Quantum Mechanics and the Black Hole Horizon

Kyriakos Papadodimas
CERN and University of Groningen

9th Aegean summer school: Einstein's theory of gravity and its modifications

Space-time, gravity and locality

String theory, AdS/CFT: space-time and gravity emergent
What are the fundamental principles?
Role of entanglement and quantum information
Space-time behind the horizon
Quantum black holes: statistical mechanics, information and limitations of locality

Motivations

Black hole information paradox
What happens when crossing the horizon?
How can we describe the black hole interior in AdS/CFT?

Motivations

I will describe a proposal (developed with S. Raju) for describing the black hole interior, which may have implications towards the resolution of the information paradox
[JHEP 1310 (2013) 212], [PRL 112 (2014) 5], [Phys.Rev. D89 (2014)], [PRL 115
(2015)],[Int.J.Mod.Phys. D22 (2013)], [JHEP 1605 (2016), KP, S.Raju, J.W. Bryan, S.

Banerjee]

Key physical principles:

i) Locality in quantum gravity is not exact
ii) State dependence of physical observables

More recent developments: a new class of non-equilibrium BH states, connection to traversable wormholes
[1708.06328, KP]
[1708.09370, Rik van Breukelen and KP],
work in progress with J. de Boer, S. Lokhande, R. van Breukelen, E. Verlinde

The information paradox

Inconsistent with unitary evolution in quantum mechanics

$$
|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle
$$

Normal "burning" process

Why no information loss problem?
Radiation appears to be thermal

There are correlations (entanglement) between photons.

Typical size e^{-S} for small number of photons [Page]

The entanglement among all outgoing photons carries the full information of initial state

Pure vs Mixed states

Theorem: In a large quantum system, for most pure states, and simple observables A, we have

$$
\langle\Psi| A|\Psi\rangle=\operatorname{Tr}\left(\rho_{\text {micro }} A\right)+O\left(e^{-S}\right)
$$

but notice that for complicated observables where $n \approx S$

$$
\langle\Psi| A_{1} \ldots A_{n}|\Psi\rangle=\operatorname{Tr}\left(\rho_{\text {micro }} A_{1} \ldots A_{n}\right)+O\left(e^{-(S-n)}\right)
$$

[S.Lloyd]
Define $\langle A\rangle_{\text {micro }}=\operatorname{Tr}\left(\rho_{\text {micro }} A\right)$
We also define the average over pure states in \mathcal{H}_{E}

$$
\overline{\langle\Psi| A|\Psi\rangle} \equiv \int\left[d \mu_{\Psi}\right]\langle\Psi| A|\Psi\rangle
$$

where $\left[d \mu_{\Psi}\right]$ is the Haar measure. Then for any observable A we have

$$
\overline{\langle\Psi| A|\Psi\rangle}=\langle A\rangle_{\text {micro }}
$$

and

$$
\text { variance } \equiv \overline{\left(\langle\Psi| A|\Psi\rangle^{2}\right)}-\left(\langle A\rangle_{\text {micro }}\right)^{2}=\frac{1}{e^{S}+1}\left(\left\langle A^{2}\right\rangle_{\text {micro }}-\left(\langle A\rangle_{\text {micro }}\right)^{2}\right)
$$

"reasonable" observables have the same expectation value in most pure states, up to exponentially small corrections.

Unitarity from small corrections

Hawking's computation is semiclassical, we do expect corrections

$$
\rho=\rho_{\text {thermal }}+\rho_{\text {cor }}
$$

Statistical Mechanics: Even if corrections $\rho_{\text {cor }}$ were sufficiently large to restore unitarity, they would generally only lead to exponentially small ($e^{-S_{B H}}$) deviations from Hawking's predictions for simple observables.
Reminder: for solar mass BH $S_{B H} \approx 10^{77}$

Comments

In the scenario of unitarization of BH evaporation via small corrections to Hawking's computation:

- Hawking predictions for simple observables may be accurate up to $e^{-S_{B H}}$ deviations
- There may be important deviations for complicated observables (for example correlators between $O\left(S_{B H}\right)$ Hawking particles - significant entanglement)
- Hawking computation does not lead to a sharp paradox for observables in Effective Field Theory.
- So far we have not said anything about the BH interior...

Entanglement near the horizon

Hawking particles are produced in entangled pairs
This entanglement is necessary for the smoothness of spacetime near the horizon

Example: flat space, Unruh effect

Star

$$
|0\rangle_{M}=\sum_{n=0}^{\infty} e^{-\pi \omega n}|n\rangle_{L} \otimes|n\rangle_{R} \quad|\Psi\rangle=|0\rangle_{L} \otimes|0\rangle_{R} \rightarrow\left\langle T_{\mu \nu}\right\rangle \neq 0
$$

Modern info paradox, infalling observer

[Mathur, 2009], [Almheiri, Marolf, Polchinski, Sully, 2012]

General Relativity: smooth horizon, B entangled with C

Quantum Mechanics: no information loss, B entangled with A
B violates monogamy of entanglement
Violation of strong subadditivity of entanglement entropy: for 3 independent systems A, B, C we have

$$
S_{A B}+S_{B C} \geq S_{A}+S_{C}
$$

Mathur's theorem: "small corrections cannot fix the problem " (?)

Unitarity or smooth horizon?

Giving up B-C entanglement?
Firewall, fuzzball* proposals $\Rightarrow\left\langle T_{\mu \nu}\right\rangle$ at horizon is very large, BH interior geometry is completely modified (maybe no interior at all)

Infalling observer "burns" upon impact on the horizon.

Dramatic modification of General Relativity/Effective Field Theory over macroscopic scales, due to quantum effects

Chaos vs "specific entanglement"

Black Holes are Chaotic Quantum Systems

How can typical states have specific entanglement between B, C which is needed for smoothness?

Correct entanglement fragile under perturbations due to chaotic nature of system
[Shenker, Stanford]

Summary

- The modern version of the info paradox, is intimately related to the smoothness of the horizon and to what happens to the infalling observer.
- We have a conflict between QM and General Relativity because it seems impossible to have the correct entanglement of quantum fields, needed for smoothness, near the horizon.
- We will study the problem in AdS/CFT.

Black Holes in AdS/CFT

Non-perturbative Black Hole S-matrix encoded in CFT correlators
Manifestly Unitary

Black Hole interior in AdS/CFT?

The modern information paradox is related to the smoothness of the BH horizon.
Can we study the black hole horizon/interior in AdS/CFT?
Until recently it was not known how to do this.
In work with S.Raju we proposed a new class of CFT operators which are able to describe the BH interior.

Local observables in AdS

[Hamilton, Kabat, Lifshytz, Lowe] construction

$$
\phi(x)=\int d Y K(x, Y) \mathcal{O}(Y)
$$

$\mathcal{O}=$ local single trace operator
$K=$ known kernel
Locality in bulk is approximate:

1. True in $1 / N$ perturbation theory
2. $\left[\phi\left(P_{1}\right), \phi\left(P_{2}\right)\right]=0$ only up to $e^{-N^{2}}$ accuracy
3. Locality may break down for high-point functions

For smooth horizon effective field theory requires:
$\begin{array}{ll}\text { I) } \tilde{b} \text { commute with } b & \text { AND } \\ \text { II) } \tilde{b} \text { entangled with } b\end{array}$

$$
\begin{array}{ccc}
b & \Leftrightarrow & \mathcal{O} \\
\widetilde{b} & \Leftrightarrow & ?
\end{array}
$$

Which CFT operators $\widetilde{\mathcal{O}}$ correspond to \widetilde{b} ? Why is operator algebra "doubled "?

Direct reconstruction?

- Transplanckian problem
- States formed by collapse form a small subset of typical BH states.

Firewall paradox for large AdS black holes

- [AMPSS, Marolf-Polchinski] paradox: effective field theory implies $\left[H, \widetilde{\mathcal{O}}_{\omega}^{\dagger}\right]=-\omega \widetilde{\mathcal{O}}_{\omega}^{\dagger}$. This leads to

$$
\operatorname{Tr}\left[e^{-\beta H} \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}\right]<0
$$

which is inconsistent

- Notice that this is a firewall paradox for big, stable AdS black holes.

Is there a way out?

A construction of the BH interior

[KP and S.Raju]

- If we take a CFT state $|\Psi\rangle$ of $O\left(N^{2}\right)$ energy, we expect that at late times it will thermalize.

$$
\langle\Psi| \mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)|\Psi\rangle \approx Z^{-1} \operatorname{Tr}\left(e^{-\beta H} \mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right)
$$

- This is true only for simple observables $n \ll N$
- Thermalization of pure state \Rightarrow must have the notion of a small algebra of observables
- In a large N gauge theory, natural small "algebra" $\mathcal{A}=$ products of few, single trace operators

Intuitive picture

- Even though we are in a single CFT in a pure state, the small algebra of single trace operators probes the pure state $|\Psi\rangle$ as if it were an entangled state

$$
\langle\Psi| \mathcal{O O} \ldots|\Psi\rangle \approx \operatorname{Tr}\left[e^{-\beta H} \mathcal{O} \mathcal{O} \ldots\right] \quad \leftrightarrow \quad|T F D\rangle=\sum_{E} \frac{e^{-\beta E / 2}}{\sqrt{Z}}|E\rangle \otimes|E\rangle
$$

- Operator algebra seems to be doubled! 2nd copy \rightarrow operators behind horizon
- Usually thought of as a mathematical trick. In my work with S.Raju, we proposed a physical interpretation:
The $O\left(N^{2}\right)$ d.o.f. of the CFT play the role of the "heat bath" for the small algebra of single trace operators. The second copy of the thermofield formalism represents this heat bath.
- Whatever operators the single trace operators are entangled with, will play the role operators behind the horizon.
- How do we identify these operators mathematically?

Small algebra of observables

Small algebra generated by single trace operators

$$
\mathcal{A} \equiv \operatorname{span}\left[\mathcal{O}\left(x_{1}\right), \mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right), \ldots\right]
$$

If $|\Psi\rangle$ is a BH microstate, we have nontrivial property

$$
A|\Psi\rangle \neq 0 \quad \forall A \in \mathcal{A}, A \neq 0
$$

Physically this means that the state seems to be entangled when probed by the algebra \mathcal{A}.

The small Hilbert space

$$
\mathcal{H}_{\Psi}=\operatorname{span}\{\mathcal{A}|\Psi\rangle\}
$$

Which was called "code subspace" in later works by other authors.
Effective Field Theory in bulk takes place within this subspace

$$
\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|\Psi\rangle
$$

Tomita-Takesaki modular theory

Algebra \mathcal{A} acts on \mathcal{H}_{Ψ}. It has two properties:
i) By acting on $|\Psi\rangle$ the algebra \mathcal{A} generates \mathcal{H}_{Ψ}
ii) The algebra \mathcal{A} cannot annihilate state $|\Psi\rangle$.

Theorem: The representation of the algebra on \mathcal{H}_{Ψ} is reducible, and the algebra has an isomorphic commutant (2nd copy) acting on the same space.

Define antilinear map
and

$$
S A|\Psi\rangle=A^{\dagger}|\Psi\rangle
$$

$$
\Delta=S^{\dagger} S \quad J=S \Delta^{-1 / 2}
$$

Then for any $\mathcal{O} \in \mathcal{A}$, the operators

$$
\widetilde{\mathcal{O}}=J \mathcal{O} J
$$

i) commute with elements of \mathcal{A}
ii) are entangled with \mathcal{O} (non-zero 2-point functions)

These are the operators that we need for the Black Hole interior.

The modular Hamiltonian

The operator $\Delta=S^{\dagger} S$ is a positive, hermitian operator and can be written as

$$
\Delta=e^{-K}
$$

where

$$
K=\text { modular Hamiltonian }
$$

for the small algebra

Using the large N expansion and the KMS condition for thermal correlators in equilibrium states

$$
K=\beta\left(H_{C F T}-E_{0}\right)
$$

In practice

$$
\begin{gathered}
\widetilde{\mathcal{O}}_{\omega}|\Psi\rangle=e^{-\frac{\beta \omega}{2}} \mathcal{O}_{\omega}^{\dagger}|\Psi\rangle \\
\widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\mathcal{O} \ldots \mathcal{O} \widetilde{\mathcal{O}}_{\omega}|\Psi\rangle \\
{\left[H, \widetilde{\mathcal{O}}_{\omega}\right] \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\omega \widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots . \mathcal{O}|\Psi\rangle}
\end{gathered}
$$

These equations define the operators $\widetilde{\mathcal{O}}$ on a subspace $\mathcal{H}_{\Psi} \subset \mathcal{H}_{\mathrm{CFT}}$, which is relevant for EFT around BH microstate $|\Psi\rangle$

$$
\mathcal{H}_{\Psi}=\operatorname{span} \mathcal{A}|\Psi\rangle
$$

Equations admit solution because the algebra \mathcal{A} cannot annihilate the state $|\Psi\rangle$

Bulk field inside BH

$$
\phi(t, r, \Omega)=\int_{0}^{\infty} d \omega\left[\mathcal{O}_{\omega} f_{\omega}(t, \Omega, r)+\widetilde{\mathcal{O}}_{\omega} g_{\omega}(t, \Omega, r)+\text { h.c. }\right]
$$

Correlation functions of these operators reproduce those of effective field theory in the exterior/interior of the black hole

Smooth spacetime at the horizon, no firewall/fuzzball. At the same time, Unitarity is OK

What about previous paradoxes?

Non-locality in Quantum Gravity

$\widetilde{\mathcal{O}}$ were constructed based on the fact that we restricted our attention to a "small algebra" of \mathcal{O} 's. The construction breaks down if the "small algebra" is enlarged to include all operators
$[\mathcal{O}, \widetilde{\mathcal{O}}]=0$ only on \mathcal{H}_{Ψ}, not as operator equation
Operators $\widetilde{\mathcal{O}}=$ complicated combinations of \mathcal{O}. Realization of BH complementarity

$$
\begin{gathered}
{[\phi(P), \phi(Q)] \sim 0} \\
{\left[\phi(P), \Phi^{\text {complex }}(Q)\right]=O(1)}
\end{gathered}
$$

The Hilbert space of Quantum Gravity does not factorize as $\mathcal{H}_{\text {inside }} \otimes \mathcal{H}_{\text {outside }}$

1) Solves problem of Monogamy of Entanglement (and avoids Mathur's theorem)
2) Is consistent with locality in EFT, concrete mathematical realization of complementarity

A toy model of complementarity

[JHEP 1605 (2016), KP, S.Raju, J.W. Bryan, S. Banerjee]

Global AdS: operators in \mathcal{D} can be represented as complicated operators in the time band \mathcal{B}

State-dependence

- Interior operators defined by

$$
\begin{gathered}
\widetilde{\mathcal{O}}_{\omega}|\Psi\rangle=e^{-\frac{\beta \omega}{2}} \mathcal{O}_{\omega}^{\dagger}|\Psi\rangle \\
\widetilde{\mathcal{O}}_{\omega} \mathcal{O} \ldots \mathcal{O}|\Psi\rangle=\mathcal{O} \ldots \mathcal{O} \widetilde{\mathcal{O}}_{\omega}|\Psi\rangle \\
{\left[H, \widetilde{\mathcal{O}}_{\omega}\right]|\Psi\rangle=\omega|\Psi\rangle}
\end{gathered}
$$

- Solution defined only on \mathcal{H}_{Ψ}, depends on reference state $|\Psi\rangle$
- Operators cannot be upgraded to "globally defined" operators
- State-dependence solves Chaos vs Entanglement problem naturally: operators are selected by the entanglement!
- Novel QM feature of black hole interior?

Connection to $\mathrm{ER}=\mathrm{EPR}$

[K.P and S.Raju (1503.08825)]

Entanglement \& Wormholes (Maldacena, Susskind, Raamsdonk)

$$
\begin{gathered}
H=H_{L}+H_{R} \\
|\mathrm{TFD}\rangle=\sum_{E} \frac{e^{-\beta E / 2}}{\sqrt{Z}}|E\rangle_{L} \otimes|E\rangle_{R}
\end{gathered}
$$

$E R=E P R$

$\mathrm{CFT}_{\mathrm{R}} \quad|\mathrm{TFD}\rangle=\frac{1}{\sqrt{Z}} \sum_{i} e^{-\frac{\beta E_{i}}{2}}\left|E_{i}\right\rangle_{L} \otimes\left|E_{i}\right\rangle_{R}$

$|\Psi\rangle=\sum_{i j} c_{i j}\left|E_{i}\right\rangle_{L} \otimes\left|E_{j}\right\rangle_{R}$
$\mathrm{CFT}_{\mathrm{R}}$

$$
c_{i j}=\text { generic }
$$

Time-shifted wormholes

[K.P and S.Raju, PRL 115 (2015)]

$$
\left|\Psi_{T}\right\rangle \equiv e^{i H_{R} T}|\mathrm{TFD}\rangle
$$

The states $\left|\Psi_{T}\right\rangle$ are related to \mid TFD \rangle by a large diffeomorphism. They should* be as smooth as |TFD \rangle.
We showed that it is impossible to find fixed operators, for all states $\left|\Psi_{T}\right\rangle$, describing the BH interior

Strong evidence in favor of state-dependence

Proof using traversable wormholes

[Gao-Jafferis-Wall],[Maldacena, Stanford, Yang] [1708.09370, Rik van Breukelen, KP]

Evidence for smoothness of \mid TFD \rangle state.

Traversable wormholes and state-dependence

[1708.xxxxx, Rik van Breukelen, KP]

couple two CFTs at $t=0$ with

$$
U=e^{i g O_{L}(t=0) X_{R}(t=0)}
$$

where $X_{R} \equiv e^{i H_{R} T} O_{R} e^{-i H_{R} T}$

This shows that indeed a very large class of states

$$
\left|\Psi_{T}\right\rangle=e^{i H_{R} T}|T F D\rangle
$$

are smooth! As mentioned in this previous slide this can only happen if the interior operators are state dependent.

Hence this new result confirms state-dependence within this class of states.

Summary on state dependence

- Solves the firewall paradox, provides reconstruction of BH interior in AdS/CFT.
- New feature in QM, needs to be understood better.
- Quantum measurement theory for the infaller (observer is part of the system)
- Time evolution for observer crossing the horizon (is infaller Hamiltonian state-dependent, if so, what principle selects it?)

Thermalization in gauge theories

[KP 1708.06328]

A new class of non-equilibrium states

$$
|\Psi\rangle=U(\widetilde{\mathcal{O}})\left|\Psi_{0}\right\rangle=e^{-\frac{\beta H}{2}} U(\mathcal{O}) e^{\frac{\beta H}{2}}\left|\Psi_{0}\right\rangle
$$

A new class of non-equilibrium states

- $\left|\Psi_{0}\right\rangle=$ equilibrium state
- $U(\mathcal{O})\left|\Psi_{0}\right\rangle=$ standard non-equilibrium state
- $e^{-\frac{\beta H}{2}} U(\mathcal{O}) e^{\frac{\beta H}{2}}\left|\Psi_{0}\right\rangle=$ new type of non-equilibrium state

Localized states in Rindler space

For Rindler space, modular Hamiltonian is Lorentz boost generator M in t, x^{1} plane. Unruh inverse temperature

$$
\begin{gathered}
\beta=2 \pi \\
e^{-\pi M} U_{R} e^{\pi M}|0\rangle=U_{L}^{\prime}|0\rangle
\end{gathered}
$$

Properties of the new states

- They seem to be in equilibrium in terms of single-trace correlators

$$
\frac{d}{d t}\langle\Psi| \mathcal{O}(t)|\Psi\rangle=0
$$

- It can be seen that they are out of equilibrium by incuding H in the correlator

$$
\frac{d}{d t}\langle\Psi| \mathcal{O}(t) H|\Psi\rangle \neq 0
$$

Example

Consider a 2d CFT on $\mathbb{S}^{1} \times R$ on a state $|\Psi\rangle=e^{-\frac{\beta H}{2}} U(\mathcal{O}) e^{\frac{\beta H}{2}}\left|\Psi_{0}\right\rangle$, with $U=e^{i \theta \mathcal{O}\left(t_{0}\right)}$. Then at large c we find

$$
\langle\Psi| \mathcal{O}(t) \hat{H}|\Psi\rangle=\theta 2 \Delta\left(\frac{2 \pi}{\beta}\right)^{2 \Delta+1} \sum_{m=-\infty}^{+\infty} \frac{\sinh \left(\frac{2 \pi\left(t-t_{0}\right)}{\beta}\right)}{\left[2 \cosh \left(\frac{4 \pi^{2} m}{\beta}\right)+2 \cosh \left(\frac{2 \pi\left(t-t_{0}\right)}{\beta}\right)\right]^{\Delta+1}}
$$

Extracting the particle behind the horizon

[in progress with J. de Boer, S. Lokhande, R. van Breukelen]

Testing the conjecture

We can create negative energy shockwaves by acting with

$$
e^{i g \mathcal{O} \widetilde{\mathcal{O}}}
$$

on the state

$$
e^{-\frac{\beta H}{2}} U(\mathcal{O}) e^{\frac{\beta H}{2}}\left|\Psi_{0}\right\rangle
$$

The excitation should be detected in the CFT with usual single trace operators. See also recent work of [Kourkoulou, Maldacena] for similar states in SYK model

Non-equilibrium states and the black hole interior

- We have identified a class of states in the Hilbert space of the boundary CFT, which correspond black holes with excitations behind the horizon.
- They can be simply written as

$$
e^{-\frac{\beta H}{2}} U(\mathcal{O}) e^{\frac{\beta H}{2}}\left|\Psi_{0}\right\rangle
$$

without having to use $\widetilde{\mathcal{O}}$.

- Their existence gives additional evidence that BH interior can be described in the CFT
- They contain information about part of the "left region" for a 1-sided black hole!
- These states may be interesting more generally from the point of view of statistical mechanics

Summary and outlook

- The modern version of the info paradox has to do with entanglement at the horizon
- I described a proposal suggesting how it might be resolved.
- This proposal provides a reconstruction of the BH interior in AdS/CFT
- Key principles: non-locality and state-dependence
- Interesting connections with non-equilibrium states and thermalization
- The "traversable wormhole" protocols open up new exciting ways of testing these ideas and probing the black hole interior via scattering experiments.
- New evidence in favor of state-dependence.

THANK YOU

