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IETGNIEOI  Introduction

Introduction
@ Newton-Cartan gravity is a diffeomorphism covariant description of Newtonian
gravity, akin to General Relativity. Uses Newton-Cartan geometry.

e Old tOpiC (Cartan, 1923) (Cartan, Dautcourt, Duval, Ehlers, Kiinzle, Tmulman). Recently
received renewed attention in the context of condensed matter physics. Why?

@ Motivation 1 : holography, AdS/CFT. (Maldacena)

(quantum) gravity in asymptotically AdS;4; = CFT in d dimensions I

AdSICFT String Theory

gravity

no gravity

Particle Theory
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Introduction

o In practice, asymptotic values of fields of gravitational theory = sources for
operators in CFT (holographic dictionary) (Gubser, Klebanov, Polyakov, Witten)

[ d'xJ(x)O(x) :/D iSouk [ (x,7)] .
<€ >CFT d)é’ ¢ (x,r—00)=J(x)

E.g. arbitrary Lorentzian metric gfLOB (x) = guv(x,r — 00) is source for T, .

@ Generalized for non-relativistic CFTs (Kachru, Liu, Mulligan; Son). Instead of AdS,
uses so-called Lifshitz space-times. Non-relativistic causal structure at the
boundary. Absolute time.

. . .. . 0
o How to generalize the holographic dictionary? What is analog of ng) ? Leads to
Newton-Cartan geometry with torsion (Christensen, Hartong, Obers, Rollier; Hartong, Kiritsis,
Obers).

@ Motivation 2: effective field theories for condensed matter systems. E.g.
Unitary Fermi gas, Fractional Quantum Hall Effect. (Abanov, Geracie, Golkar, Gromov,
Hoyos, Jensen, Prabhu, Roberts, Son, Wingate, Wu, Wu)
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Introduction

@ Geometric implementation of Galilean symmetry, via coupling a field theory to
an arbitrary Newton-Cartan background, encodes transport properties (e.g. Hall
viscosity).

@ Inclusion of torsion is necessary for correct definition of energy current. How to
do this?

@ Motivation 3: extend useful techniques for relativistic field theories to
non-relativistic realm.

o E.g. supersymmetric field theories on supersymmetric curved backgrounds can
often be treated exactly via localization (Pestun). Supergravity techniques are
handy for these constructions (Festuccia, Seiberg). Generalization to non-relativistic
theories?

@ For these applications, extensions of the usual Newton-Cartan framework are
required. Here, discuss three extensions:
e Inclusion of torsion
e Inclusion of supersymmetry
e Non-relativistic gravity with an action
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Outline

Torsion in non-relativistic gravity and its uses
o Torsionfull Newton-Cartan gravity

@ d = 3 Newton-Cartan supergravity

o Extended Bargmann supergravity

(]

Conclusions and outline for future work
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

Torsionless Newton-Cartan geometry review

@ Described in terms of time-like vielbein 7,,, spatial vielbein e, “, gauge field m,,
associated to mass or particle number. Note: 4 =0,--- ,danda=1,--- ,d.
Projective inverses 7+, e**,:

VS B, a_ no_
THr, =1, 71le, =0, T,e", =0,

a v v v b __ b
e e 0:5#—7' Ty, e'qe =6,.
Then: Vo = 7#V,,, V, = e*,V,,.
@ 2 spin connections wu”b , w,“. Obtained by solving

R,M,(Pa) = Za[ﬂe,,]“ — Zw[u‘”’ey]b — ZW[MGTV] =0,
RMV(Z) = 28[Hm,,] - Zw[ﬂ"eu]a =0.

o Furthermore impose: R, (H) = 20y, = 0.
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

Torsion in non-relativistic gravity

@ In relativistic gravity, torsion appears on the right-hand-side of the first
Maurer-Cartan structure equation

RHV(PA) = Za[uEl,]A — 2Q[HABEV]B = TW,A .
Can be absorbed in the connection. Part of the specification of 2,48.

o Non-relativistically, the analog of the first Maurer-Cartan structure equations
with torsion reads

Ry (H) = 20,7 = T,
Ry (P?) = 20),e,)" — 2w, e,y — 20,°7) = Ty
Ry (Z) = 20,m,) — 2w, ej0 = Ty .

Only T},,“ and TW(C) can be absorbed in the connections. TW(O) represents an
additional geometric datum! (Geracie, Prabhu, Roberts)
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

Newton-Cartan geometry without or with torsion

@ There are three types of Newton-Cartan geometry that can be distinguished.
e Torsionless : 9),7,) = 0.
e Twistless torsional : Tl 8,,7',]] =0.
e Arbitrary torsion.

@ Torsionless : Jj,7,) = 0. This implies that the time interval between two events

At:/dx“TM
c

is independent of the path C taken between the two events. Absolute time.

absolute time
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

Newton-Cartan geometry without or with torsion

o Twistless torsional :
T[#a,ﬁp] =0 g Tab = e“ueyba[uﬂ/] =0.

Time interval between two events is now path dependent: no absolute time. The
space-time still admits a foliation in spatial slices : absolute space. Newtonian
causality still holds.

spatial slice (d-dimensional)

@ Arbitrary torsion. A point p where 7,0, 7, # 0 has a neighbourhood where
each point lies in both the future and past of p. Acausal.
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rtan with torsion Newton-Cartan with torsion

The need for torsion

@ In holographic applications, the need for torsion is easily understood.
Asymptotic data are only defined up to local dilatations

670 = Ap(X) T, de,* = Ap(x)e,”
The condition Jj,7,) = 0 is however not invariant such dilatations, hence the

need for (twistless) torsion.

o In effective field theories, one can implement Galilean symmetry via a
non-relativistic version of minimal coupling to a gravitational background. E.g.

& — D, (Dy=08,—iMm,).

One can then consider a matter Lagrangian density £(®,7,,e,%,m,) and
define an energy-current via
oL

= —.
0T,

This variation is unconstrained and hence presupposes torsion. In order to
calculate Ward identities, transport properties,... one should couple to torsional
backgrounds.
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

Newton-Cartan gravity with torsion

o Gauging the Bargmann algebra leads to torsionless Newton-Cartan geometry.
Roa(G) =0,  Rp(J™)=0,  R.(J")=0,
only consistent in torsionless case.

@ Newton-Cartan gravity can be obtained from a null reduction of GR (Julia, Nicolai;
Bergshoeff, Chatzistavrakidis, Romano, Rosseel). Ansatz in coordinates adapted to a null
Killing vector £ = 0,:

a - +
et 1, —m
EA=F " 2 AN
My Lo o0 1
Breaks Lorentz transformations to spatial rotations and Galilean boosts.
o Off-shell, there is no constraint on 7,,.

@ Reducing the equations of motion however leads to conditions that put the
torsion to zero. Needed for consistency (boost invariance of the e.o.m.s).

@ Other strategy needed!
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WEYIREWELRGTINOSIOMN  Newton-Cartan with torsion

The conformal method

@ Relativistic gravity is equivalent to a real, compensating scalar ¢ coupled to
conformal gravity (gauging of conformal algebra)

0¢ = wApo, Dy¢ = (Oy — whur) ¢

Action

S = —%/deE¢DC¢7

0% = E™ (0yDag — (W + 1)byDad + QuapDPd + 2wfuad)
1
EMfyt = —————R.
A" Ju 4D —1)

o The Einstein-Hilbert action is then obtained by gauge fixing dilatations via the

choice ¢ = constant. GR = gauge equivalent to a conformally coupled scalar.
@ Non-relativistic case : consider a complex scalar, coupled to non-relativistic

‘conformal’ gravity, obtained by gauging the Schroedinger algebra.
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Torsion and the Schrédinger algebra

Torsion and the Schrédinger algebra

Torsion and the Schrodinger algebra

@ The z = 2 Schrodinger algebra is an extension of the Bargmann algebra, with a
dilatation generator D and special conformal transformation K.

[D,H]:—ZH, [H,K]ZD, [D,K}:ZK,
[D>Pa}:_Pa7 [D>Ga]:Gaa [Kvpa]:_Ga-

] Gauging (Bergshoeff, Hartong, Rosseel)

symmetry generators | gauge field | parameters | curvatures
time translations H T ¢(x") R, (H)
space translations P eu’ ¢t (x R, (P)
boosts G* wp’ A4(x") R,.(G)

spatial rotations Jeb Wy X (x¥) R ()
central charge transf. V4 my o(x” R (2)
dilatations D by Ap(x”) R, (D)
spec. conf. transf. K fu Ax(x") R, (K)
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Torsion and the Schrédinger algebra Torsion and the Schrédinger algebra

Torsion and the Schrodinger algebra

@ Impose constraints such that w““b, w,“, by = e* b, and f,, become dependent.
Transformation rules of independent fields 7,,, e, m,,, by = Tb,;:
0Ty = 2ApTy de, ' = )\“beub + X7, + Ape,”,
omy, = 0,0 + Nepyq, dby = 0, p + Agk — XD, .
@ In particular, one imposes
Ro.(H) = mHe¥, (2a[u7_u] . 41?[”7”]) =0 = b,= —T“e”aa[“n] .
One still keeps R (H) = 2e*,e",0},7,) # 0!
@ Set of (in)dependent gauge fields that can be used to covariantize derivatives.

@ Only implement J* and G* and fix K, D and Z. Fix K by imposing by = 0. To
fix D and Z we introduce two scalars ¢ and x

6¢ = )\D¢ = Du(b = au¢ - bu¢a
ox = Mo = D,x = 0ux — Mm,, .
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Torsion and the Schrédinger algebra Torsion and the Schrédinger algebra

Newton-Cartan gravity with torsion

@ There exists a boost invariant connection for spatial rotations (Z;#“b . Build
curvature R,,,, (&) and impose

Rop (") =0, Rue(@0?) =0,

as torsionful equivalent of corresponding Newton-Cartan e.o.m.s.
@ In three dimensions

DoDo6 — - (DoDud) (D) + 315 (DaDi) (D) (D)

DD (D)7 Dty + s (D) (D) (D) (D) 757006 = O

M3 apm*
is Schroedinger invariant. Note that DyDy¢ contains a term
1
¢ with  THf, = ﬁR{)a(G“) + torsion terms .

@ Other e.o.m. found by imposing gauge fixing conditions

=1, x=0.
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Newton-Cartan supergravity Newton-Cartan supergravity

Newton-Cartan supergravity

@ Inclusion of supersymmetry. Done by algebra gauging in 3d.

@ Look at A/ = 2 version (Lukierski,Prochnicka,Stichel,Zakrzewski):

[Javac] = _Zéc[apb] P [Jaba GC] = _25c[aGh] P
[GaaH]:*Paa [GaaPh]:* ab”Z s
1 1
Wy, 0] = =57 0* (G, @F] = =57%00Q™
{Q;ra Q;} = 25&51—17 {Q;ra Q,E} = - [’Yao]oéﬁplﬂ

{0, QE} =20apZ.

o N = 1 subalgebra, consisting of bosonic generators and Q_.

@ Gauging proceeds along very similar lines as in ordinary Bargmann case, upon
introducing two extra gauge fields 1,4 and corresponding curvatures ), 4 .
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Newton-Cartan supergravity Newton-Cartan supergravity

Newton-Cartan supergravity

@ Spin connections solved by imposing conventional constraints
R, (P") =0, R, (Z)=0.

@ Also impose

1 -
RW,(H) = 2(9[#7'”] — E’L/Jﬂ+70¢u+ =0.

Consistency with supersymmetry implies

R, (H)=0 = Yy =0 = R, (J?)=0.

Last equation is stronger analog of some bosonic e.o.m.s. Implies flat space.

@ Supersymmetry algebra closes upon using

'YMTunVf =0, euaeybw;wf =0.
First can be interpreted as fermionic e.o.m. and varies to bosonic e.o.m.
Ros(G*) = 0.

A consistent set of constraints can be found = on-shell Newton-Cartan
supergravity.
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Newton-Cartan supergravity Newton-Cartan supergravity

Newton-Cartan supergravity

@ Gauge fixing to Newtonian supergravity. Most fields are set to constant values
except for

my=® Po_ =V

W is superpartner of the Newton force ®; = 9,
1 . 1_.
60, = e_(1)y°0, ¥ + EE”"\I" S0 =¢é_(1) — §¢17i06+ .

@ This does not include bosonic torsion : 8[M7',j] = (0 when fermions are set to
Zero.

@ One can however construct Schroedinger supergravity. (Bergshoeff, Rosseel, Zojer)

@ Supersymmetry = RNV(J”b ) = 0. Matter coupling is not likely to help, since
only the ‘Laplace equation’ Ry, (G*) = 0 gets sourced. Moreover, no
satisfactory action principle. For e.g. localization applications this is unwanted.

@ Can one do better? At least in 3d one can!
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Extended Bargmann gravity Extended Bargmann gravity

Extended Bargmann gravity

@ In 3d, the Bargmann algebra admits an extra central charge: (Lévy-Leblond)
[Gaapb] = 6ab27 [Ga; Gb] = 6abS~

o This ‘extended Bargmann algebra’ admits a non-degenerate, invariant bilinear
form (trace)

<Ga7Pb>:§ab7 <H7S>:<Z,J>: _1

@ A proposal for an action exists : a Chern-Simons action (Papageorgiou, Schroers)
k
Senc = 5 [ e (€ Rop(G) — mR0) — Tuo(S)
@ Variation with respect to w,,, w,“ and s,, leads to
R.(Z)=0, R, (P*) =0, R, (H)=0.

@ Arises as a non-relativistic limit of Einstein-Hilbert + a CS action for two
abelian vectors. (Bergshoeff, Rosseel)
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Extended Bargmann gravity Extended Bargmann gravity

Extended Bargmann gravity

@ Since we have an action, matter coupling is straightforward. E.g.
i 1
S = Sgpg + /dee [; (®*7*D,® — &7/'D, ") — %e”ae””DH@*DH(I) .

withD,® = 0,0 +imm,®.
@ Defining currents

47 47 6 A7 6
tH=—— (el tH, = — L), = —— (eln) ,
k o7, (eLm) k de, (eLm) =% om, (eLm)
one finds
e"PR,,(S) =1+, PR, (J) = j*, e"PR,,(G,) = —1,.

@ Bianchi identities imply consistency conditions

e it = —Tut"y eu[atlulh] =0,
D" =0, D", =0, D,j* =0.

Jan Rosseel (UniWien) Applied Newton-Cartan Geometry Sifnos, 22/09/2017 20/22



Extended Bargmann gravity Extended Bargmann gravity

Extended Bargmann Supergravity

@ Note that in general all components of the curvature tensors are sourced by
matter. In contrast to Newton-Cartan gravity where only Ry is sourced.

@ Supersymmetric version exists!

@ Based on superalgebra with non-degenerate supertrace

1 1
[, 0% = =5%0*, [/, Rl = =570R,
1 1
[Gm Q+] = 7§V0Q7 ) [Ga7 Qi] = 7E’YOR’
1
5,01 = —37R, {03, 05} = (€ asH

{0805} = —("C"NapPu, {05, 05} = (0C apZ,
{0, Rs} = (%C ™ )apZ.

@ Good starting point to study matter couplings and see whether non-relativistic
supersymmetric field theories on non-trivial supersymmetric backgrounds can
be obtained.
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Conclusions

o Newton-Cartan gravity gives a geometric picture of non-relativistic gravity, that
can be useful in modern applications as well.

o E.g. useful in AdS/CFT, effective condensed matter field theories.

@ Often require extensions of Newton-Cartan geometry and gravity. Requires a
new look.

@ Inclusion of torsion, supersymmetry and consideration of other non-relativistic
gravities (e.g. with action) is important.

@ Can be constructed in a modern fashion, by considering algebra gaugings,
non-relativistic limits, conformal methods.

o Future: extensions to off-shell supergravity, higher-dimensional supergravity
cases, inclusion of matter, massive higher spins.
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