Gravitational Collapse
of a Homogeneous Scalar Field
Coupled Kinematically to Einstein Tensor

Konstantinos Ntrekis

in collaboration with: G. Koutsoumbas
L. Papantonopoulos
M. Tsoukalas

Phys. Rev. D95 (2017) no. 4, 044009

9th Aegean Summer School: Einstein’s Theory of Gravity and it’s Modifications

September 29, 2017
Overview

1 Introduction
 - Why generalize General Relativity?
 - Horndeski Theory - The NMDC case

2 Gravitational Collapse of a Scalar Field with NMDC
 - Gravitational collapse of a scalar field (*how to...*)
 - A simple example
 - The NMDC case
 - Boundary surface formation

3 Conclusions
1 Introduction
 - Why generalize General Relativity?
 - Horndeski Theory - The NMDC case

2 Gravitational Collapse of a Scalar Field with NMDC
 - Gravitational collapse of a scalar field \((how\ to...)\)
 - A simple example
 - The NMDC case
 - Boundary surface formation

3 Conclusions
GR is, itself, a generalization of *Newton’s Theory of Gravity*.

- **Hot Big Bang problems:**
 - **Flatness Problem:** $\Omega - 1 = \frac{K}{a^2 H^2}$ ← decreasing function
 - **Horizon Problem:** $a \lambda, a \sim t^p, 0 < p < 1 \Rightarrow \frac{dH}{dt} \sim t^{-1/3} \approx 10^{-2}$.
 - **Unwanted Relics:** Energy density of *forbidden* particles $\rho_m \sim a^{-3}$ while we observe $\rho_r \sim a^{-4}$ radiation.

- Accelerating expansion is driven by a new energy density component with negative pressure, termed *Dark Energy* (ΩE).
 - Possible origin: *positive cosmological constant* $\Lambda \Rightarrow \Lambda CDM$ model
 - Unknown origin
 - Fine Tuning Problem: $\rho_\Lambda = \frac{\Lambda}{8\pi G} = 6.72 \times 10^{-24} \text{ g m}^{-3}$ for ΩE
 - while at early epochs (Plank scale) $\rho_{Pl} = 5.16 \times 10^{99} \text{ g m}^{-3}$
 - $\frac{\rho_\Lambda}{\rho_{Pl}} \sim 10^{-123}$!

- The energy component giving rise to the distribution of *large scale structure* is assumed to be pressureless and termed *Dark Matter* (DM).
 - Introduced “*by hand*” in order to fit observational data.

- 1971 (Hawking): *Primordial black holes* $\sim 10^{-8} \text{ kg}$ (Planck relics)
GR is, itself, a generalization of Newton’s Theory of Gravity.

Hot Big Bang problems:

\[\text{Flatness Problem: } \Omega - 1 = \frac{K}{a^2 H^2} \leftarrow \text{decreasing function} \]

\[\text{Horizon Problem: } a \ll a \sim t^p, 0 < p < 1 \implies \frac{dH(t_{\text{dec}})}{dH(t_0)} \approx \left(\frac{t_{\text{dec}}}{t_0} \right)^{1/3} \approx 10^{-2}. \]

\[\text{Unwanted Relics: } \text{Energy density of forbidden particles } \rho_m \sim a^{-3} \text{ while we observe } \rho_r \sim a^{-4} \text{ radiation.} \]

Accelerating expansion is driven by a new energy density component with negative pressure, termed Dark Energy (DE).

- Possible origin: positive cosmological constant \(\Lambda \Rightarrow \Lambda CDM \) model
 - Unknown origin
 - Fine Tuning Problem: \(\rho_\Lambda = \frac{\Lambda}{8\pi G} = 6.72 \times 10^{-24} \text{ g m}^{-3} \) for DE \(\rho_{Pl} = 5.16 \times 10^{99} \text{ g m}^{-3} \) \(\rho_\Lambda / \rho_{Pl} \sim 10^{-123}! \)

The energy component giving rise to the distribution of large scale structure is assumed to be pressureless and termed Dark Matter (DM).

- Introduced “by hand” in order to fit observational data.

- 1971 (Hawking): Primordial black holes \(\sim 10^{-8} \text{ kg} \) (Planck relics)
GR is, itself, a generalization of Newton’s Theory of Gravity.

Hot Big Bang problems:

- **Flatness Problem**: $\Omega - 1 = \frac{K}{a^2 H^2}$ \(\leftarrow\) decreasing function

- **Horizon Problem**:

 $a \lambda, a \sim t^p, 0 < p < 1$

 $H^{-1} \sim t$

 $\Rightarrow \frac{dH(t_{\text{dec}})}{dH(t_0)} \approx \left(\frac{t_{\text{dec}}}{t_0}\right)^{1/3} \approx 10^{-2}$.

- **Unwanted Relics**: Energy density of forbidden particles $\rho_m \sim a^{-3}$ while we observe $\rho_r \sim a^{-4}$ radiation.

Accelerating expansion is driven by a new energy density component with negative pressure, termed Dark Energy (ΩE).

- Possible origin: **positive cosmological constant** $\Lambda \Rightarrow \Lambda CDM$ model
 - **Unknown origin**
 - **Fine Tuning Problem**: $\rho_\Lambda = \frac{\Lambda}{8\pi G} = 6.72 \times 10^{-24} g m^{-3}$ for ΩE

 while at early epochs (Plank scale) $\rho_{\text{Pl}} = 5.16 \times 10^{99} g m^{-3} \Rightarrow \rho_\Lambda / \rho_{\text{Pl}} \sim 10^{-123}$!

- The energy component giving rise to the distribution of large scale structure is assumed to be pressureless and termed Dark Matter (ΩM).
 - Introduced “by hand” in order to fit observational data.

- 1971 (Hawking): **Primordial black holes** $\sim 10^{-8} kg$ (Planck relics)
GR is, itself, a generalization of *Newton’s* Theory of Gravity.

Hot Big Bang problems:

- **Flatness Problem**: \(\Omega - 1 = \frac{K}{a^2 H^2} \leftarrow \text{decreasing function} \)
- **Horizon Problem**: \(a \lambda, a \sim t^p, 0 < p < 1 \Rightarrow \frac{dH(t_{\text{dec}})}{dH(t_0)} \approx \left(\frac{t_{\text{dec}}}{t_0} \right)^{1/3} \approx 10^{-2} \).
- **Unwanted Relics**: Energy density of *forbidden* particles \(\rho_m \sim a^{-3} \) while we observe \(\rho_r \sim a^{-4} \) radiation.

Accelerating expansion is driven by a new energy density component with **negative pressure**, termed **Dark Energy** (\(\mathcal{DE} \)).

- Possible origin: **positive cosmological constant** \(\Lambda \Rightarrow \Lambda \text{CDM} \) model
 - Unknown origin
 - **Fine Tuning Problem**: \(\rho_\Lambda = \frac{\Lambda}{8\pi G} = 6.72 \times 10^{-24} \text{ g m}^{-3} \) for \(\mathcal{DE} \)
 while at early epochs (Plank scale) \(\rho_{\text{Pl}} = 5.16 \times 10^{99} \text{ g m}^{-3} \Rightarrow \frac{\rho_\Lambda}{\rho_{\text{Pl}}} \sim 10^{-123} \)!

The energy component giving rise to the distribution of **large scale structure** is assumed to be **pressureless** and termed **Dark Matter** (\(\mathcal{DM} \)).

- Introduced “by hand” in order to fit observational data.

1971 (Hawking): **Primordial black holes** \(\sim 10^{-7} \text{ kg} \) (Planck relics)
GR is, itself, a generalization of Newton’s Theory of Gravity.

Hot Big Bang problems:

- Flatness Problem: \[\Omega - 1 = \frac{K}{a^2 H^2} \leftarrow \text{decreasing function} \]
- Horizon Problem: \[a \lambda, a \sim t^p, 0 < p < 1 \]
 \[H^{-1} \sim t \Rightarrow \frac{dH(t_{\text{dec}})}{dH(t_0)} \approx \left(\frac{t_{\text{dec}}}{t_0} \right)^{1/3} \approx 10^{-2} \]
- Unwanted Relics: Energy density of forbidden particles \(\rho_m \sim a^{-3} \) while we observe \(\rho_r \sim a^{-4} \) radiation.

- Accelerating expansion is driven by a new energy density component with negative pressure, termed Dark Energy (\(\mathcal{DE} \)).

 ✓ Possible origin: positive cosmological constant \(\Lambda \Rightarrow \Lambda \text{CDM} \) model

 × Unknown origin

 × Fine Tuning Problem: \(\rho_\Lambda = \frac{\Lambda}{8\pi G} = 6.72 \times 10^{-24} \text{g m}^{-3} \) for \(\mathcal{DE} \)
 while at early epochs (Plank scale) \(\rho_{\text{Pl}} = 5.16 \times 10^{99} \text{g m}^{-3} \Rightarrow \frac{\rho_\Lambda}{\rho_{\text{Pl}}} \sim 10^{-123} ! \)

- The energy component giving rise to the distribution of large scale structure is assumed to be pressureless and termed Dark Matter (\(\mathcal{DM} \)).

 × Introduced “by hand” in order to fit observational data.

- 1971 (Hawking): Primordial black holes \(\sim 10^{-8} \text{kg} \) (Planck relics)
Simplest generalization: introduction of a **scalar field**.

- Inflaton, with a *strange* equation of state $\rho + 3P < 0 \equiv\text{INFLATION.}$

- **Inflation** ⇔ $\ddot{a} > 0$ ⇔ $\frac{d}{dt} \left(\frac{1}{aH}\right) < 0$ as a solution to:

 - ✓ **Flatness Problem**: $\Omega - 1 = \frac{K}{a^2 H^2}$ \leftarrow \text{increasing function}

 - ✓ **Horizon Problem**: $a \lambda, a \sim t^p, p > 1$ \Rightarrow \text{scales are “pushed” outside the horizon}

 - ✓ **Unwanted Relics**: Energy density of forbidden particles $\rho_m \sim a^{-3}$ while the energy density of the Universe decreases slowly $\rho \sim a^{-2/p}$.

Theories of inflation and present accelerating expansion:

- ▶ Quintessence: $\mathcal{L} = X - V(\phi)$ ▶ k-essence: $\mathcal{L} = K(\phi, X)$

- ▶ $f(R)$ Gravity: $\mathcal{L} = \frac{M_{Pl}^2}{2} f(R)$ ▶ Scalar-Tensor Gravity: $\mathcal{L} = F(\phi) R + K(\phi, X)$

- ▶ Galileon Gravity: EoM with *shift symmetry* $\phi \rightarrow \phi + b_\mu x^\mu$. *Dropping* the shift symmetry \rightarrow *rediscovery* of the **Horndeski Theory** (Nicolis et al. 2009, Deffayet et al. 2009)

- ▶ **Horndeski Theory**: The most general *Second-Order Scalar Field Equations in 4d.*

 - **naked singularity** ×

 (Choptuik 1993, Christodoulou 1994)

- **Gravitational Collapse of a scalar field**

 - **black hole formation** ✓

 (Goswami, Joshi 2008, Baier et al. 2015)
Simplest generalization: introduction of a **scalar field**.

Inflaton, with a *strange* equation of state $\rho + 3P < 0 \equiv \text{INFLATION}$.

Inflation $\Leftrightarrow \ddot{a} > 0 \Leftrightarrow \frac{d}{dt} \left(\frac{1}{aH} \right) < 0$ as a solution to:

- **Flatness Problem**: $\Omega - 1 = \frac{K}{a^2 H^2} \leftarrow \text{increasing function}$
- **Horizon Problem**: $a \lambda, a \sim t^p, p > 1 \Rightarrow \text{scales are “pushed” outside the horizon}$
- **Unwanted Relics**: Energy density of forbidden particles $\rho_m \sim a^{-3}$ while the energy density of the Universe decreases slowly $\rho \sim a^{-2/p}$.

Theories of inflation and present accelerating expansion:

- **Quintessence**: $\mathcal{L} = X - V(\phi)$
- **k-essence**: $\mathcal{L} = K(\phi, X)$

- **$f(R)$ Gravity**: $\mathcal{L} = \frac{M_{\text{Pl}}^2}{2} f(R)$
- **Scalar-Tensor Gravity**: $\mathcal{L} = F(\phi) R + K(\phi, X)$

- **Galileon Gravity**: EoM with *shift symmetry* $\phi \rightarrow \phi + b_\mu x^\mu$. *Dropping* the shift symmetry \rightarrow *rediscovery* of the **Horndeski Theory** (Nicolis et al. 2009, Deffayet et al. 2009)
- **Horndeski Theory**: The most general *Second-Order Scalar Field Equations in 4d*.

- **Gravitational Collapse of a scalar field**: *redumbly singular* \times

 (Choptuik 1993, Christodoulou 1994)

- **black hole formation** \checkmark

 (Goswami, Joshi 2006, Baier et al. 2015)
Introduction

Gravitational Collapse of a Scalar Field with NMDC

Conclusions

Why generalize General Relativity?

Horndeski Theory - The NMDC case

- Simplest generalization: introduction of a scalar field.
- Inflaton, with a strange equation of state $\rho + 3P < 0 \equiv \text{INFLATION}$.

- Inflation $\Leftrightarrow \ddot{a} > 0 \Leftrightarrow \frac{d}{dt} \left(\frac{1}{aH} \right) < 0$ as a solution to:

 - Flatness Problem: $\Omega - 1 = \frac{K}{a^2 H^2} \Leftarrow$ increasing function
 - Horizon Problem: $a\lambda, a \sim t^p, p > 1 \Rightarrow$ scales are “pushed” outside the horizon
 - Unwanted Relics: Energy density of forbidden particles $\rho_m \sim a^{-3}$ while the energy density of the Universe decreases slowly $\rho \sim a^{-2/p}$.

- Theories of inflation and present accelerating expansion:
 - Quintessence: $\mathcal{L} = X - V(\phi)$
 - k-essence: $\mathcal{L} = K(\phi, X)$
 - $f(R)$ Gravity: $\mathcal{L} = \frac{M_{Pl}^2}{2} f(R)$
 - Scalar-Tensor Gravity: $\mathcal{L} = F(\phi) R + K(\phi, X)$
 - Galileon Gravity: EoM with shift symmetry $\phi \rightarrow \phi + b_{\mu} x^\mu$. Dropping the shift symmetry \rightarrow rediscovery of the Horndeski Theory (Nicolis et al. 2009, Deffayet et al. 2009)
 - Horndeski Theory: The most general Second-Order Scalar Field Equations in 4d.
• Simplest generalization: introduction of a scalar field.

• Inflaton, with a strange equation of state $\rho + 3P < 0 \equiv \text{INFLATION}$.

• Inflation $\Leftrightarrow \ddot{a} > 0 \Leftrightarrow \frac{d}{dt} \left(\frac{1}{aH} \right) < 0$ as a solution to:
 - Flatness Problem: $\Omega - 1 = \frac{K}{a^2 H^2} \leftarrow$ increasing function
 - Horizon Problem: $a\lambda, a \sim t^p, p > 1 \Rightarrow$ scales are “pushed” outside the horizon
 - Unwanted Relics: Energy density of forbidden particles $\rho_m \sim a^{-3}$ while the energy density of the Universe decreases slowly $\rho \sim a^{-2/p}$.

• Theories of inflation and present accelerating expansion:
 ▶ Quintessence: $\mathcal{L} = X - V(\phi)$ ▶ k-essence: $\mathcal{L} = K(\phi, X)$
 ▶ $f(R)$ Gravity: $\mathcal{L} = \frac{M^2_{\text{Pl}}}{2} f(R)$ ▶ Scalar-Tensor Gravity: $\mathcal{L} = F(\phi) R + K(\phi, X)$
 ▶ Galileon Gravity: EoM with shift symmetry $\phi \rightarrow \phi + b_\mu x^\mu$. Dropping the shift symmetry \rightarrow rediscovery of the Horndeski Theory (Nicolis et al. 2009, Deffayet et al. 2009)
 ▶ Horndeski Theory: The most general Second-Order Scalar Field Equations in 4d.

• Gravitational Collapse of a scalar field \nrightarrow naked singularity \times
 (Choptuik 1993, Christodoulou 1994)

• black hole formation \checkmark
 (Goswami, Joshi 2006, Baier et al. 2015)
By defining $X = -\nabla_\mu \phi \nabla^\mu \phi / 2$ the Horndeski Lagrangian reads $\mathcal{L} = \sum_{i=2}^{5} \mathcal{L}_i$, with

$\mathcal{L}_2 = K(\phi, X),$ \\
$\mathcal{L}_3 = -G_3(\phi, X) \Box \phi,$ \\
$\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} [(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi)],$ \\
$\mathcal{L}_5 = G_5(\phi, X) G_{\mu\nu} (\nabla^\mu \nabla^\nu \phi) - \frac{1}{6} G_{5,X} [(\Box \phi)^3 - 3(\Box \phi) (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) + 2(\nabla^\mu \nabla_\alpha \phi) (\nabla^\alpha \nabla^\beta \phi) (\nabla^\beta \nabla_\mu \phi)].$

Non-Minimal Derivative Coupling: $G_5(\phi, X) = -\lambda_5 \phi \rightarrow \mathcal{L}_5 = \lambda_5 G_{\mu\nu} \nabla^\mu \phi \nabla^\nu \phi$

- *Cosmological scenarios with NMDC* (Saridakis & Sushkov 2010)
- *Successful Higgs inflation scenario* (Germani & Kehagias 2010)
- *Observational tests of inflation with NMDC* (Tsujikawa 2012)
- *Perturbation analysis and observational constraints in cosmology with NMDC* (Dent, Dutta, Saridakis, Xia 2013)
- *Black holes with NMDC* (Rinaldi 2012)
- *Which do not have hair* (Hui & Nicolis 2012)
- *Unless they do* (Kolyvaris, Koutsoumbas, Papantonopoulos 2012 / Babichev & Charmousis 2013)
By defining $X = -\nabla_\mu \phi \nabla^\mu \phi / 2$ the Horndeski Lagrangian reads $\mathcal{L} = \sum_{i=2}^{5} \mathcal{L}_i$, with

$$
\mathcal{L}_2 = K(\phi, X),
$$
$$
\mathcal{L}_3 = -G_3(\phi, X) \Box \phi,
$$
$$
\mathcal{L}_4 = G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right],
$$
$$
\mathcal{L}_5 = G_5(\phi, X) G_{\mu\nu} (\nabla^\mu \nabla^\nu \phi)
+ \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3(\Box \phi)(\nabla_\mu \nabla_\nu \phi)(\nabla^\mu \nabla^\nu \phi) + 2(\nabla^\mu \nabla_\alpha \phi)(\nabla^\alpha \nabla_\beta \phi)(\nabla^\beta \nabla_\mu \phi) \right].
$$

Non-Minimal Derivative Coupling: $G_5(\phi, X) = -\lambda_5 \phi \rightarrow \mathcal{L}_5 = \lambda_5 G_{\mu\nu} \nabla^\mu \phi \nabla^\nu \phi$

- **Cosmological scenarios with NMDC** (Saridakis & Sushkov 2010)
- **Successful Higgs inflation scenario** (Germani & Kehagias 2010)
- **Observational tests of inflation with NMDC** (Tsujikawa 2012)
- **Perturbation analysis and observational constraints in cosmology with NMDC** (Dent, Dutta, Saridakis, Xia 2013)
- **Black holes with NMDC** (Rinaldi 2012)
- **Which do not have hair** (Hui & Nicolis 2012)
- **Unless they do** (Kolyvaris, Koutsoumbas, Papantonopoulos 2012 / Babichev & Charmousis 2013)
Introduction

- Why generalize General Relativity?
- Horndeski Theory - The NMDC case

Section 2

Gravitational Collapse of a Scalar Field with NMDC

- Gravitational collapse of a scalar field (how to...)
- A simple example
- The NMDC case
- Boundary surface formation

Conclusions
Friedmann equation of a *homogeneous scalar field* in an FRW metric

\[
\dot{a}^2 = \frac{8\pi}{3} a^2 \rho
\]

Initial data: \(a(0) = a_0, \phi(0) = \phi_0, \dot{\phi}(0) = \dot{\phi}_0\) \(\rightarrow\) *singular* state at \(a = 0\)

If \(a(t)\) is a monotonically decreasing function of \(t\).

\[
\rho = \frac{3}{8\pi} \left(\frac{\psi(a)}{a} \right)^2, \quad \psi(a) > 0 \quad \Rightarrow \quad \dot{a} = -\psi(a)
\]

\[
\psi(a) = a^{-\nu} \quad \text{(Goswami, Joshi 2004)}
\]

An *apparent horizon* is defined by:

\[
R(r, t_h) = 2m(r, t_h)
\]

and it is the *boundary* of the *trapped* region

\[
\mathcal{T} = \{(r, t) : R(r, t) \leq 2m(r, t)\}
\]

*\(R\): *areal radius* of the metric

*\(m\): Misner-Sharp mass defined as

\[
m \equiv \frac{R}{2} \left(1 - \nabla_\mu R \nabla^\mu R\right).
\]
Friedmann equation of a homogeneous scalar field in an FRW metric

\[\dot{a}^2 = \frac{8\pi}{3} a^2 \rho \]

Initial data: \(a(0) = a_0, \phi(0) = \phi_0, \dot{\phi}(0) = \dot{\phi}_0 \) \(\rightarrow \) singular state at \(a = 0 \)

If \(a(t) \) is a monotonically decreasing function of t.

\[\rho = \frac{3}{8\pi} \left(\frac{\psi(a)}{a} \right)^2, \quad \psi(a) > 0 \quad \Rightarrow \quad \dot{a} = -\psi(a) \]

\[\psi(a) = a^{-\nu} \] (Goswami, Joshi 2004)

An apparent horizon is defined by:

\[R(r, t_h) = 2m(r, t_h) \]

and it is the boundary of the trapped region

\[\mathcal{T} = \{(r, t) : R(r, t) \leq 2m(r, t)\} \]

\(R \): areal radius of the metric
\(m \): Misner-Sharp mass defined as \(m \equiv \frac{R}{2} \left(1 - \nabla_\mu R \nabla^\mu R \right) \).
Friedmann equation of a homogeneous scalar field in an FRW metric

\[\dot{a}^2 = \frac{8\pi}{3} a^2 \rho \]

Initial data: \(a(0) = a_0, \phi(0) = \phi_0, \dot{\phi}(0) = \dot{\phi}_0 \rightarrow \text{singular state at} \ a = 0 \)

If \(a(t) \) is a monotonically decreasing function of \(t \).

\[\rho = \frac{3}{8\pi} \left(\frac{\psi(a)}{a} \right)^2, \quad \psi(a) > 0 \implies \dot{a} = -\psi(a) \]

\[\psi(a) = a^{-\nu} \]
(Goswami, Joshi 2004)

An apparent horizon is defined by:

\[R(r, t_h) = 2m(r, t_h) \]

and it is the boundary of the trapped region

\[\mathcal{T} = \{(r, t) : R(r, t) \leq 2m(r, t)\} \]

\(R \): areal radius of the metric
\(m \): Misner-Sharp mass defined as \(m \equiv \frac{R}{2} \left(1 - \nabla_\mu R \nabla^\mu R \right) \).
\(\dot{a} = -\psi(a) \)

(Giambo 2005):

Proposition

If \(\psi(a) \) is bounded in \((0, a_0)\), there exists \(r_b > 0 \) such that, for any shell of matter \(r \leq r_b \), no apparent horizon forms during the evolution.

Proposition

If \(\lim_{a \to 0^+} \psi(a) = +\infty \), for any \(r > 0 \) such that the initial data are taken outside the trapped region \(\mathcal{T} \), the shell labeled \(r \) becomes trapped strictly before it becomes singular, and so a black hole forms.

- **Aim** is to match the scalar field spacetime with an exterior solution at \(r = r_b \)
- **Israel-Darmois junction conditions**: Continuity across a hypersurface \(\Sigma \) of the first and second fundamental forms induced on \(\Sigma \) by the two spacetimes

\[
I_\Sigma = g_{\alpha\beta} \frac{dx^\alpha}{dy^a} \frac{dx^\beta}{dy^b} \, dy^a dy^b, \quad II_\Sigma = -n_\alpha \left(\frac{\partial^2 x^\alpha}{\partial y^a \partial y^b} + \Gamma^\alpha_{\rho\sigma} \frac{\partial x^\rho}{\partial y^a} \frac{\partial x^\sigma}{\partial y^b} \right)
\]

Theorem

If \(\psi(a) \) is bounded and there is \(r_b \) such that \(1 - \psi^2(a) r^2 \) is bounded away from 0, then the boundary \(\Sigma = \{ r = r_b \} \) of the scalar field collapses to a naked singularity.
Introduction

Gravitational Collapse of a Scalar Field with NMDC

Conclusions

Gravitational collapse of a scalar field (how to...)
A simple example
The NMDC case
Boundary surface formation

\[\dot{a} = -\psi(a) \]

(Giambo 2005):

Proposition

If \(\psi(a) \) is bounded in \((0, a_0)\), there exists \(r_b > 0 \) such that, for any shell of matter \(r \leq r_b \), no apparent horizon forms during the evolution.

Proposition

If \(\lim_{a \to 0^+} \psi(a) = +\infty \), for any \(r > 0 \) such that the initial data are taken outside the trapped region \(\mathcal{T} \), the shell labeled \(r \) becomes trapped strictly before it becomes singular, and so a black hole forms.

- **Aim** is to *match* the scalar field spacetime with an exterior solution at \(r = r_b \)
- **Israel-Darmois junction conditions**: Continuity across a hypersurface \(\Sigma \) of the first and second fundamental forms induced on \(\Sigma \) by the two spacetimes

\[
I_\Sigma = g_{\alpha\beta} \frac{dx^\alpha}{dy^a} \frac{dx^\beta}{dy^b} dy^a dy^b, \quad II_\Sigma = -n_\alpha \left(\frac{\partial^2 x^\alpha}{\partial y^a \partial y^b} + \Gamma_{\rho\sigma}^{\alpha} \frac{\partial x^\rho}{\partial y^a} \frac{\partial x^\sigma}{\partial y^b} \right)
\]

Theorem

If \(\psi(a) \) is bounded and there is \(r_b \) such that \(1 - \psi^2(a)r^2 \) is bounded away from 0, then the boundary \(\Sigma = \{ r = r_b \} \) of the scalar field collapses to a naked singularity
Gravitational Collapse of a Scalar Field with NMDC

Conclusions

Gravitational collapse of a scalar field

A simple example

The NMDC case

Boundary surface formation

Giambò 2005:

\[\psi(a) = \sqrt{\frac{8\pi}{3}} a^\beta, \quad -2 < \beta < 1 \]

\[
 a(t) = \left(a_0^{1-\beta} - \sqrt{\frac{8\pi}{3}} (1 - \beta) t \right)^{\frac{1}{1-\beta}} \Rightarrow \dot{a} = -\sqrt{\frac{8\pi}{3}} \left(a_0^{1-\beta} - \sqrt{\frac{8\pi}{3}} (1 - \beta) t \right)^{\frac{\beta}{1-\beta}}
\]

i) \quad 0 \leq \beta < 1: \psi(a) \text{ bounded. No apparent horizon forms}

ii) \quad -2 \leq \beta < 0: \lim_{a \to 0} \psi(a) = +\infty. \text{ apparent horizon existance}

\[
 S = \int d^4x \sqrt{-g} \left[\frac{R - 2\Lambda}{16\pi G} - \frac{1}{2} g_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right]
\]

\[
 a(t) = \left(\frac{\cosh \left(\sqrt{3|\Lambda|}(t - C) \right)}{\cosh \left(\sqrt{3|\Lambda|}C \right)} \right)^{1/3} > 0 \quad \text{but for} \quad \Lambda < 0 \quad a(t) = \left(\frac{\cos \left(\sqrt{3|\Lambda|}(t - C) \right)}{\cos \left(\sqrt{3|\Lambda|}C \right)} \right)^{1/3}
\]

\[
 \dot{a} \left(t_s = C + \frac{\pi}{2\sqrt{3|\Lambda|}} \right) = \left. \frac{\sqrt{|\Lambda|} \sin \left(\sqrt{3|\Lambda|}(t - C) \right)}{\cos^{2/3} \left(\sqrt{3|\Lambda|}(t - C) \right)} \right|_{t_s = C + \frac{\pi}{2\sqrt{3|\Lambda|}}} = -\infty
\]
Gravitational collapse of a scalar field

A simple example

The NMDC case

Boundary surface formation

Giambo 2005:

\[\psi(a) = \sqrt{\frac{8\pi}{3}} a^\beta, \quad -2 < \beta < 1 \]

\[a(t) = \left(a_0^{1-\beta} - \sqrt{\frac{8\pi}{3}} (1 - \beta) t \right) \frac{1}{1 - \beta} \Rightarrow \dot{a} = -\sqrt{\frac{8\pi}{3}} \left(a_0^{1-\beta} - \sqrt{\frac{8\pi}{3}} (1 - \beta) t \right) \frac{\beta}{1 - \beta} \]

i) \(0 \leq \beta < 1 \): \(\psi(a) \) **bounded.** No apparent horizon forms

ii) \(-2 \leq \beta < 0 \): \(\lim_{a \to 0} \psi(a) = +\infty \). apparent horizon exisance

\[S = \int d^4x \sqrt{-g} \left[\frac{R - 2\Lambda}{16\pi G} - \frac{1}{2} g_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right] \]

\[a(t) = \left(\frac{\cosh \left(\sqrt{3|\Lambda|} (t - C) \right)}{\cosh \left(\sqrt{3|\Lambda|} C \right)} \right)^{1/3} \quad \text{but for } \Lambda < 0 \]

\[\dot{a} \left(t_s = C + \frac{\pi}{2\sqrt{3|\Lambda|}} \right) = \frac{\sqrt{|\Lambda|}}{\sqrt{3} \cos \left(\sqrt{3\Lambda} C \right)} \left. \frac{\sin \left(\sqrt{3|\Lambda|} (t - C) \right)}{\cos^{2/3} \left(\sqrt{3|\Lambda|} (t - C) \right)} \right|_{t_s=C+\frac{\pi}{2\sqrt{3|\Lambda|}}} = -\infty \]
Gravitational Collapse of a Scalar Field with NMDC

Conclusions

Gravitational collapse of a scalar field \((\text{how to...})\)

A simple example

The NMDC case

Boundary surface formation

\[S = \int d^4x \sqrt{-g} \left\{ \frac{R - 2\Lambda}{16\pi G} - \left[\frac{1}{2} g^{\mu\nu} - \frac{1}{2} \lambda \mathcal{G}^{\mu\nu} \right] \partial_\mu \phi \partial_\nu \phi \right\} \]

Klein-Gordon:
\[\left(1 + \frac{3\lambda \dot{a}(t)}{a^2(t)} \right) \ddot{\phi}(t) + \left(3 \frac{\dot{a}(t)}{a(t)} + 3\lambda \left(\frac{\dot{a}^3(t)}{a^3(t)} + 2 \frac{\dot{a}(t)\ddot{a}(t)}{a^2(t)} \right) \right) \dot{\phi}(t) = 0 \]

Friedmann:
\[\frac{3\dot{a}^2(t)}{a^2(t)} - \Lambda = 4\pi \left(1 + 9\lambda \frac{\dot{a}^2(t)}{a^2(t)} \right) \phi^2(t) \]

\[\Lambda = -0.0015 \]

\[\lambda_1 = 0 \]

\[\lambda_2 = 32 \]

\[\lambda_3 = 70 \]

or approximately near the singularity:
\[a(t) \sim \left(t_s - t \right)^{\frac{2}{3}} \quad \Rightarrow \quad \dot{a}(t) \sim -\left(t_s - t \right)^{-\frac{1}{3}} \]

- Stronger coupling \(\lambda\) \textit{increases} the collapsing time.
- End state of the collapse \textit{does not} depend on \(\lambda\).
- An apparent horizon \textit{always} forms \(\rightarrow\) \textit{Black hole} formation.

K. Ntrekis
Gravitational Collapse of a Scalar Field with NMDC

Conclusions

Gravitational collapse of a scalar field

A simple example

The NMDC case

Boundary surface formation

\[S = \int d^4x \sqrt{-g} \left\{ \frac{R - 2\Lambda}{16\pi G} - \left[\frac{1}{2} g^{\mu\nu} - \frac{1}{2} \lambda G^{\mu\nu} \right] \partial_\mu \phi \partial_\nu \phi \right\} \]

Klein-Gordon:

\[\left(1 + \frac{3\lambda \dot{a}^2(t)}{a^2(t)} \right) \ddot{\phi}(t) + \left(3 \frac{\dot{a}(t)}{a(t)} + 3\lambda \left(\frac{\dot{a}^3(t)}{a^3(t)} + 2 \frac{\dot{a}(t)\ddot{a}(t)}{a^2(t)} \right) \right) \dot{\phi}(t) = 0 \]

Friedmann:

\[\frac{3\dot{a}^2(t)}{a^2(t)} - \Lambda = 4\pi \left(1 + 9\lambda \frac{\dot{a}^2(t)}{a^2(t)} \right) \dot{\phi}^2(t) \]

or approximately near the singularity:

\[a(t) \sim (t_s - t)^{\frac{2}{3}} \Rightarrow \dot{a}(t) \sim -(t_s - t)^{-\frac{1}{3}} \]

- Stronger coupling \(\lambda \) increases the collapsing time.
- End state of the collapse does not depend on \(\lambda \).
- An apparent horizon always forms \(\rightarrow \text{Black hole formation} \).
FRW metric

\[ds_{\text{int}}^2 = -dt^2 + a^2(t)dr^2 + r^2a^2(t)d\Omega^2 \]

matched with a Schwarzschild-AdS\(_4\) metric

\[ds_{\text{ext}}^2 = -\chi(Y)dT^2 + \chi(Y)^{-1}dY^2 + Y^2d\Omega^2, \quad \chi(Y) = 1 - \frac{2M}{Y} + \frac{Y^2}{l^2} \]

First fundamental forms

- \(I_{\Sigma}^{\text{int}} = -d\tau^2 + r_b^2a^2(\tau)d\Omega^2 \)
- \(I_{\Sigma}^{\text{ext}} = \left(-\chi(Y)\dot{T}^2 + \frac{1}{\chi(Y)}\dot{Y}^2 \right)d\tau^2 + Y^2(\tau)d\Omega^2 \)

Second fundamental forms

- \(II_{\Sigma}^{\text{int}} = 0 \cdot d\tau^2 + r_ba(\tau)d\Omega^2 \)
- \(II_{\Sigma}^{\text{ext}} = -\frac{\chi^2(Y)\chi(Y),Y\dot{T}^3 + 3\chi(Y),Y\dot{Y}^2 + 2\chi(Y)\left(\dot{Y}\dot{T} - \dot{T}\dot{Y}\right)}{2\chi(Y)}d\tau^2 + Y\chi(Y)\dot{T}d\Omega^2 \)
Gravitational Collapse of a Scalar Field with NMDC

A simple example

The NMDC case

Boundary surface formation

First fundamental forms

- $I^\text{int}_\Sigma = -d\tau^2 + r_b^2 a^2(\tau) d\Omega^2$
- $I^\text{ext}_\Sigma = \left(-\chi(Y)\dot{T}^2 + \frac{1}{\chi(Y)} \dot{Y}^2\right) d\tau^2 + Y^2(\tau) d\Omega^2$

Second fundamental forms

- $II^\text{int}_\Sigma = 0 \cdot d\tau^2 + r_b a(\tau) d\Omega^2$
- $II^\text{ext}_\Sigma = \frac{-\chi^2(Y)\chi(Y),Y\dot{T}^3 + 3\chi(Y),Y\dot{T}\dot{Y}^2 + 2\chi(Y) (\dot{Y}\ddot{T} - \dot{T}\ddot{Y})}{2\chi(Y)} d\tau^2 + Y\chi(Y)\dot{T} d\Omega^2$

Matched first fundamental forms

$\left(-\chi(Y)\dot{T}^2 + \frac{1}{\chi(Y)} \dot{Y}^2\right) = -1 \quad \Rightarrow \quad M(\tau) = \frac{1}{2} r_b^3 a(\tau) \left(\dot{a}^2(\tau) + \frac{a^2(\tau)}{l^2}\right)$

- $Y(\tau) = r_b a(\tau) \quad \Rightarrow \quad \text{boundary of the collapsing shell}$

Matched second fundamental forms

\[-\frac{\chi^2(Y)\chi(Y),Y\dot{T}^3 + 3\chi(Y),Y\dot{T}\dot{Y}^2 + 2\chi(Y) (\dot{Y}\ddot{T} - \dot{T}\ddot{Y})}{2\chi(Y)} = 0 \quad \rightarrow \quad \text{holds identically}\]

- $Y\chi(Y)\dot{T} = r_b a(\tau) \quad \Rightarrow \quad T_s = \int_{\tau_c}^{\tau_s} \frac{d\tau}{1 - r_b^2 \dot{a}^2(\tau)} \quad \Rightarrow \quad \text{no naked singularity}$
Introduction

Why generalize General Relativity?
- Horndeski Theory - The NMDC case

Gravitational Collapse of a Scalar Field with NMDC
- Gravitational collapse of a scalar field (how to...)
- A simple example
- The NMDC case
- Boundary surface formation

Conclusions
Gravitational Collapse of a Scalar Field with NMDC

Conclusions

- $Y(\tau) = r_b a(\tau)$, $M(\tau) = \frac{1}{2} r_b^3 a(\tau) \left(\dot{a}^2(\tau) + \frac{a^2(\tau)}{l^2} \right)$
- collapsing shell becomes trapped \Rightarrow **black hole** forms
- Black hole mass depending on λ ($M \sim 10^{-8}$ kg)
- Black hole “size” depending on λ
Conclusions

- **NMDC** acts as a friction term on the collapsing process.
- **Black hole** formation in the absence of a potential \((M \sim M_{pl})\)
- The presence of **NMDC** allows the formation of “heavier” and “larger” black holes.
- Studying additional terms of the Horndeski Lagrangian opens the road for new cosmological models.

open question

- Which combination of Horndeski terms could possibly drive the collapse of a scalar field?