

β } = 2δαβH , {Q+
α , Q−β } = − [γa0]αβPa ,

{Q−α , Q−β } = 2δαβ Z .

N = 1 subalgebra, consisting of bosonic generators and Q−.

Gauging proceeds along very similar lines as in ordinary Bargmann case, upon
introducing two extra gauge fields ψµ± and corresponding curvatures ψ̂µν±.
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Newton-Cartan supergravity

Spin connections solved by imposing conventional constraints

R̂µν(Pa) = 0 , R̂µν(Z) = 0 .

Also impose

R̂µν(H) ≡ 2∂[µτν] −
1
2
ψ̄µ+γ

0ψν+ = 0 .

Consistency with supersymmetry implies

R̂µν(H) = 0 ⇒ ψ̂µν+ = 0 ⇒ R̂µν(Jab) = 0 .

Last equation is stronger analog of some bosonic e.o.m.s. Implies flat space.
Supersymmetry algebra closes upon using

γµτνψ̂µν− = 0 , eµaeνbψ̂µν− = 0 .

First can be interpreted as fermionic e.o.m. and varies to bosonic e.o.m.

R̂0a(Ga) = 0 .

A consistent set of constraints can be found⇒ on-shell Newton-Cartan
supergravity.
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Newton-Cartan supergravity

Gauge fixing to Newtonian supergravity. Most fields are set to constant values
except for

m0 ≡ Φ ψ0− ≡ Ψ .

Ψ is superpartner of the Newton force Φi = ∂iΦ:

δΦi = ε̄−(t)γ0∂iΨ +
1
2
ε̄+γiΨ̇ , δΨ = ε̇−(t)− 1

2
Φiγi0ε+ .

This does not include bosonic torsion : ∂[µτν] = 0 when fermions are set to
zero.
One can however construct Schroedinger supergravity. (Bergshoeff, Rosseel, Zojer)

Supersymmetry⇒ R̂µν(Jab) = 0. Matter coupling is not likely to help, since
only the ‘Laplace equation’ R̂0a(Ga) = 0 gets sourced. Moreover, no
satisfactory action principle. For e.g. localization applications this is unwanted.
Can one do better? At least in 3d one can!
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Extended Bargmann gravity

In 3d, the Bargmann algebra admits an extra central charge: (Lévy-Leblond)

[Ga,Pb] = εabZ , [Ga,Gb] = εabS .

This ‘extended Bargmann algebra’ admits a non-degenerate, invariant bilinear
form (trace)

< Ga,Pb >= δab , < H, S >=< Z, J >= −1 .

A proposal for an action exists : a Chern-Simons action (Papageorgiou, Schroers)

SEBG =
k

4π

∫
d3x εµνρ (eµaRνρ(Ga)− mµRνρ(J)− τµRνρ(S)) .

Variation with respect to ωµ, ωµa and sµ leads to

Rµν(Z) = 0 , Rµν(Pa) = 0 , Rµν(H) = 0 .

Arises as a non-relativistic limit of Einstein-Hilbert + a CS action for two
abelian vectors. (Bergshoeff, Rosseel)
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Extended Bargmann gravity

Since we have an action, matter coupling is straightforward. E.g.

S = SEBG +

∫
d3x e

[
i
2

(Φ∗τµDµΦ− ΦτµDµΦ∗)− 1
2m

eµaeνaDµΦ∗DµΦ

]
.

with DµΦ = ∂µΦ + i m mµΦ.
Defining currents

tµ =
4π
k

δ

δτµ
(eLm) , tµa =

4π
k

δ

δeµa (eLm) , jµ =
4π
k

δ

δmµ
(eLm) ,

one finds

εµνρRνρ(S) = tµ , εµνρRνρ(J) = jµ , εµνρRνρ(Ga) = −tµa .

Bianchi identities imply consistency conditions

eµajµ = −τµtµa , eµ[at|µ|b] = 0 ,
Dµtµ = 0 , Dµtµa = 0 , Dµjµ = 0 .

Jan Rosseel (UniWien) Applied Newton-Cartan Geometry Sifnos, 22/09/2017 20 / 22



Extended Bargmann gravity Extended Bargmann gravity

Extended Bargmann Supergravity

Note that in general all components of the curvature tensors are sourced by
matter. In contrast to Newton-Cartan gravity where only R00 is sourced.
Supersymmetric version exists!
Based on superalgebra with non-degenerate supertrace

[J,Q±] = −1
2
γ0Q± , [J,R] = −1

2
γ0R ,

[Ga,Q+] = −1
2
γaQ− , [Ga,Q−] = −1

2
γaR ,

[S,Q+] = −1
2
γ0R , {Q+

α ,Q
+
β } = (γ0C−1)αβH ,

{Q+
α ,Q

−
β } = −(γaC−1)αβPa , {Q−α ,Q−β } = (γ0C−1)αβZ ,

{Q+
α ,Rβ} = (γ0C−1)αβZ .

Good starting point to study matter couplings and see whether non-relativistic
supersymmetric field theories on non-trivial supersymmetric backgrounds can
be obtained.
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Conclusions

Newton-Cartan gravity gives a geometric picture of non-relativistic gravity, that
can be useful in modern applications as well.

E.g. useful in AdS/CFT, effective condensed matter field theories.

Often require extensions of Newton-Cartan geometry and gravity. Requires a
new look.

Inclusion of torsion, supersymmetry and consideration of other non-relativistic
gravities (e.g. with action) is important.

Can be constructed in a modern fashion, by considering algebra gaugings,
non-relativistic limits, conformal methods.

Future: extensions to off-shell supergravity, higher-dimensional supergravity
cases, inclusion of matter, massive higher spins.
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