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o Introduction
@ Why generalize General Relativity ?
@ Horndeski Theory - The NMDC case
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ GRis, itself, a generalization of Newton’s Theory of Gravity.
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Introduction

Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ GRis, itself, a generalization of Newton’s Theory of Gravity.

@ Hot Big Bang problems:
K
CH2 +— decreasing function
Horizon aX,a~tP,0<p<1  dy(tse) taee \ /3 Ly
Problem : H ' ~t = (o) (T) ~ 1077
X Unwanted Relics: Energy density of forbidden particles p,, ~ a—° while
we observe p, ~ a—* radiation.

X Flatness Problem: Q — 1 =
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ GRis, itself, a generalization of Newton’s Theory of Gravity.

@ Hot Big Bang problems:

K
CH2 +— decreasing function
Horizon aX,a~tP,0<p<1  dy(tse) taee \ /3 Ly
Problem : H ' ~ot = G~ (=) T m 102,

X Flatness Problem: Q — 1 =

to
X Unwanted Relics: Energy density of forbidden particles p,, ~ a—° while
we observe p, ~ a—* radiation.
@ Accelerating expansion is driven by a new energy density component
with negative pressure, termed Dark Energy (DE).
v Possible origin: positive cosmological constant A = ACDM model
X Uknown origin
X Fine Tuning Problem: pp = 8;\—0 =6.72 x 10724g m~3 for DE
while at early epochs (Plank scale) pp = 5.16 x 1099g m—3 =

A 107123
PPL
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Introduction

Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ GRis, itself, a generalization of Newton’s Theory of Gravity.

@ Hot Big Bang problems:
K

X Flatness Problem: Q — 1 = 2I7 < decreasing function

Horizon aA7 an~ tpvo <p<l = du (tdec) (@) 1/3 ~ 1072
Problem : H 1 ~t i) ~ \'to ~ ’
X Unwanted Relics: Energy density of forbidden particles p,, ~ a—° while
we observe p, ~ a—* radiation.
@ Accelerating expansion is driven by a new energy density component
with negative pressure, termed Dark Energy (DE).
v Possible origin: positive cosmological constant A = ACDM model
X Uknown origin
X Fine Tuning Problem: pp = 8;\—0 =6.72 x 10724g m~3 for DE

while at early epochs (Plank scale) pp = 5.16 x 1099g m—3 =
LA 107128
PPL

@ The energy component giving rise to the distribution of large scale

structure is assumed to be pressureless and termed Dark Matter (D).
X Introduced “by hand” in order to fit observational data.
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Introduction

Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ GRis, itself, a generalization of Newton’s Theory of Gravity.

@ Hot Big Bang problems:

K
CH2 +— decreasing function
Horizon a\ja~t,0<p<1  dinltaed) (tdec)l/S ~ 10-2

X Flatness Problem: Q — 1 =

Problem : H l~t dr(1o) o

X Unwanted Relics: Energy density of forbidden particles p,, ~ a—° while
we observe p, ~ a—* radiation.
@ Accelerating expansion is driven by a new energy density component
with negative pressure, termed Dark Energy (DE).
v Possible origin: positive cosmological constant A = ACDM model
X Uknown origin
X Fine Tuning Problem: pp = 8;\—0 =6.72 x 10724g m~3 for DE

while at early epochs (Plank scale) pp = 5.16 x 1099g m—3 =
LA 107128
PPL

@ The energy component giving rise to the distribution of large scale

structure is assumed to be pressureless and termed Dark Matter (D).
X Introduced “by hand” in order to fit observational data.
@ 1971 (Hawking): Primordial black holes ~ 10~ kg (Planck relics)
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ Simplest generalization: introduction of a scalar field.
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Introduction

Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ Simplest generalization: introduction of a scalar field.

@ Inflaton, with a strange equation of state p + 3P < 0 = INFLATION.
(Guth 1981, Albrecht and Steinhardt 1982, Linde 1982,1983)

@ Inflation & a > 0 & % (#) < 0 as a solution to:
v Flatness Problem: Q — 1 = K . . .
a2H? < increasing function
Horizon a\,a~t’,p>1
Problem : H'~t
v Unwanted Relics: Energy density of forbidden particles p, ~ a~° while
the energy density of the Universe decreases slowly p ~ a=2/p,

v

= scales are “pushed” outside the horizon
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ Simplest generalization: introduction of a scalar field.

@ Inflaton, with a strange equation of state p + 3P < 0 = INFLATION.
(Guth 1981, Albrecht and Steinhardt 1982, Linde 1982,1983)

@ Inflation & a > 0 & % (#) < 0 as a solution to:
v Flatness Problem: Q — 1 = K . . .
a2H? < increasing function
Horizon a\,a~t’,p>1
Problem : H'~t
v Unwanted Relics: Energy density of forbidden particles p, ~ a~° while
the energy density of the Universe decreases slowly p ~ a=2/p,

v

= scales are “pushed” outside the horizon

@ Theories of inflation and present accelerating expansion:
> Quintessence: £L =X — V(¢) > k-essence: L = K(¢,X)
2
> f(R) Gravity: £ = %f(R) > Scalar-Tensor Gravity: £ = F(¢)R+K(¢,X)

> Galileon Gravity: EoM with shift symmetry ¢ — ¢ + b, x*. Dropping the shift
symmetry — rediscovery of the Horndeski Theory (Nicolis et al. 2009, Deffayet et al. 2009)

> Horndeski Theory: The most general Second-Order Scalar Field Equations in 4d.
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

@ Simplest generalization: introduction of a scalar field.

@ Inflaton, with a strange equation of state p + 3P < 0 = INFLATION.
(Guth 1981, Albrecht and Steinhardt 1982, Linde 1982,1983)

@ Inflation & a > 0 & % (é) < 0 as a solution to:
v Flatness Problem: Q — 1 = K . . .
a2H? < increasing function
Horizon a\,a~t’,p>1
Problem : H'~t
v Unwanted Relics: Energy density of forbidden particles p, ~ a~° while
the energy density of the Universe decreases slowly p ~ a=2/p,

v

= scales are “pushed” outside the horizon

@ Theories of inflation and present accelerating expansion:
> Quintessence: £L =X — V(¢) > k-essence: L = K(¢,X)
2
> f(R) Gravity: £ = %f(R) > Scalar-Tensor Gravity: £ = F(¢)R+K(¢, X)
> Galileon Gravity: EoM with shift symmetry ¢ — ¢ + b, x*. Dropping the shift
symmetry — rediscovery of the Horndeski Theory (Nicolis et al. 2009, Deffayet et al. 2009)
> Horndeski Theory: The most general Second-Order Scalar Field Equations in 4d.

naked singularity X

. . (Choptuik 1993, Christodoulou 1994)
° 1 Coll f <
Gravitational Collapse of a scalar field N black hole formation v’

(Goswami, Joshi 2006,Baier et al.2015)
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

By defining X = —V;,¢V#¢/2 the Horndeski Lagrangian reads £ = Zis:z L, with

Ly = K(¢,X),

L3 = —Gs(¢,X)04,

L4 = Ga(¢,X) R+ Gax [(06)* — (Vi Vi) (VFVV9)],
Ls = Gs(¢,X) Guv (VFVY9)

~ & Gax[(00)° = 3(06) (VuVud) (VA976) + 2V Vad) (V*V50) (VO V)]

Non-Minimal Derivative Coupling: Gs(¢,X) = —Xs¢ — L5 = A5G, V¥V @
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Introduction Why generalize General Relativity ?

Horndeski Theory - The NMDC case

By defining X = —V;,¢V#¢/2 the Horndeski Lagrangian reads £ = Zis:z L, with

Lo = K(¢,X),
[:3 = 7G3(¢7X)D¢7
L4 = Ga(¢,X) R+ Gax [(Op)* — (V. V.9) (VAVV9)],

55 = G5(¢7X) Guu (VMVUQS)

~ & Gax[(00)° = 3(06) (VuVud) (VA976) + 2V Vad) (V*V50) (VO V)]

Non-Minimal Derivative Coupling: Gs(¢,X) = —Xs¢ — L5 = A5G, V¥V @
@ Cosmological scenarios with NMDC (Saridakis & Sushkov 2010)
@ Successful Higgs inflation scenario (Germani & Kehagias 2010)
@ Observational tests of inflation with NMDC (Tsujikawa 2012)
o

Perturbation analysis and observational constraints in cosmology with NMDC
(Dent,Dutta,Saridakis,Xia 2013)

Black holes with NMDC (Rinaldi 2012)

Which do not have hair (Hui & Nicolis 2012)

@ Unless they do (Kolyvaris, Koutsoumbas, Papantonopoulos 2012 / Babichev & Charmousis 2013)
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Gravitational collapse of a scalar field (how to...)

I . N A simple example
Gravitational Collapse of a Scalar Field with NMDC The NMDC case

Boundary surface formation

Section 2

9 Gravitational Collapse of a Scalar Field with NMDC
@ Gravitational collapse of a scalar field (how to...)
@ A simple example
@ The NMDC case
@ Boundary surface formation
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

Friedmann equation of a homogeneous scalar field in an FRW metric
9 8t

. 2
a = —a
3 P

Initial data : a(0) = ao, ¢(0) = ¢o, d)(O) =¢o — singular stateat a =0

If a(t) is a monotonically decreasing function of t.

| K. Ntrekis | Gravitational Collapse of a Homogeneous Scalar Field Coupled Kinematically to Einstein Tensor



Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

Friedmann equation of a homogeneous scalar field in an FRW metric
9 8t

. 2
a = —a
3 P

Initial data : a(0) = ao, ¢(0) = ¢o, d)(O) =¢o — singular stateat a =0
If a(t) is a monotonically decreasing function of t.

= 8% (MY Pla)>0 =  a=—y(a)

a

1[}((1) =a ¥ (Goswami, Joshi 2004)
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

Friedmann equation of a homogeneous scalar field in an FRW metric

-2:81 2

Initial data : a(0) = ao, ¢(0) = ¢o, d)(O) =¢o — singular stateat a =0
If a(t) is a monotonically decreasing function of t.

- 8% (MY Yla)>0 =  a=—y(a)

a

1[}((1) =a ¥ (Goswami, Joshi 2004)

An apparent horizon is defined by :
R(r, t,) = 2m(r, ta)
and it is the boundary of the trapped region
T ={(rt):R(r,t) <2m(r,t)}

R: areal radius of the metric R
m: Misner-Sharp mass defined as m = 5 (1 - V#RV“R).
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

a=—y(a)

Gravitational Collapse of a Scalar Field with NMDC

(Giambo 2005):

Proposition

If1{(a) is bounded in (0, ao), there exists r, > O such that, for any shell of matter r < rp,
no apparent horizon forms during the evolution.

| \

Proposition

Iflim,_, o+ ¥(a) = +oo, for any r > 0 such that the initial data are taken outside the
trapped region T, the shell labeled r becomes trapped strictly before it becomes singular,
and so a blaclk hole forms.

A\
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

a=—v(a)
(Giambo 2005):

Proposition

If1{(a) is bounded in (0, ao), there exists r, > O such that, for any shell of matter r < rp,
no apparent horizon forms during the evolution.

| \

Proposition

Iflim,_, o+ ¥(a) = +oo, for any r > 0 such that the initial data are taken outside the
trapped region T, the shell labeled r becomes trapped strictly before it becomes singular,
and so a blaclk hole forms.

A\

@ Aim is to match the scalar field spacetime with an exterior solution at r =},

@ Israel-Darmois junction conditions: Continuity across a hypersurface ¥ of the
first and second fundamental forms induced on X by the two spacetimes

dx® dx® &xe o OxP Ox°®
Is = gap—— e 5 W dy’, Is=-no | —>—+T —_—

dy 6yaayb po 8ya ayb

Theorem

If(a) is bounded and there is r, such that 1 — ?(a)r? is bounded away from 0, then
the boundary 3 = {r = ny} of the scalar field collapses to a naked singularity

pled Kinematically to Einstein Tensor



Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

Giambo 2005:

B

i) 0< B <1:v¢(a) bounded. No apparent horizon forms

ii) —2 < B <0:limg—so9(a) = —4oo. apparent horizon existance
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

8
Giambo 2005: Y(a) = ﬂ/?ﬂ—aﬁ, —-2<pB<1

i) 0< B <1:v¢(a) bounded. No apparent horizon forms

ii) —2 < B <0:limg—so9(a) = —4oo. apparent horizon existance

S=fatx =g | S - L0000l
O s (VA -0) - >0 butforA <0 a(t)= | — CERGRS)) v
¢ cosh (\/ﬁC) e av= cos < 3\A|C>
a(r =Cc+—— )— VIAI Sin(M(tiC» = -0
T 2/3[A]) V/3 cos <M(C)> cos?/3 (M(t - C)) et = B
ST o /3]A]
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Gravitational collapse of a scalar field (how to...)
Gravitational Collapse of a Scalar Field with NMDC Ao e

The NMDC case
Boundary surface formation

S— fd“xf{R 24 Fg/w - %AGW} ama,,ab}

167G 2
3)\6'12(3) ; ( a(t) ( () d(t)d(t))) ;
Klein-Gordon: 1+ ——= 3—= + 3\ t)=0
ein-Gordon < + 2 (1) o(t) + a(t) + @3 (0) () o(t)
. 3a*(1) @(t) o
Friedmann: 20 —A=4n (1 +9A 2(0) @~ (t)
10 10
8
05
e A=-0.0015 L\ A=-0.0015
> — A,=0 % 0.0/ : — 4,=0
4 A,=32 1.=32
A3=70 -05 A3=70
-10
0 10 20 30 40 50
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Gravitational collapse of a scalar field (how to...)
Gravitational Collapse of a Scalar Field with NMDC Ao e

The NMDC case
Boundary surface formation

R—2A [1 1
S= | d*xy/— — | =g" — = AGH Y
f * { 167G [29 2 }a“w ¢}

Klein-Gordon: (1 + M) () + (sﬁ +3) ( il0) M)) (t)=0

a?(t) () a’(t) a?(t)
382(t a2\ .
Friedmann: o o _ A=ar(1+902 *(0 H2(t)
a?(t) a?(t)
10 10
8
0.5
. A=-0.0015 L\ A=-0.0015
> — A,=0 % 0.0/ : — 4,=0
A, =32 A.=32
;=70 -05 A4=70
-10
0 10 20 30 40 50

or approximately near the singularity:

a(t) ~ (s —8)5 = a(t)~—(ts—1) 5

@ Stronger coupling )\ increases the collapsing time.
@ End state of the collapse does not depend on .

@ An apparent horizon always forms — Black hole formation.
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

FRW metric
ds?, = —dt? + a®(t)dr? + r2a?(t)dQ?
matched with a Schwarzschild-AdSs; metric
2
ds2, = —x(Y)dT? 4+ x(Y)71dy? + Y2dQ?,  x(Y)=1-2 + 1

First fundamental forms
-] Ig” = —d7? + r,2a?(7)d0O?
0 2t = <fx(Y)T2 + LY"’) dr? + Y2(7)d0?
x(Y)
Second fundamental forms

@ [N =0-dr? + nya(r)dO?

XE(YV)X(Y) v T 4 3x(Y) y TV + 2x(Y) (YT — TV)

@ &t = —
> 2x(Y)

dr? + vx(Y)Td2?
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Gravitational collapse of a scalar field (how to...)
A simple example

The NMDC case

Boundary surface formation

Gravitational Collapse of a Scalar Field with NMDC

First _fundamental forms
@ N = —dr? + n2a?(7)d0?

. 1 .o
et = <fx(Y)T2 +——V ) dr? 4 Y2(7)d02
. x(Y)

Second fundamental forms
@ [N =0-dr? + nya(r)dO?
XE(V)X(Y) yT° + 3x (V) y TV + 2x(v) (VT — T¥)
2x(Y)
Matched first fundamental forms
.5 1 .o 1 . a?(7)
@ | —x(Y)T — v ) =—-1 = M) ==-r3alr) &2
(i + 57) () = gnPaln) (@) +
@ Y(7) =nmnpa(r) = boundary of the collapsing shell
Matched second fundamental forms

C(YV)X(Y),yT° 4 3x(Y) yTY® +2x(Y) (YT — TV)

et = — dr? 4+ Yx(Y)TdO?

o — = 0 — holds identically
2x(Y)
. T d
@ Yx(Y)T=na(r) = Ts= ° 77 = no naked singularity
Te 1 —np2a2(7)
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Section 3

e Conclusions
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Conclusions

A=-0.0015

Scalar field boundary Y;,

Apparent horizon Y yyy

== Event horizon Ygy

a2
l

@ Y(7)=na(r), M(r)= %rbsa(T) (dzm N # )

@ collapsing shell becomes trapped = black hole forms

@ Black hole mass depending on A (M ~ 1078 kg)

@ Black hole “size” depending’on A




Conclusions

@ NMDC acts as a friction term on the collapsing process.
@ Black hole formation in the absence of a potential (M ~ M)

@ The presence of NMDC allows the formation of “heavier” and “larger”
black holes.

@ Studying additional terms of the Horndeski Lagrangian opens the road
for new cosmological models.

open question

@ Which combination of Horndeski terms could possibly drive the collapse
of a scalar field ?
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