Spinorial Perturbations in Galileon Black Holes

Bertha Cuadros-Melgar

University of São Paulo Brazil

Work in collaboration with:

E. Abdalla (IFUSP), J. de Oliveira (UFMT), A. B. Pavan (UNIFEI), and C. Pellicer (UFRN)

Spinorial perturbations in galileon BH

Goal and Motivation

- **\$** Stability of the geometry.
- Fermion fields have unique features that boson fields do not have.

Gauge/gravity conjecture: spinorial perturbations describe matter fields at the boundary CFT.

2

Galileon Black Hole Solution

The action is given by [M. Rinaldi, Phys. Rev. D86, 084048 (2012)]

$$S = \frac{1}{2} \int dx^4 \sqrt{-g} \left[\beta R - \left(g^{\mu\nu} - \bar{z}G^{\mu\nu}\right)\partial_\mu \phi \partial_\nu \phi\right] \,. \tag{1}$$

where

$$\beta = m_P^2, \qquad \qquad \bar{z} = \frac{z}{m_P^2}. \tag{2}$$

For z > 0 a black hole solution can be found to be

$$ds^{2} = -F(r)dt^{2} + H(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}), \qquad (3)$$

Spinorial perturbations in galileon BH

$$F(r) = \frac{3}{4} + \frac{r^2}{L^2} - \frac{2M}{m_P^2 r} + \frac{\sqrt{\bar{z}}}{4r} \arctan\left(\frac{r}{\sqrt{\bar{z}}}\right), \qquad (4)$$

$$H(r) = \frac{(r^2 + 2\bar{z})^2}{4(r^2 + \bar{z})^2 F(r)},$$

$$[\phi'(r)]^2 = -\frac{m_P^2 r^2 (r^2 + 2\bar{z})^2}{4\bar{z}(r^2 + \bar{z})^3 F(r)}, \qquad (5)$$

being $l^2 = 12\overline{z}$. Clearly, \overline{z} is a nonperturbative parameter that interpolates between S ($z \to \infty$) and SAdS solutions.

Fermionic Field Perturbations

The spinorial field must obey Dirac equation

$$i\gamma^{(a)}e^{\mu}_{(a)}\nabla_{\mu}\Psi - \mu_{s}\Psi = 0, \qquad (6)$$

where

$$\nabla_{\mu} = \partial_{\mu} + \frac{1}{4} \omega_{\mu}^{(a)(b)} \gamma_{[a} \gamma_{b]}, \qquad \omega_{\mu}^{(a)(b)} = e_{\nu}^{(a)} \partial_{\mu} e^{(b)\nu} + e_{\nu}^{(a)} \Gamma_{\mu\sigma}^{\nu} e^{\sigma(b)}.$$
(7)

Decoupling the radial part of Dirac equation and after some coordinate transformations the 2-spinors Z_{\pm} obey the following equation,

$$\left(\frac{d^2}{d\hat{r}_*^2} + \omega^2\right) Z_{\pm} = V_{\pm} Z_{\pm} \,, \tag{8}$$

Spinorial perturbations in galileon BH

with the superpartner potentials

$$V_{\pm} = W^2 \pm \frac{dW}{d\hat{r}_*}, \qquad (9)$$

given in terms of the so-called superpotential

$$W = \frac{\left[F\left(K^2/r^2 + \mu_s^2\right)\right]^{1/2}}{1 + \frac{\mu_s K}{2\omega(K^2 + \mu_s^2 r^2)}\sqrt{\frac{F}{H}}}.$$
(10)

The coordinate \hat{r}_* can be calculated exactly in terms of a tortoise coordinate r_* both given by

$$\hat{r}_* = r_* + \frac{1}{2\omega} \arctan\left(\frac{\mu_s r}{K}\right), \qquad dr_* = \sqrt{\frac{H(r)}{F(r)}} \, dr. \tag{11}$$

Spinorial perturbations in galileon BH

Figure 1: Effective potential V_+ for fermion perturbations for different K and \overline{z} .

Spinorial perturbations in galileon BH

Figure 2: Effective potential V_{-} for fermion perturbations for different K and \bar{z} .

Spinorial perturbations in galileon BH

WKB results

	$\sqrt{ar{z}}=1$		$\sqrt{ar{z}}=0.8$		$\sqrt{\bar{z}} = 0.6$	
K	$Re(\omega)$	$-Im(\omega)$	$Re(\omega)$	$-Im(\omega)$	$Re(\omega)$	$-Im(\omega)$
1	0.420	0.357	0.394	0.495	0.124	1.250
2	0.832	0.340	0.858	0.410	0.461	0.776
3	1.273	0.326	1.361	0.379	1.290	0.475
4	1.712	0.321	1.845	0.371	1.988	0.440
5	2.148	0.319	2.321	0.369	2.593	0.450

Table 1: Dirac quasinormal frequencies with fixed horizon radius $r_+ = 1$ computed using the WKB technique.

Figure 3: Perturbations evolution for a superpartner potential V_+ .

Spinorial perturbations in galileon BH

Figure 4: Perturbations evolution for a superpartner potential V_{-} .

Spinorial perturbations in galileon BH

Summary

We considered fermion perturbations in the context of galileon black holes.

Bue to potentials shape for massless fermions WKB method can be applied. For $\bar{z} \sim r_h$ convergence is poor. However, as K increases, convergence is improved.

• Numerical method shows very good agreement for ω_R at big K and ω_I at small K.