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Plan

◮ Generalization of Brans-Dicke gravity
• Same assumption as BD : �φ ∼ T , φ ∼ G−1

H2
0 ∼ GNρ0 ⇔ G−1

N

R2
H,0

∼ ρ0 (RH,0 ∼ H−1
0 present cosmic horizon)

• Same assumption as BD : 2nd order eqm
• Difference : T µ

ν;µ 6= 0 (the r.h.s. will be determined from
consistency → complete BD) , with caution

◮ Attempt for finding the corresponding action of the new theory
(action of new vacuum theory is found; action of new full
matter theory is only found in special cases)

◮ Corresponding cosmology, applications
(avoidance of singularity, inflation, late-times acceleration)

◮ Study of cosmological perturbations



◮ Brans-Dicke eqm:

Gµ
ν =

8π

φ
(Tµ

ν + T µ
ν)

Tµ
ν =

2− 3λ

16πλφ

(

φ;µφ;ν−
1

2
δµνφ

;ρφ;ρ

)

+
1

8π

(

φ;µ;ν−δµν�φ
)

�φ = 4πλT
T µ

ν;µ = 0

◮ Second order eqm

◮ φ ∼ G−1

◮ Simplest eqm for the scalar field (maybe add a potential)

◮ Probe matter moves on geodesics

◮ Consistency → Tµ
ν

◮ We no longer assume the vanishing of T µ
ν;µ, but let it free to

be determined by consistency, and this changes also Tµ
ν



◮ Two ways to derive the BD eqm :
• From consistency of 2nd order eqm – to be followed here
with interaction
• From a uniquely defined action

SBD =
1

16π

∫

d4x
√−g

(

φR−ωBD

φ
gµνφ,µφ,ν

)

+

∫

d4x
√−g Lm

Matter minimally coupled (conserved)
φ ∼ [GN ]

−1 ∼ [M]2

⇒ ωBD

φ only option for the kinetic term, ωBD ∼ [M]0

The method of dimensional analysis does not help if matter is
not conserved (if interactions of Lm with φ are allowed, plenty
of actions can be written with limit the BD one in the absence
of interactions – the number of such actions increases in the
presence of GN or a new mass scale ν)



Proof

◮

Gµ
ν=

8π
φ (Tµ

ν + T µ
ν) (1)

Tµ
ν = A(φ)φ;µφ;ν + B(φ)δµνφ;ρφ;ρ + C (φ)φ;µ;ν + E (φ)δµν�φ (2)

◮ Bianchi of (1) :

Gµ
νφ;µ − 8πTµ

ν;µ = 8πT µ
ν;µ (3)

⇔ Tµ
ν;µ − 1

φT
µ
νφ;µ = 1

φT
µ
νφ;µ − T µ

ν;µ (4)

◮ Derivative of (2) in (4) ⇒ �(φ;ν) , (�φ);ν

◮ Rµ
νφ;µ = �(φ;ν)− (�φ);ν , (1) , (2) ⇒

�(φ;ν) = (�φ);ν +
4π
φ (A−2B)φ;µφ;µφ;ν − 4π

φ (C+2E )φ;ν�φ

+8π
φ Cφ;µ;νφ;µ + 4π

φ (2T µ
ν−T δµν)φ;µ (5)



◮

[

A′+B ′+
4π

φ
C (A−2B)− 1

φ
(A+B)

]

φ;µφ;µφ;ν

+
[

A+E ′− 4π

φ
C (C+2E )− 1

φ
E
]

φ;ν�φ

+
[

A+2B+C ′+
8π

φ
C 2− 1

φ
C
]

φ;µ;νφ;µ

+(C+E )(�φ);ν

+
(

T µ
ν;µ − 1−8πC

φ
T µ

νφ;µ − 4π

φ
CT φ;ν

)

= 0 (6)

◮

�φ = 4πλT ⇒ T =
1

4πλ
�φ (7)



◮ (7) in (6) ⇒

[

A′+B ′+
4π

φ
C (A−2B)− 1

φ
(A+B)

]

φ;µφ;µφ;ν

+
[

A+E ′− 4π

φ
C (C+2E )− 1

φ
E − 1

λφ
C
]

φ;ν�φ

+
[

A+2B+C ′+
8π

φ
C 2− 1

φ
C
]

φ;µ;νφ;µ

+(C+E )(�φ);ν

+
(

T µ
ν;µ − 1−8πC

φ
T µ

νφ;µ

)

= 0 (8)

Basically, we use a method to exploit fully the information that the
Bianchi identities set on the undetermined functions which define
the eqm.
We cannot vanish the various coefficients, although functionally
independent, since we do not know how matter interacts



◮ Zero matter limit T µ
ν = 0 ⇒ �φ = 0 :

the system should still be meaningful with the same
A,B ,C ,E , a vacuum theory should be defined, and no new
equations of motion should arise

A′+B ′+
4π

φ
C (A−2B)− 1

φ
(A+B) = 0 (9)

A+2B+C ′+
8π

φ
C 2− 1

φ
C = 0 (10)

T µ
ν;µ − 1−8πC

φ
T µ

νφ;µ

+
[

A+E ′− 4π

φ
C (C+2E )− 1

φ
E − 1

λφ
C
]

φ;ν�φ+ (C+E )(�φ);ν = 0(11)



◮ T µ
ν;µ = f (φ)T µ

νφ;µ + h(φ)T φ;ν +m(φ)T;ν
general energy-momentum conservation equation with 3
interaction terms T µ

νφ;µ, T φ;ν , T;ν
◮ Eqs (9), (10) have one freedom, e.g. C

Eq (11) contains an extra arbitrary function E
⇒ arbitrariness of 2 functions picked up by hand (infinite
consistent theories)

◮ Only way without arbitrariness : single violating term
T µ

ν;µ ∼ T µ
νφ;µ → unique theory

T µ
ν;µ ∼ T φ;ν → unique theory

T µ
ν;µ ∼ T;ν → unique theory



First theory : T µ
ν;µ ∼ T µ

νφ;µ

A′+B ′+
4π

φ
C (A−2B)− 1

φ
(A+B) = 0 (12)

A+2B+C ′+
8π

φ
C 2− 1

φ
C = 0 (13)

A+E ′− 4π

φ
C (C+2E )− 1

φ
E − 1

λφ
C = 0 (14)

C+E = 0 (15)

T µ
ν;µ =

1−8πC

φ
T µ

νφ;µ (16)

The system can be solved exactly



◮ Equivalently

(A+B)′+
4π

φ
C (A−2B)− 1

φ
(A+B) = 0 (17)

C ′−A− 4π

φ
C 2−

(

1− 1

λ

) 1

φ
C = 0 (18)

A+B+
6π

φ
C 2− 1

2λφ
C = 0 (19)

E = −C (20)

T µ
ν;µ =

1−8πC

φ
T µ

νφ;µ (21)

◮ Define X = A+ B , Y = A− B



◮

X ′+
2π

φ
C (3Y −X )− 1

φ
X = 0 (22)

Y = 2C ′ − 8π

φ
C 2 − 2

(

1− 1

λ

) 1

φ
C−X (23)

X = −6π

φ
C 2+

1

2λφ
C (24)

E = −C (25)

T µ
ν;µ =

1−8πC

φ
T µ

νφ;µ (26)

◮ Differentiating and combining ⇒

C ′+
16π

φ
C 2− 2

φ
C = 0

General solution : C (φ) = φ2

ν+8πφ2 , ν ∼ [M]4 integr . const.

⇒ A(φ),B(φ),E (φ) unique



Gµ
ν=

8π

φ
(Tµ

ν + T µ
ν)

Tµ
ν=

φ

2λ(ν+8πφ2)2

{

2
[

(1+λ)ν+4π(2−3λ)φ2
]

φ;µφ;ν

−
[

(1+2λ)ν+4π(2−3λ)φ2
]

δµνφ
;ρφ;ρ

}

+
φ2

ν+8πφ2
(

φ;µ;ν−δµν�φ
)

�φ = 4πλT

T µ
ν;µ=

ν

φ(ν+8πφ2)
T µ

νφ;µ ⇔ (φ−1
√

|ν+8πφ2| T µ
ν);µ = 0



◮ The system is consistent (Bianchies are satisfied)

◮ For ν = 0 reduced to the standard Brans-Dicke

◮ Given that Tµ
ν contains up to second derivatives, and given

�φ=4πλT , this theory is unique for this single interaction

◮ The strength of the interaction in the wave equation is
controlled by λ, while in the non-conservation equation by ν

◮ In the decoupling limit λ→ 0, Brans-Dicke should reduce to

Einstein, which is not the case since T
µ (BD)
ν = 2−3λ

16πλφ{...}
(moreover in this limit, a solution of BD does not always
reduce to a solution of General Relativity with the same T µ

ν).
Here, this can be done, redefining ν=λ−2ν ′, then for λ→0 :
Gµ

ν = 8πφ−1T µ
ν , T

µ
ν ≡ 0, �φ = 0, (φ−1T µ

ν);µ = 0
and for the solution φ =constant we get Einstein



Second theory : T µ
ν;µ ∼ T φ;ν

Gµ
ν =

8π

φ
(Tµ

ν + T µ
ν)

Tµ
ν =

2−3λ−4µ

16πλφ

(

φ;µφ;ν−
1

2
δµνφ

;ρφ;ρ

)

+
1

8π

(

φ;µ;ν−δµν�φ
)

�φ = 4πλT
T µ

ν;µ =
µ

φ
T φ;ν

µ integration constant
For µ = 0 reduces to BD
For µ = 1

2 the theory had been found in the past



Third theory : T µ
ν;µ ∼ T;ν

Gµ
ν =

8π

φ
(Tµ

ν + T µ
ν)

Tµ
ν =

2−3λ−8σ

16πλφ

(

φ;µφ;ν−
1

2
δµνφ

;ρφ;ρ

)

+
1

8π
φ;µ;ν −

λ+2σ+2ηφ2

8πλ
δµν�φ

�φ = 4πλT
T µ

ν;µ = (σ+ηφ2)T;ν

• σ, η integration constants . For σ = η = 0 reduces to BD
• no φ;µ in conservation equation, so even for slowly varying φ,
the geodesic equation does not arise



In standard derivation of Brans-Dicke, Rµ
ν in Bianchi is just

replaced by Rµ
νφ;µ = �(φ;ν)− (�φ);ν and R by the trace of the

gravitational eqm – instead of replacing Gµ
ν from the gravitational

eqm – therefore both �(φ;ν), (�φ);ν appear in the consistency
relation

[

A′+B ′− 1

2φ
(A+4B)

]

φ;µφ;µφ;ν

+
[

A+E ′− 1

2φ
(C+4E )− 1

8πλφ

]

φ;ν�φ+(A+2B+C ′)φ;µ;νφ;µ

+
(

E +
1

8π

)

(�φ);ν+
(

C− 1

8π

)

�(φ;ν)+T µ
ν;µ = 0

The result is an algebraic system for the unknown coefficients (not
differential) with more equations, which give Brans-Dicke.
However, with non-conservation, the correct is to replace �(φ;ν) in
terms of (�φ);ν , T µ

ν , ... ⇒ less equations appear (now
differential) which give rise to the integration constants ν,...



◮ In the presence of a potential V (φ), repeat the process :

�φ = V ′(φ) + 4πλT

Gµ
ν = ....(same)

T µ
ν;µ=

ν

φ(ν+8πφ2)
T µ

νφ;µ−
φ

ν + 8πφ2
V ′

λ
φ;ν

◮ A different eqm , e.g. �φ+ F (φ)φ;µφ;µ = 4πλT gives
different theories



Generalized vacuum Brans-Dicke theories

◮ In Brans-Dicke, the vacuum theory is obtained by setting
T µ
ν = 0 in the matter eqm ( ⇒ �φ = 0, Gµ

ν = 2−3λ
16πλφ ...),

where λ does not control any coupling.
If set T µ

ν = 0 from the beginning of the “wrong” consistency
approach, there is continuity with the above limiting process
of the matter theory (with the difference that λ appears as
integration constant).

◮ In Complete Brans-Dicke, setting T µ
ν = 0 gives probably the

most interesting vacuum theories (more general that the
vacuum BD), but does not exhaust the vacuum theories with
�φ = 0 (which are derived with the “correct” consistency
process).



The vacuum consistency condition is eq. (6). Set �φ = 0.
Consistency equations :

A′+B ′+
4π

φ
C (A−2B)− 1

φ
(A+B) = 0

C ′+
8π

φ
C 2− 1

φ
C+A+2B = 0

⇒ one arbitrary function of φ
Of course, the unique Tµ

ν found before in the matter theory
satisfies these eqs, and this is what I will call vacuum theory in the
next



Vacuum Action

◮

Sg =
η

2(8π)3/2

∫

d4x
√−g

[
√

|ν+8πφ2|R − 8π

λ

ν+4π(2−3λ)φ2

|ν+8πφ2|3/2 gµνφ,µφ,ν

]

−−→ν=0
SBD =

1

16π

∫

d4x
√−g

(

φR − 2−3λ

2λφ
gµνφ,µφ,ν

)

◮ Symmetry transformation : ĝµν = Ω2gµν , χ = χ(φ)

Ω2 =

√

|ν+8πφ2|
|ν+8πχ2|

• ǫ = sgn(ν+8πχ2) > 0 :

χ =
s

8π

(

θ
∣

∣4πφ+
√
2π

√

ν+8πφ2
∣

∣

±1−2πν

θ

∣

∣4πφ+
√
2π

√

ν+8πφ2
∣

∣

∓1
)

• ǫ = sgn(ν+8πχ2) < 0 : χ = ±
√

|ν|
8π sin

[

arcsin
(
√

8π
|ν| φ

)

−c1

]



Total Action ?

◮ Simplest candidate
S = Sg +

∫

d4x
√−g J(φ)Lm

To give the correct gravitational eqm under δgS ⇒
J(φ) = 1√

8π

√
|ν+8πφ2|
|φ|

◮ However, δφS ⇒ �φ = 4πλT + λν
φ2 Lm

Thus, this total Lagrangian is valid only if on-shell the
numerical value of Lm vanishes, e.g. for relativistic perfect
fluids, action functionals have been constructed where the
matter Lagrangian is proportional to the pressure (for
pressureless dust this on-shell value vanishes)

◮ Even in the Jordan frame the matter is not minimally-coupled,
due to the existence of the interaction

◮ It is possible that a general complete Lagrangian of a different
form exists



Canonical form of the action (meaningful also in vacuum)
◮ Einstein term + non-canonical kinetic term :

S =
η

16π

∫

d4x
√

−g̃
[

R̃− 8π

λ(ν+8πφ2)
g̃µνφ,µφ,ν+

2(8π)
3
2

φ
√

|ν+8πφ2|
Lm(ω̃

2g̃κλ,Ψ)
]

g̃µν =
( |ν+8πφ2|

8π

)
1
2
gµν

◮ Einstein term + canonical kinetic term :
• ǫ = sgn(ν+8πχ2) > 0 :

S =
η

16π

∫

d4x
√

−g̃
[

R̃ − 1

2
ǫλg̃

µνσ,µσ,ν

+
2η(8π)3

∣

∣e
√

2|λ|σ−4π2ν2e−
√

2|λ| σ∣
∣

Lm(ω̃
2g̃κλ,Ψ)

]

σ−σ0 =
√

2

|λ| ln
∣

∣

∣
4πφ+

√
2π

√

ν+8πφ2
∣

∣

∣
, ω̃2 =

8π
∣

∣

∣
e

√

|λ|
2

σ+2πνe−
√

|λ|
2

σ
∣

∣

∣



• ǫ = sgn(ν+8πχ2) < 0 :

S =
η

16π

∫

d4x
√

−g̃
[

R̃ +
1

2
ǫλg̃

µνσ,µσ,ν

+
4(8π)2

|ν| sin
(
√

2|λ| σ
)Lm(ω̃

2g̃κλ,Ψ)
]

σ − σ0 =

√

2

|λ| arcsin
(

√

8π

|ν| φ
)

, ω̃2 =

√
8π

√

|ν| cos
(

√

|λ|
2 σ

)



Cosmology
◮ Complete Brans-Dicke

H2 +
κ

a2
=

8π

3φ
ρ− 8πφ

ν+8πφ2
Hφ̇+

4π

3λ

ν+4π(2−3λ)φ2

(ν+8πφ2)2
φ̇2

2Ḣ + 3H2 +
κ

a2
= −8π

φ

[

p +
φ

2λ

(1+2λ)ν+4π(2−3λ)φ2

(ν+8πφ2)2
φ̇2

+
φ2

ν+8πφ2
(2Hφ̇ + φ̈)

]

φ̈+ 3Hφ̇ + 4πλ(3p−ρ) = 0

ρ̇+ 3H(ρ+p) =
ν

φ(ν+8πφ2)
ρ φ̇

◮ Brans-Dicke

H2 +
κ

a2
=

8π

3φ
ρ− H

φ̇

φ
+

2−3λ

12λ

φ̇2

φ2

2Ḣ + 3H2 +
κ

a2
= − 1

φ

(

8πp +
2−3λ

4λφ
φ̇2 + 2Hφ̇ + φ̈

)

φ̈+ 3Hφ̇+ 4πλ(3p−ρ) = 0 , ρ̇+ 3H(ρ+p) = 0



• Non-conservation equation is integrated :

ρ =
ρ∗

a3(1+w)

|φ|
√

|ν+8πφ2|



Early-times evolution

• Scalar field equation is integrated :

φ̇a3 = c

c integration constant ,φ(a) monotonic function
• Hubble equation :

( da

dφ
+

4πφa

ν+8πφ2

)2
−4π

3λ

a2

ν+8πφ2

(

1+
2ǫλρ∗
c2

a2
√

|ν+8πφ2|
)

+
κa6

c2
= 0

and is integrated for any κ (here κ = 0)

ψ = a2
√

|ν+8πφ2|

(dψ

dφ

)2
− 16π

3λ

ψ2

ν+8πφ2

(

1+
2ǫλρ∗
c2

ψ
)

+
4κ

c2
ψ4

|ν+8πφ2| = 0



◮ Case I: If ν+8πφ2 > 0, λφ > 0

a2(φ) =
2c2

|λ|ρ∗
1

√

ν+8πφ2

σ
∣

∣

∣
4πφ+

√
2π

√

ν+8πφ2
∣

∣

∣

±
√

2
3|λ|

[

1−σ
∣

∣4πφ+
√
2π

√

ν+8πφ2
∣

∣

±
√

2
3|λ|

]2

t =
1

c

∫

a(φ)3dφ

σ > 0 integration constant
ν > 0 ,λ > 0 :
Universe can emerge at zero cosmic time at a finite volume
and avoids the cosmological singularity both in density and
curvature (absent in Brans-Dicke). Additionally, it can exist a
transient accelerating era (inflation) with exit into
deceleration.



◮ Case II: If ν+8πφ2 < 0, λφ > 0

a2(φ) =
c2

2|λ|ρ∗
1

√

|ν|−8πφ2

{

1 + tan2
[

σ± 1
√

6|λ|
arcsin

(

√

8π

|ν| φ
)]}

σ integration constant
ν < 0 ,λ > 0 :
Again, there exist non-singular solutions in all volume, energy
density, curvature, starting with acceleration and entering into
deceleration (even for very small λ > 0). Also, this branch
(ν < 0) provides correct phenomenology at late times (so we
have a unified picture for all times with a unique mechanism
of energy transfer between matter and scalar field)



◮ Case III: If ν+8πφ2 > 0, λφ < 0

a2 =
c2

2|λ|ρ∗
1

√

ν+8πφ2

[

1+tan2
(

σ± 1
√

6|λ|
ln
∣

∣

∣
4πφ+

√
2π

√

ν+8πφ2
∣

∣

∣

)]

σ integration constant
ν > 0 ,λ < 0 :
Again, non-singular, with finite a, ρ,R and a transient
acceleration within deceleration



◮ Case IV: If ν+8πφ2 < 0, λφ < 0.

a2 =
c2

2|λ|ρ∗
1

√

|ν|−8πφ2
sinh−2

[

σ∓ 1
√

6|λ|
arcsin

(

√

8π

|ν| φ
)]

ν < 0 ,λ < 0 :
Again, non-singular, with finite a, ρ,R and decelerating.



Due to the interaction term, entropy production can occur at early
times.
From dU + pdV = TdS , U = ρV ⇒

T

V
Ṡ =

ν

φ(ν+8πφ2)
ρφ̇

Thus, it can be Ṡ > 0 for the previous solutions. Initially, S is
shared between all relativistic species, but as universe cools down,
massive particles freeze out and S is only shared to photons. These
photos propagate in universe and observed today with high
entropy/baryon and T ∼ 1/a. Of course, not too much S and
matter should be produced to comply with observations.



Late-times evolution (numerical study)

◮

H2 +
κ

a2
=

8π

3φ
(ρ+ ρDE )

2Ḣ + 3H2 +
κ

a2
= −8π

φ
(p + pDE )

ρDE ≡ − 3φ2

ν+8πφ2
Hφ̇+

φ

2λ

ν+4π(2−3λ)φ2

(ν+8πφ2)2
φ̇2

pDE ≡ φ

2λ

(1+2λ)ν+4π(2−3λ)φ2

(ν+8πφ2)2
φ̇2 +

φ2

ν+8πφ2
(2Hφ̇ + φ̈)



◮

( 1

φ
ρ
)·

+
3H

φ
(ρ+ p) = − 8π

ν+8πφ2
ρφ̇ = −Q

( 1

φ
ρDE

)·
+

3H

φ
(ρDE + pDE ) =

8π

ν+8πφ2
ρφ̇ = Q

similar+differ from standard relations :

ρ̇+ 3H(ρ + p) = −Q

ρ̇DE + 3H(ρDE + pDE ) = Q

• (ρ+ ρDE )/φ strictly conserved instead of ρ+ ρDE

• the form of Q here is determined by the theory itself



• Ignore the separable conservation of baryonic matter (small) –
no fittings with data
• Ignore the radiation (small)
• Flat case, κ = 0
• Choose the units with φ0 = 1
• From ΩDE ,0 ≈ 0.7 ⇒ φ̇0(λ, ν)
• From Ωm,0 ≈ 0.3 ⇒ ρ∗(ν)
• Solve numerically the system ( ȧ

a
)2 = ... , φ̈ = ... , with ρ = ...

• derive phenomenological quantities ρDE ,Ωm,ΩDE ,wDE , q(z)
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Figure: λ = 10, ν = −100 (more generally : λ > 0, ν < 0, ν+8πφ2 < 0)
Consistent with Case II of Radiation era
Or also λ < 0, ν < 0, ν+8πφ2 > 0, |ν| ∼ 8πφ2



• Standard kinetic terms of Brans-Dicke cannot lead to
acceleration (at least for realistic values of ω) and some potential
is added; here only the modified kinetic terms and the modified
conservation equation give an interesting cosmology
• Energy transfer can be either from the scalar field to dark
matter or opposite
• Additionally, φ(t) increases up to very large redshifts, i.e. G (t)
decreases (as expected since today it has a small value)
• No physical divergence (e.g. a,H, ...) at finite time because of
the pole of the quantity ν + 8πφ2

• Additionally, φ̇
φH

∣

∣

0
. 10−2, necessary to be consistent with the

bounds of variation of Newton’s constant
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Evolution of q for fixed λ < 0 and various ν
Role of ν in obtaining late-times acceleration : for intermediate
ν < 0 we have a recent passage into acceleration



Cosmological Perturbations
◮ Background metric (κ = 0) ( ˙= d

dτ ) (H ≡ ȧ
a
= aH)

ds̄2 = −a2dτ2 + a2(τ)δijdx
idx j

φ = ϕ+ δφ
◮ Evolution of linear perturbations (forward) from deep within

matter domination (neglect radiation) : zi = 1000,
Ni = ln ai = −6.91 ( ′ = d

dN
)

◮

4π

3λ

ν+4π(2−3λ)ϕ2

(ν+8πϕ2)2
ϕ′2 − 8πϕ

ν+8πϕ2
ϕ′ +

8πρ∗e−N

3H2
√

|ν+8πϕ2|
− 1 = 0

2

HH′+
4π

λ

(1+2λ)ν+4π(2−3λ)ϕ2

(ν+8πϕ2)2
ϕ′2+

8πϕ

ν+8πϕ2

( 4πλρ∗ϕe−N

H2
√

|ν+8πϕ2|
−ϕ′

)

+1

= 0

ϕ′′ +
(

2+
H′

H
)

ϕ′ − 4πλρ∗ϕe−N

H2
√

|ν+8πϕ2|
= 0



◮ Two ways to be integrated numerically:
• e−NH−2 replaced from the constraint → ϕ′′ = ...

Initial conditions ϕi, ϕ
′
i

• ϕ′ 2
i

= ... , H′ = ... → first order system for ϕ,H
Initial conditions ϕi,Hi

◮ ΩDE , i ≪ 1 → |ϕ′
i
| ≪ 1 → ρ∗ = (3/8π)a3

i
H2
i

√

|ν+8πϕ2
i
|

Initially, ϕ ≈ ϕi → H2 ≈ a3
i
H2
i
a−3 (Einstein in matter era)

Parametrize Hi in terms of the dimensionless Ω̂m :
a3
i
H2
i
= Ĥ2

0 Ω̂m

◮ λ = 1

◮ ν = −100 (in units G 2
N)



◮ Ωm =
Ĥ2

0 Ω̂m

√
|ν+8πϕ2

i
|

e3NH2
√

|ν+8πϕ2|
→ Ωm(a=1) = Ω̂m

√

|ν+8πϕ2
i
|

|ν+8πϕ2
0|

Ĥ2
0

H2(a=1)

constraint for ϕ0

H(a=1) ≈ Ĥ0 , Ωm(a=1) ≈ 0.3
Ω̂m, ϕi : ϕ(t = 0) = ϕ0 satisfies the constraint
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◮ Plot of the background quantities for Ω̂m = 0.17, ϕi = 0.029

◮ Compare H(a) to ΛCDM, with larger separation at earlier
times

◮ Plot of Ω(a)’s, stable matter dominated phase gradually
overtaken dy DE

◮ Plot of q(a), transition from deceleration to acceleration
recently

◮ Plot of wDE (a), phantom behaviour today
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• Plot of the distance moduli µ ≡ m −M of our model and of
ΛCDM, compared to Union2.1 compilation from the Supernova
Cosmology Project
• Our model fits the data with remarkable precision, comparable
to ΛCDM, without the presence of a potential
• Viable background history → evolution of linear (scalar)
perturbations



◮ Perturbed metric ds2 = g00dτ
2 + 2g0idτdx

i + gijdx
idx j

g00 = −a2(1 + 2AY )

g0i = −a2BYi

gij = a2(δij + 2HLY δij + 2HTYij)

A(τ),B(τ),HL(τ),HT (τ)

Y (~k , ~x) ∝ e i
~k·~x , Yi = −i ki

k
Y , Yij =

(

1
3δij−

kikj
k2

)

Y
φ = ϕ(τ) + χ(τ)Y

◮ Perturbed energy-momentum tensor

T 0
0 = −ρ(1 + δ∼Y )

T 0
i = (ρ+ p)(v − B)Yi

T i
j = (p +̟Y )δij +

3

2
(ρ+ p)σY i

j

δ∼(τ), v(τ),̟(τ), σ(τ)

δρ = ρδ = ρδ∼Y , ui

u0
= vY i , δp = ̟Y , 3

2(ρ+ p)σ(τ)



◮ Linearized non-conservation equations

δ̇∼ + (1+w)
(

kv+3ḢL

)

+ 3H
(δp

δρ
−w

)

δ∼ =
ν

ϕ(ν+8πϕ2)
χ̇− ν(ν+24πϕ2)

ϕ2(ν+8πϕ2)2
ϕ̇χ

v̇ − Ḃ + (1−3w)H(v−B) +
ẇ

1+w
(v−B)− δp/δρ

1+w
kδ∼ − kA+ kσ

= − ν

ϕ(ν+8πϕ2)

w

1+w
kχ

δp
δρ δ∼ = ̟

ρ , w = ẇ = 0



◮ Linearized gravitational equations

0 - 0 component

ϕ

[

3H2A− kHB − 3HḢL − k2
(

HL +
HT

3

)

]

− 3

2
H2χ = 4π(−ρa2δ∼ + τ1)

τ1 =
24πϕ2−ν

2λ(ν+8πϕ2)3
[

ν+4π(2−3λ)ϕ2
]

ϕ̇2χ

+
ϕϕ̇

λ(ν+8πϕ2)2

{

[

ν+4π(2−3λ)ϕ2
]

(ϕ̇A−χ̇)− 4π(2−3λ)ϕϕ̇χ
}

+
6νϕϕ̇

(ν+8πϕ2)2
Hχ+

ϕ2

ν+8πϕ2

[

k2χ+ 3Hχ̇− ϕ̇
(

6HA− kB − 3ḢL

)

]

0 - i component

ϕ
(

HA− ḢL −
1

3
ḢT

)

=
4πϕ2

ν+8πϕ2

(

χ̇−Hχ− ϕ̇A
)

+
4π

k
(1+w)ρa2

(

v − B
)

+
4πϕ

λ(ν+8πϕ2)2
[

ν(1+λ) + 4π(2−3λ)ϕ2
]

ϕ̇χ



i − j (i 6= j) component

ϕ

[

−k2A− k
(

Ḃ +HB
)

+ ḦT − k2
(

HL +
HT

3

)

+H
(

2ḢT − kB
)

]

=
8πϕ2

ν+8πϕ2

[

k2χ+ ϕ̇
(

kB − ḢT

)]

+ 12π(1+w)ρa2σ



i − i component

2ϕ

[

(

H2+2Ḣ − k2

3

)

A− k

3

(

Ḃ+2HB
)

+HȦ− ḦL−2HḢL −
k2

3

(

HL+
HT

3

)

]

−
(

H2+2Ḣ
)

χ = 8π
(

a2̟ + τ2
)

τ2 =
ν−24πϕ2

2λ(ν+8πϕ2)3
[

(1+2λ)ν+4π(2−3λ)ϕ2
]

ϕ̇2χ

+
ϕ2

ν+8πϕ2

[

2k

3
ϕ̇B−2(ϕ̈+Hϕ̇)A−ϕ̇Ȧ+ χ̈+Hχ̇+

2k2

3
χ+ 2ϕ̇ḢL

]

− ϕϕ̇

λ(ν+8πϕ2)2

{

[

(1+2λ)ν+4π(2−3λ)ϕ2
]

(ϕ̇A−χ̇)−4π(2−3λ)ϕϕ̇χ
}

− 2νϕ

(ν+8πϕ2)2
[

Hϕ̇+4πλ(3w−1)ρa2
]

χ



◮ Linearized scalar field equation
δφ equation

χ̈+ 2Hχ̇+ k2χ− 2ϕ̈A− ϕ̇
(

4HA+ Ȧ− kB − 3ḢL

)

= 4πλ
(

1−3
δp

δρ

)

ρa2δ∼

As for the background, also for the perturbed equations, one is
constraint



Conformal Newtonian Gauge : HT = B = 0, A = Ψ,

HL = −Φ
◮ conservation

δ̇∼ + (1+w)
(

kv−3Φ̇
)

+ 3H
(δp

δρ
−w

)

δ∼ =
ν

ϕ(ν+8πϕ2)
χ̇− ν(ν+24πϕ2)

ϕ2(ν+8πϕ2)2
ϕ̇χ

v̇ + (1−3w)Hv +
ẇ

1+w
v − δp/δρ

1+w
kδ∼ − kΨ+ kσ = − ν

ϕ(ν+8πϕ2)

w

1+w
kχ

◮ 0− 0 component

ϕ
(

3H2Ψ+ 3HΦ̇ + k2Φ
)

− 3

2
H2χ = 4π(−ρa2δ∼ + τ1)

τ1 =
24πϕ2−ν

2λ(ν+8πϕ2)3
[

ν+4π(2−3λ)ϕ2
]

ϕ̇2χ

+
ϕϕ̇

λ(ν+8πϕ2)2

{

[

ν+4π(2−3λ)ϕ2
]

(ϕ̇Ψ−χ̇)− 4π(2−3λ)ϕϕ̇χ
}

+
6νϕϕ̇

(ν+8πϕ2)2
Hχ+

ϕ2

ν+8πϕ2

[

k2χ+ 3Hχ̇− ϕ̇
(

6HΨ+ 3Φ̇
)

]



0 - i component

ϕ
(

HΨ+ Φ̇
)

=
4πϕ2

ν+8πϕ2

(

χ̇−Hχ− ϕ̇Ψ
)

+
4πϕ

λ(ν+8πϕ2)2
[

ν(1+λ) + 4π(2−3λ)ϕ2
]

ϕ̇χ+
4π

k
(1+w)ρa2v

i − j (i 6= j) component

ϕ
(

Φ−Ψ
)

=
8πϕ2

ν+8πϕ2
χ+

12π

k2
(1+w)ρa2σ

i − i component

2ϕ

[

(

H2+2Ḣ − k2

3

)

Ψ+
k2

3
Φ + Φ̈ + 2HΦ̇ +HΨ̇

]

−
(

H2+2Ḣ
)

χ

= 8π
(

a2̟ + τ2
)

τ2 =
ν−24πϕ2

2λ(ν+8πϕ2)3
[

(1+2λ)ν+4π(2−3λ)ϕ2
]

ϕ̇2χ+ .....



◮ δφ equation

χ̈+ 2Hχ̇+ k2χ− 2ϕ̈Ψ− ϕ̇
(

4HΨ+ Ψ̇ + 3Φ̇
)

= 4πλ
(

1−3
δp

δρ

)

ρa2δ∼



◮ no anisotropic contributions (σ = 0)
i − j (i 6= j) component

Φ−Ψ =
χ

D(ϕ)
, D(ϕ) =

ν + 8πϕ2

8πϕ

GR : Φ = Ψ

◮ lensing potential : Φ+ = Φ+Ψ
2

comoving density perturbation : ∆ = δ∼ + 3H
k
(1+w)v

◮ Derive differential equations of Φ+, χ, δ∼ , v

◮ 0 - i component

Φ′
+ = −

(

1+
ϕ′

2D

)

Φ+ +
1

2D2

(

D ′+
ϕ′

2

)

χ

+
4πϕ′

λ(ν+8πϕ2)2
[

ν(1+λ) + 4π(2−3λ)ϕ2
]

χ+
4π

kHϕ
(1+w)ρav



0 - i component

ϕ′

λD
χ′ = −8πρ

H2
∆+ 3χ− 4π(ν−24πϕ2)

λ(ν+8πϕ2)3
[

ν+4π(2−3λ)ϕ2
]

ϕ′2χ

+
8π

ν+8πϕ2

{3νϕ′

4πD
+3ϕ2+

3ϕ2ϕ′

2D
+
2ϕ2D ′ϕ′

2D2
− 2−3λ

2λD
ϕϕ′

(ϕϕ′

2D
+ϕ′+3ϕ

)

− νϕ′

8πλD

[ ϕ′

2D
+ 3(1+λ)

]}

χ− 3ϕϕ′

D
Φ′
+

+
8πϕ′

ν+8πϕ2

(2−3λ

2λD
ϕ2ϕ′+

ν

8πλD
ϕ′−3ϕ2

)

Φ+ − 2k2ϕ

a2H2
Φ+

conservation equations : also in terms of Φ+, χ, δ∼ , v

◮ δp = 0 in the scales of interest (confirmed in the sub-horizon
approximation).



◮ Initial conditions for perturbations
— Set Φ+i = −1, χi = 0 as if we had minimal deviations
from GR
— Set Φ′

+i
= 0 since in GR Φ,Ψ are constants initially →

vi =
2k

3aiHi

Φ+i , ∆i = − 2k2

3a2
i
H2

i

Φ+i
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◮ χ,Φ+ are scale-dependent, particularly at early times
(contrary to GR)

◮ Oscillatory behaviour of χ mainly at early times, more
pronounced for smaller scales - higher k ’s (also observed in
other scalar-tensor theories).
Understood from χ̈ = ... : equation of a damped harmonic
oscillatory with a driving term, progressively the oscillations
get damped by the Hubble friction term.
More analysis is needed to see if these oscillations leads to
instabilities at early times.

◮ Today, the equilibrium position of χ is shifted from zero to a
positive value due to the driving term in χ̈ = ...., which tries
to displace χ from the equilibrium position set by the initial
conditions (as δ∼ grows, the driving term will become more
important)



◮ Φ+ oscillates at early times (could contribute to early-times
integrated Sachs-Wolfe effect with impact on CMB)
|Φ+| grows at late times, despite the accelerating background
(yielding late-times integrated Sachs-Wolfe effect opposite to
that of ΛCDM; needs further study). In GR Φ+ decays with
the onset of cosmic acceleration due to expansion

◮ Φ,Ψ oscillate around −1 at early times
Ψ becomes positive at late times → significant for δ∼



Sub-Horizon approximation
◮ Length scales of wavemodes much smaller than Hubble radius,

k ≫ aH
◮ Quasistatic approximation : discard time derivatives of

perturbations compared to spatial variation
◮ 0− 0 component :

Φ = −4π

ϕ

a2

k2
ρδ∼ +

4πϕ

ν+8πϕ2
χ

algebraic in χ instead of differential
◮ i − i component :

Φ−Ψ =
8πϕ

ν+8πϕ2
χ+

12π

ϕ

a2

k2
̟

⇒ ̟ = 0
◮ δφ equation :

χ = 4πλ
a2

k2
ρδ∼ − 12πλ

a2

k2
̟



k2

a2
Φ = −4π

ϕ

(

ν + 8πϕ2 (1− λ/2)

ν + 8πϕ2

)

ρδ∼

k2

a2
Ψ = −4π

ϕ

(

ν + 8πϕ2 (1 + λ/2)

ν + 8πϕ2

)

ρδ∼

Φ+ = − 1

λϕ
χ

→ if χ grows at late times (or is scale independent) then Φ+

also grows (or is scale independent)



Growth Rate in sub-horizon approximation

◮

δ′′
∼

+
(H′

H + 1
)

δ′
∼
− 4π

H2

ν+4π(2+λ)ϕ2

ϕ(ν+8πϕ2)
ρa2δ∼ = 0

◮

f ′ + f 2 +
(H′

H + 1
)

f − 4π

H2

ν+4π(2+λ)ϕ2

ϕ(ν+8πϕ2)
ρa2 = 0

f = d ln δ∼
d ln a linear growth rate

Geff = ν+4π(2+λ)ϕ2

ϕ(ν+8πϕ2)
(effective gravitational coupling of

perturbations) passes to negative values recently (does not
happen in ΛCDM, GR)
Ψ ∝ Geff

◮ ⇒ δ∼ ∝ k2 (as in sub-horizon of GR)

◮ ⇒ χ,Φ+,Φ,Ψ scale-independent in agreement with
late-times behaviour

◮ v̇ +Hv − kΨ = 0 ⇒ v ∝ k
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Plot f σ8(z) numerically for recent z against ΛCDM and data

Amplitude of fluctuations σ8(z) = σ08
δ∼(z ,k)
δ∼(0,k)

◮ Our model predicts less growth than ΛCDM due to that
recently Geff < 0 (Ψ > 0)
Geff persists independently of parameters/initial conditions for
any reasonable cosmology (more study is needed)



Conclusions

◮ Allowing non-conservation of matter in BD (with the same
simple wave equation for the scalar), consistency gives three
kinds of violating terms. Assuming a single interaction term
each time, we extend BD theory to three uniquely defined
interacting theories

◮ New massive parameters appears as integration constants,
which when vanished give back BD.

◮ The general family of vacuum solutions with �φ = 0 can be
found, but the most interesting member of this family is the
vanishing matter limit of the full matter theory.

◮ Although for special cases the action has been found (where
the matter Lagrangian is non-minimally coupled even in the
Jordan frame), it remains open to find the generic action (if
exists).

◮ General solutions have been found in radiation cosmology with
complete avoidance of initial singularity, a transient
accelerating period and entropy production.



◮ At late-times, acceleration arises in agreement with the
correct behavior of the density parameters and the dark
energy equation of state. This happens with a sort of unified
description of the universe history (inflation, matter
domination and late-times acceleration) under the same
mechanism of energy transfer between matter and the scalar
field.

◮ Variation of φ is very slight over all history in agreement with
the bounds of variation of G .

◮ Nice fitting with Supernovae

◮ All these, with just modifying the kinetic terms and the
conservation equation, no extra ingredients (potentials,
varying ωBD , non-minimally couplings, e.t.c.)

◮ Initial and scale-dependent oscillations of scalar field
perturbation are damped and lead to non-vanishing present
value



◮ Lensing potential exhibits unusual growth at late times, in
agreement with sub-horizon approximation

◮ Less growth is predicted compared to ΛCDM due to Ψ > 0
recently


