

Probing dark matter with black holes and gravitational waves

[overview: R. Brito, V. Cardoso, P. Pani - Springer Lect.Notes Phys. 906 (2015) - 1501.06570]

Europear Research

http://DarkGRA.weebly.com

Outline

- Ultralight fields beyond the Standard Model
- Black-hole (BH) superradiant instability
- Adiabatic evolution of bosonic condensates near BHs
- Gravitational-wave (GW) signatures
- Superradiant instabilities triggered by plasma
- Superradiance in stars

Ultralight fields in the dark universe?

- Compelling dark-matter candidates alternative to WIMPs
 - ► Fuzzy DM: mass~ 10^{-22} eV \rightarrow may solve sub-kpc problems

Hui, Ostriker, Tremaine, Witten, PRD95 043541 (2017)

- Plethora of sub-eV DM particles:
 - QCD axion, stringy axion-like particles (ALPs)
 - Dark photons & hidden sectors, massive gravitons ...
- Common properties:
 - Bosonic fields
 - Small-mass landscape (from sub-eV down to 10⁻³³ eV)
 - Weakly coupled to SM (or not coupled at all!)

Dark sectors and ultralight particles

Looking for ultralight fields in strongly-gravitating systems?

P. Pani - "Probing dark matter with BH superradiance and GWs" - 9th Aegean Summer School - Sifnos 2017

Superradiance

Teukolsky, Zeldovich, Press (1970s)

The foregoing pertains to a body made of a material that absorbs waves when at rest; the conditions for amplification and generation are obtained after transforming the equations to the moving system. A similar situation can apparently arise also when considering a rotating body in the state of gravitational relativistic collapse.

The metric near such a body is described by the well-known Kerr solution. The gravitational capture of the particles and the waves by the so-called trapping surface replaces absorption; the trapping surface ("the horizon of events") is located inside the surface $g_{00} = 0$. Finally, in a quantum analysis of the wave field one should expect spontaneous radiation of energy and momentum by the rotating body. The effect, however, is negligibly small, less than $\hbar\omega^4/c^3$ for power and $\hbar\omega^3/c^3$ for the decelerating moment of the force (for a rest mass m = 0, in addition, we have omitted the dimensionless function β).

ZhETF Pis. Red. 14, No. 4, 270 - 272 (20 August 1971)

- Superradiant scattering off a Kerr BH when $\omega/m < \Omega_H$
- Requires **dissipation** \rightarrow event horizon

Thorne, Price, Macdonald's "Membrane Paradigm" (1986) Richartz+, Phys.Rev. D80 (2009) 124016 Brito, Cardoso, PP, "Superradiance" Springer (2015)

- Amplification depends on the nature of the bosonic field
- ► Verified in the lab Torres+, Nature Phys. 13 (2017) 833-836

Superradiant scattering

Larger amplification for GWs (spin=2), requires high spin

Nonlinear effects (slightly) decrease efficiency

East, Ramazanoğlu, Pretorius PRD 89 061503 (2014)

Luminosity modulation in binary systems

Rosa, PLB 2015 & 1612.01826

Superradiant instability

Damour, Deruelle & Ruffini; Detweiler; Zouros & Eardley 1980s;..., Shlapentokh-Rothman, 2015

- Superradiant scattering + Yukawa effective potential
- Spinning BHs are unstable against massive bosons

$$\Box \phi - \frac{\mu^2 c^2}{\hbar^2} \phi = 0 \quad \Rightarrow \quad \phi \sim e^{t/\tau}$$

Press & Teukolsky, Nature 238 (1972) 211-212

► BH energy/spin extraction → condensate

$$\frac{G}{\hbar c}M\mu \sim \left(\frac{M}{10M_{\odot}}\right) \left(\frac{\mu c^2}{10^{-11}\,\mathrm{eV}}\right) \sim \mathcal{O}(1)$$

Coupling parameter

- Can be used to probe ultralight bosonic fields [Arvanitaki+ 2010-2016]
- ► Effective field theory [Endlich & Penco, 1609.06723]

BH instability for bosonic fields

Instability depends on BH & particle spin:

$$\omega_R \sim \mu - \frac{\mu (M\mu)^2}{2(\ell + n + S + 1)^2} \qquad \omega_I \sim -(\omega_R - m\Omega_H) (M\mu)^{4\ell + 4 + 2S}$$

Dolan 2007; Rosa & Dolan, 2012; Pani+, Phys.Rev.Lett. 109 (2012) 131102; Witek+, Phys.Rev. D87 (2013) 043513; ... Brito, Cardoso, Pani, Phys.Rev. D88 (2013) 023514; Endlich & Penco, JHEP 1705 (2017) 052; Baryakhtar+ 2017

Evolution of superradiant instability

East & Pretorius, PRL (2017)

- Confirms linear analysis
- Similar results charged BHs in AdS

Sanchis-Gual+, PRL116 141101 (2016) Bosh+, PRL2016 141102 (2016)

Adiabatic approximation

- ► Extended cloud → linearized analysis
- ► GW emission → quadrupole fails
- ► Accretion of gas → Eddington accretion

$$\begin{split} \dot{M} + \dot{M}_{\rm SR} &= -\dot{E}_{\rm GW} + \dot{M}_{\rm accr} \\ \dot{J} + \dot{J}_{\rm SR} &= -\frac{1}{\mu} \dot{E}_{\rm GW} + \dot{J}_{\rm accr} \\ \dot{M} &= -\dot{E}_{\rm SR} + \dot{M}_{\rm accr} \\ \dot{J} &= -\frac{1}{\mu} \dot{E}_{\rm SR} + \dot{J}_{\rm accr} \end{split}$$

Can be also studied in terms of transition probabilities & occupation numbers Arvanitaki+ 2014-2016

Evolution of superradiant instability

Gaps in the BH "Regge plane"

supermassive BHs

Generic prediction: "gaps" in the BH "Regge plane"

Arvanitaki+, Phys.Rev. D83 (2011) 044026

Bounds on light bosons

Observations of highly-spinning BHs \rightarrow bounds on ultralight DM

GW signatures

Arvanitaki+ 2014-2016 Baryakhtar+ 2017 Brito+ 2017

Towards multiband GW constraints on ultralight fields

GW direct detection

Arvanitaki+ 2014-2016 Baryakhtar+ 2017 Brito+ 2017

• Monochromatic signal \rightarrow SNR $\approx \frac{h\sqrt{T_{obs}}}{\sqrt{S_h(f_0)}} \rightarrow$ Continuous GW source

Regge plane

Arvanitaki+ 2014-2016 Baryakhtar+ 2017 Brito+ 2017

LISA will fill the mass gap by detecting intermediate-mass BHs

Follow-up searches

"Axion" counterpart for LIGO/Virgo

Stochastic background

P. Pani - "Probing dark matter with BH superradiance and GWs" - 9th Aegean Summer School - Sifnos 2017

Brito+ 2017

GW searches for ALPs and dark photons

Mass-coupling diagrams:

- Independent of the coupling to Standard Model
- ► Model independent: Axion-like particle (ALP), QCD axion, string axiverse, dark photon, mirror DM,...
- Bounds on massive gravitons comparable to LIGO, but more work is required

Brito, Cardoso, Pani, Phys. Rev. D88 (2013) 023514

BHs and massive gravitons

$$\begin{cases} \bar{\Box}h_{\mu\nu} + 2\bar{R}_{\alpha\mu\beta\nu}h^{\alpha\beta} - \mu^{2}h_{\mu\nu} = 0, \\ \mu^{2}\bar{\nabla}^{\mu}h_{\mu\nu} = 0, \\ (\mu^{2} - 2\Lambda/3)h = 0, \end{cases}$$

- Healthy extension of the Fierz-Pauli theory in Ricci-flat curved background
- Massive spin-2 field on a GR BH, nonlinear massive gravity, bimetric theories Hinterbichler, Rev.Mod.Phys. 84 (2012) 671-710; De Rham+, 2011-2014; Hassan+, 2011-2014
- ► Λ =0 \rightarrow 5D black string, mass~ KK momentum \rightarrow Gregory-Laflamme instability

Babichev & Fabbri, Class.Quant.Grav. 30 (2013) 152001

- GR BHs in Partially Massless gravity are stable
- Non-bidiagonal BH solutions are stable

Brito, Cardoso, PP; Phys.Rev. D87 (2013) 12, 124024

Babichev & Fabbri, Phys.Rev. D89 (2014) 081502 Babichev, Brito, PP; Phys.Rev. D93 (2016) 044041

Constraints on graviton mass better than GW150914 www

Brito, Cardoso, Pani, Phys. Rev. D88 (2013) 023514

Gravitational collapse in massive (bi)gravity still unknown

Primordial BH bombs

PP & Loeb, Phys.Rev. D88 (2013) 041301

Recently investigated in the context of Fast Radio Bursts Conton & Herdeiro, 1701.02034
Similar effect in modified gravity with nonminimal matter couplings Cardoso+, 2013

Primordial BH bombs

PP & Loeb, Phys.Rev. D88 (2013) 041301

95% confidence-level bounds due to µ and y CMB distortions

Stellar SR & bounds on dark photons

Cardoso, Pani, Yu, PRD95 124056 (2017)

Pulsar-timing measurements of spin and spin-down rates put direct constraint on dark-photon models

Conclusion & Prospects

- Ultralight bosons leave smoking gun in strongly-gravitating systems
 - Gaps in the BH Regge plane
 - Periodic GW sources (sources for aLIGO/aVirgo, DECIGO, LISA)
 - Superradiant instabilities in primordial BHs and neutron stars
- Open problems:
 - Evolution & end-state (long timescale)
 - High spin (beyond SlowRot approximation)
 - Plasma, nonlinear couplings
 - Spin-2 fields
 - Effects in pulsar binaries?
- Looking for GW signatures of ultralight bosonic DM in LIGO/Virgo data

Cardoso, Pani - CERN Courier, Jan 2017

GW astronomy: expect the unexpected?