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Introduction: the CC and QFT

The Cosmological Constant (CC) problem arises as a clash between

classical GR and QFT (in the modern effective FT sense).

In classical GR:

Gµν = Λ0 gµν + 8πGN Tµν
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Introduction: the CC and QFT

The Cosmological Constant (CC) problem arises as a clash between

classical GR and QFT (in the modern effective FT sense).

In classical GR:

Gµν = Λ0 gµν + 8πGN Tµν

QFT: the source of semiclassical gravity becomes ⟨Tµν⟩:

⟨Tµν⟩ = Evac gµν in the vacuum

Gµν = Λeff gµν , Λeff = Λ0 + 8πGNEvac.

⇒ Curvatures of order Λeff

Self-tuning: any mechanism which allow flat spcacetime

solutions for generic values of Evac.
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Content of this talk

• Self-tuning possible in the a general framework of a dilatonic,

asymmetric braneworld with general 2-derivative induced

terms.

• Model based on holographic model building: dual of

4-dimensional, strongly coupled, non-gravitational fundamental

theory. Previously explored around 2000: Arkani-Hamed et al. ’00;

Kachru,Schulz,Silverstein ’00; Csaki et al, ’00; All presented problems due to singularities

or absence of localized 4d gravity on the brane
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Content of this talk

• Self-tuning possible in the a general framework of a dilatonic,

asymmetric braneworld with general 2-derivative induced

terms.

• Model based on holographic model building: dual of

4-dimensional, strongly coupled, non-gravitational fundamental

theory. Previously explored around 2000: Arkani-Hamed et al. ’00;

Kachru,Schulz,Silverstein ’00; Csaki et al, ’00; All presented problems due to singularities

or absence of localized 4d gravity on the brane

• Outline

• AdS/CFT micro-review

• Setup

• Flat vacua: self-tuning

• Tensor perturbations: emergent braneworld gravity

• Scalar perturbations: stability

• Perspectives
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AdS/CFT detour

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions Maldacena ’98.
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AdS/CFT detour

• Conformal field theory in d dimension ⇔
Anti de Sitter spacetime AdSd+1

ds2 = du2 + e−2u/ℓηµνdx
µdxν

• xµ: QFT coordinates; u dual to energy scale E ∝ e−u/ℓ.
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AdS/CFT detour

• Conformal field theory in d dimension ⇔
Anti de Sitter spacetime AdSd+1

ds2 = du2 + e−2u/ℓηµνdx
µdxν

• xµ: QFT coordinates; u dual to energy scale E ∝ e−u/ℓ.

• bulk scalar field ϕ(u) ⇔ running coupling g(E). The

corresponding holographic RG-flow geometry breaks

conformal invariance (except at fixed points where ϕ̇ = 0).

ds2 = du2 + eA(u)ηµνdx
µdxν , ϕ = ϕ(u).

E ∝ eA(u)
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Setup

Consider a 4d QFT with a UV conformal fixed point, made out of:

1. A strongly coupled large-N CFT, deformed by a relevant

operator;

2. The weakly coupled Standard Model fields;

3. Some heavy messangers with mass scale Λ, coupling the first

two.
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Setup

Consider a 4d QFT with a UV conformal fixed point, made out of:

1. A strongly coupled large-N CFT, deformed by a relevant

operator;

2. The weakly coupled Standard Model fields;

3. Some heavy messangers with mass scale Λ, coupling the first

two.

Integrating out the messangers leaves as an EFT the (broken) CFT,

coupled to the SM, with some effective couplings set by Λ.

semi-holographic description:

• Describe the strongly coupled large-N theory by a 5d gravity

dual with the metric gab and some bulk scalar fields ϕi, dual to

the operators that drive the CFT to the IR.

• The weakly coupled SM fields have a standard field-theoretical

description, and they sit on a 4d defect in th 5d dual geometry.
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Semi-holographic setup

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν).

Σ0
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν)
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν)

• Quantum effects from the localized fields generically induce

localized effective potentials for ϕ and γµν on the brane
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ) + . . .

]

• Quantum effects from the localized fields generically induce

localized effective potentials for ϕ and γµν on the brane.

• Generically expect:

WB ∼ Λ4 U ∼ Z ∼ Λ2

WB(ϕ) includes the brane fields vacuum energy

• Action is the most general up to two derivates preserving 4d

diffeos.

Holographic tuning of the cosmological constant – p.11



Effective brane-world action

S = M3

∫

d4x

∫

du
√
−g

[
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2
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]

Holographic self-tuning of the cosmological constant – p.12

francesco nitti
5d Gravity dual
 of  4d CFT

francesco nitti
5d Gravity dual
 of  4d CFT

francesco nitti
5d Gravity dual
 of  4d CFT

francesco nitti


francesco nitti
5d Gravity dual
 of  4d CFT

francesco nitti


francesco nitti
5d gravity dual 
of 4d CFT

francesco nitti
Localized Effective action induced by quantum effects of weakly coupled QFT 

francesco nitti
(up to two derivative in the bulk fields)

francesco nitti
We take this class of actions as the  starting point and  the definition of our model 

francesco nitti
The unknown functions appearing in the localized action can be taken as a phenomenologicalinput or motivated  by weakly coupled calculation.  

francesco nitti
work in progress with E. Kiritsis and L. Witkowski

francesco nitti


francesco nitti


francesco nitti


francesco nitti




Field equations and matching conditions

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Einstein equations + Israel junction conditions ([ ] ≡ jump across Σ0):

Gab =
1

2
∂aϕ∂bϕ− 1

2
gab

(

1

2
gcd∂cϕ∂dϕ+ V (ϕ)

)

,

[

γµν
]

=
[

ϕ
]

= 0;
[

Kµν−γµνK
]

=
1√
−γ

δSΣ0

δγµν
;
[

na∂aϕ
]

= − 1√
−γ

δSΣ0

δϕ
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Field equations and matching conditions

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Einstein equations + Israel junction conditions ([ ] ≡ jump across Σ0):

Gab =
1

2
∂aϕ∂bϕ− 1

2
gab

(

1

2
gcd∂cϕ∂dϕ+ V (ϕ)

)

,

[

γµν
]

=
[

ϕ
]

= 0;
[

Kµν−γµνK
]

=
1√
−γ

δSΣ0

δγµν
;
[

na∂aϕ
]

= − 1√
−γ

δSΣ0

δϕ

Self tuning if ∃ solutions with flat defect for generic WB ∼ Λ4.
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Bulk equations

S5 = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

Vacuum (Poincaré invariant) solutions:

ds2 = du2 + e2A(u)ηµνdxµdxν , ϕ = ϕ(u)

6Ä+ ϕ̇2 = 0, 12Ȧ2 − 1

2
ϕ̇2 + V (ϕ) = 0.
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Bulk equations

S5 = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

Vacuum (Poincaré invariant) solutions:

ds2 = du2 + e2A(u)ηµνdxµdxν , ϕ = ϕ(u)

6Ä+ ϕ̇2 = 0, 12Ȧ2 − 1

2
ϕ̇2 + V (ϕ) = 0.

One has to solve independently on each side of the defect (at

u = u0), and glue the solutions using Israel junction conditions:

[

A
]

=
[

ϕ
]

= 0;
[

Ȧ
]

= −1

6
WB(ϕ(u0));

[

ϕ̇
]

=
dWB

dϕ
(ϕ(u0))
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Vacuum Geometry

AUV (u),ϕUV (u) AIR(u),ϕIR(u)

eAUV → +∞, ϕUV → 0
UV-AdS boundary

eAIR → 0, ϕIR → ϕ∗

Interior of IR-AdS space
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (ϕ) (′ = d/dϕ):

Ȧ = −1

6
W (ϕ) Φ̇ = W ′(ϕ),

− d

4(d− 1)
W 2 +

1

2

(

W ′)2 = V
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the geometry.
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (ϕ) (′ = d/dϕ):

Ȧ = −1

6
W (ϕ) Φ̇ = W ′(ϕ),

− d

4(d− 1)
W 2 +

1

2

(

W ′)2 = V

• Up to a rescaling of the scale factor, W completely determines

the geometry.

W (ϕ) =

{

WUV (ϕ) ϕ < ϕ0

W IR(ϕ) ϕ > ϕ0

• On each side of the interface (ϕ = ϕ0), W is determined by one

integration consntant C.
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Junction conditions for the superpotential

Junction conditions take a simple form:

W IR(ϕ0)−WUV (ϕ0) = WB(ϕ0),
dWUV

dϕ
(ϕ0)−

dW IR

dϕ
(ϕ0) =

dWB

dϕ
(ϕ0)
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Junction conditions for the superpotential

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.
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Junction conditions for the superpotential

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.

IR side: Only certain IRs are acceptable (e.g. IR AdS fixed

point) This picks out a single solution W IR
∗ and fixes CIR = C∗
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IR Selection

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.

IR side: Only certain IRs are acceptable (e.g. IR AdS fixed

point) This picks out a single solution W IR
∗ and fixes CIR = C∗
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Equilibrium solution

WUV (ϕ0) = W IR
∗ (ϕ0)−WB(ϕ0),

dWUV

dϕ
(ϕ0) =

dW IR
∗

dϕ
(ϕ0)−

dWB

dϕ
(ϕ0)

Two equations for two unknowns CUV ,ϕ0. Generically there

exist a unique (or a discrete set of) solutions with CUV ,ϕ0

determined.
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Equilibrium solution

WUV (ϕ0) = W IR
∗ (ϕ0)−WB(ϕ0),

dWUV

dϕ
(ϕ0) =

dW IR
∗

dϕ
(ϕ0)−

dWB

dϕ
(ϕ0)

For generic brane vacuum energy ∼ Λ4, geometry (VEVs and

brane position) adjusts so that the brane is flat and the UV glues

to the regular IR through the junction (self-tuning).
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?
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the UV ⇒ no (normalizable) zero-mode gravitons exist.
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?

• The transverse volume of holographic dimension is infinite in

the UV ⇒ no (normalizable) zero-mode gravitons exist.

• The induced Einstein term on the defect allows for the existence

of a 4d-like graviton resonance (Dvali,Gabadadze,Porrati, ’00)

S = M3

∫
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√
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√
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?

• The transverse volume of holographic dimension is infinite in

the UV ⇒ no (normalizable) zero-mode gravitons exist.

• The induced Einstein term on the defect allows for the existence

of a 4d-like graviton resonance (Dvali,Gabadadze,Porrati, ’00)

S = M3

∫

du d4x
√
gR5 + . . .+M3

∫

u=u0

d4x
√
γU(ϕ0)R4

• Localized Ricci term ⇒ graviton exchange is effectively 4d at

“short” distances.

• Bulk curvature ⇒ 4d massive graviton at very large distances.
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Scales of braneworld gravity

Two competing scales:

1. “DGP” transition length: rc ≈ U(ϕ0)

2. Bulk curvature length rt = (eA0R0)−1, R0 ≈ WUV (ϕ0)
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Scales of braneworld gravity

Two competing scales:

1. “DGP” transition length: rc ≈ U(ϕ0)

2. Bulk curvature length rt = (eA0R0)−1, R0 ≈ WUV (ϕ0)

• rt > rc

• rt < rc

M2
p ≈ M3U0, m2

g ≈ R0

U0 Holographic tuning of the cosmological constant – p.24



Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Analysis of linear flucutations show that there exist conditions

on the background solution which guarantee stability.

1.

τ0 > 0, Z0 > 0, Z0τ0 > 36

(

dUB

dϕ

∣

∣

∣

ϕ0

)2

τ0 ≡ 6

(

6
WB

WIRWUV
− U

)

ϕ0

, Z0 ≡ Z(ϕ0)

⇒ No ghost instabilities
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Analysis of linear flucutations show that there exist conditions

on the background solution which guarantee stability.

2.

M̃2 ≡

(

d2WB

dϕ2
(ϕ0)−

[

d2W

dϕ2

]IR

UV

)

≥ 0

⇒ No tachyonic instabilities.
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Conclusion and outlook
We constructed a framework where Self-tuning of the CC is

generically realized. Challenge now is model-building: construct

phenomenologically viable model.

• Acceptable values of Mp, rc, mg given large UV cutoff;

• Compliance with stability requirements;

• Deal with vDVZ discontinuity (Role of non-linearities,

Veinshtein mechanism);

• Avoidance of fifth force constraints;
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Conclusion and outlook
We constructed a framework where Self-tuning of the CC is

generically realized. Challenge now is model-building: construct

phenomenologically viable model.

• Acceptable values of Mp, rc, mg given large UV cutoff;

• Compliance with stability requirements;

• Deal with vDVZ discontinuity (Role of non-linearities,

Veinshtein mechanism);

• Avoidance of fifth force constraints;

If this all goes through, one can do more phenomenology:

• Add SM and Higgs field (see Lukas Witkowski’s talk)

• Study the space of solutions: non-flat brane, time-dependent

solutions (cosmology) (ongoing work with Lukas Witkowski and Jewek Ghosh)

• The framework can potentially addess EW hierarchy problem

(via stabilized warped extra dimensions) and late-time

acceleration (cosmology close to the equilibrium position).Holographic tuning of the cosmological constant – p.40



Example

V (ϕ) = −12−
(

∆(4−∆)

2
− b2

4

)

ϕ2 − V1 sinh
2 bϕ

2
,

• supports an AdS fixed point at ϕ = 0 (ℓUV = 1)

• good IR solution:

WIR(ϕ) ∼
√

2

(32/3)− b2
exp

bϕ

2
, ϕ→ +∞.
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How large can Λ be?

WB(ϕ) = Λ4

[

−1− ϕ

s
+
(ϕ

s

)2
]

b =
1
√
6
, ∆ = 3, V1 = 1

ϕ0 ≃ ϕ̄ ≈ 1.6 s
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Effective 4d Green’s function

Introuce tensor perturbations:

δgµν = e2A(r)hµν(r, x
α), hµµ = ∂µhµν = 0

Holographic tuning of the cosmological constant – p.30



Effective 4d Green’s function

Introuce tensor perturbations:

δgµν = e2A(r)hµν(r, x
α), hµµ = ∂µhµν = 0

Solve classical linearized equation for tensor fluctuations with

localized source:
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∫

d4xG ρσ
µν (x− x′; r, r0)Tρσ(x

′, r0),
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Effective 4d Green’s function

Introuce tensor perturbations:

δgµν = e2A(r)hµν(r, x
α), hµµ = ∂µhµν = 0

Solve classical linearized equation for tensor fluctuations with

localized source:

hµν(x, r) =

∫

d4xG ρσ
µν (x− x′; r, r0)Tρσ(x

′, r0),

Tree-level interaction described in purely 4d terms by an effective

Green’s function:

Sint(T ) =

∫

d4p

(2π)4
G̃4(p)

[

Tµν(p)T
µν(−p)− 1

3
T (p)T (−p)

]

G4(x) ≡ G(x, r0, r0).
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4d-5d transition

rc < rt: DGP-like transition, at intermediate distances.

rc = U0, rt =
e−A0

R0
, M2

p ≈ M3U0, m2
0 ≈

R0

U0
,
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Massless/Massive gravity transition

rc > rt massive graviton propagator all the way.

rc = U0, rt =
e−A0

R0
, M2

p ≈ M3U0, m2
0 ≈

R0

U0
,
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Looking for solutions

Junction conditions can be rewritten as a non-linear equation for ϕ0:

−Q2

2

(

W IR(ϕ0)−WB(ϕ0)
)2

+
1

2

(

dW IR

dϕ
− dWB

dϕ

)2

ϕ0

= V (ϕ0),

Q ≡

√

d

2(d− 1)

V , WB and W IR are fixed functions of ϕ.

1. Solve for ϕ0

2. Solve superpotential equation for WUV (ϕ) with initial

condition:

WUV (ϕ0) = W IR(ϕ0)−WB(ϕ0)
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Consistent self-tuining

Two possibilities:

WUV > 0 WUV < 0
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Consistent self-tuining

Two possibilities:

WUV > 0 WUV < 0
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Genericity

As we will see, it is desirable (but not strictly necessary) that

WB(ϕ0) > 0, i.e. 0 < WUV (ϕ0) < WIR(ϕ0) (in this case, the

solution is manifestly ghost-free).

It turns out that that for such solutions to exist, it is enough that

W (ϕ̄) = 0, W ′(ϕ̄) > 0

for some ϕ̄. Then the equations are solved, with WB(ϕ0) > 0, for:

ϕ0 ≈ ϕ̄+
∂ϕ(W 2

IR)

4|V |

∣

∣

∣

ϕ=ϕ̄

provided:

WB(ϕ0)

WIR(ϕ0)
≪ 1
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Relating scales

• We can relate bulk parameters M, eA0 , ℓUV to those of the dual

field theory N, g0,∆:

eA0 ∝ (ℓUV g0)
1/(d−∆), (MℓUV )

3 ∝ N2

• Bulk superpotentials set the scale of the bulk curvature scale:

W (ϕ(u)) ∝ R(u)

⇒ M

R0
∼ N2/3

ℓUV WUV (ϕ0)

• The scale of brane potentials is set by the UV cut-off Λ:

WB ∼ Λ4

M3
, UB ∼ Λ2

M3
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DGP scenario

Requires rt > rc

• Gravity must be modified at cosmological distances:

Mprc =

(

MU0

4

)3/2

≈
(

Λ

M

)3

u3(ϕ0) ≈ 1060

• The assumption rt > rc translates into:

e−A0U0R0 ! 1 ⇒
(

Λ

M

)2

u(ϕ0)
ℓUV WUV (ϕ0)

N2/3 (ℓUV g0)
1

(d−∆)

! 1
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Massive gravity scenario 1

Requires rt > rc

• Large distance modification (graviton mass) must be at

cosmological scales

mg

Mp
! 10−60 ⇒

(

M

Λ

)2
(ℓUV WUV (ϕ0))1/2

u(ϕ0)

1

N1/3
< 10−60

• Short distance modification must be below (tenths of) mm:

rtMp ! 10−30 ⇒
(

M

Λ

)

ℓUV WUV (ϕ0)

u1/2(ϕ0) (ℓUV g0)
1

(d−∆) N2/3
> 10−30
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Massive gravity scenario 2

Alternatively, rt < rc (no DGP regime)

• Same large scale condition:

mg

Mp
! 10−60 ⇒

(

M

Λ

)2
(ℓUV WUV (ϕ0))1/2

u(ϕ0)

1

N1/3
< 10−60

• No short distance modification until the UV cut-off.
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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DGP regime (short distance)

Overall interaction for light modes in the 4d regime:

V(q) ≃
1

q2

[

1

2M3U0

(

Tµν(q)T
µν(−q)−

1

3
Tµ
µ (q)T ν

ν (−q)

)

+
1

2M3τ0
Tµ
µ (q)T ν

ν (−q)

]
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DGP regime (short distance)

Overall interaction for light modes in the 4d regime:

V(q) ≃
1

q2

[

1

2M3U0

(

Tµν(q)T
µν(−q)−

1

3
Tµ
µ (q)T ν

ν (−q)

)

+
1

2M3τ0
Tµ
µ (q)T ν

ν (−q)

]

Something interesting happens if

WB

WIRWUV

∣

∣

∣

ϕ0

≪ U0, ⇒ τ0 ≃ −6U0.
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DGP regime (short distance)

Overall interaction for light modes in the 4d regime:

V(q) ≃
1

q2

[

1

2M3U0

(

Tµν(q)T
µν(−q)−

1

3
Tµ
µ (q)T ν

ν (−q)

)

+
1

2M3τ0
Tµ
µ (q)T ν

ν (−q)

]

Something interesting happens if

WB

WIRWUV

∣

∣

∣

ϕ0

≪ U0, ⇒ τ0 ≃ −6U0.

⇒ V(q) ≃ 1

q2

[

1

2M2
p

(

Tµν(q)T
µν(−q)− 1

2
Tµ
µ (q)T

ν
ν (−q)

)]

,M2
p = M3U0

• Tensor Structure becomes that of a 4d massless graviton !

• Leftover interaction is light scalar with ultra-weak coupling

• Warning: need to check explcitly about ghosts
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