The effect of Universal Extra Dimensions on Cosmological Evolution

Stelios Karydas
National Technical University of Athens

Work in progress with prof. L. Papantonopoulos

9th $^{\text {th }}$ Aegean Summer School, Sifnos

Overview

- Brief intro to K-K extra dimensions and motivation
- Setup of a UED scenario in Cosmology
- Solutions of the Field Equations
- A specific model
- An interesting pair of EoS parameters
- Conclusions

Motivation

- Cosmological observations offer a testing ground for extra dimensional scenarios.
- Possible Dark Matter candidates in K-K modes (LKPs)
- The dynamics of the extra space could have offered an alternative to the cosmological constant.
- We will look for the circumstances under which a UED scenario could be an alternative to \wedge-CDM.

Introduction to K-K extra dimensions

- Initially K-K wanted to unify E/M and Gravity by introducing an extra compactified dimension. In UED scenarios every SM particle is allowed to propagate everywhere.
- For example

$$
S=\int d^{5} x \frac{1}{2} \partial^{\mathrm{M}} \Phi\left(x^{\mu}, \mathrm{y}\right) \partial_{\mathrm{M}} \Phi\left(x^{\mu}, \mathrm{y}\right) \quad \text { with } \quad \Phi\left(x^{\mu}, \mathrm{y}+2 \pi L\right)=\Phi\left(x^{\mu}, \mathrm{y}\right)
$$

giving:

$$
\begin{gathered}
S=\int d^{4} x\left\{\frac{1}{2} \partial^{\mu} \varphi^{\dagger(0)} \partial_{\mu} \varphi^{(0)}+\sum_{n=1}^{\infty}\left[\partial^{\mu} \varphi^{\dagger(n)} \partial_{\mu} \varphi^{(n)}-\frac{n^{2}}{L^{2}} \varphi^{\dagger(n)} \varphi^{(n)}\right]\right\} \\
m_{(n)}^{2}=\frac{n^{2}}{L^{2}}
\end{gathered}
$$

Setup

- Our metric

$$
g_{M N} d x^{M} d x^{N}=-d t^{2}+a^{2}(t) \gamma_{i j} d x^{i} d x^{j}+b^{2}(t) \tilde{\gamma}_{p q} d x^{p} d x^{q}
$$

- The expanded E-H action

$$
S_{4+n}=\frac{1}{8 \pi G_{4+n}} \int d^{4+n} x \sqrt{-g}\left[R+\mathfrak{R}_{m}\right]
$$

- We can bring this in an equivalent 4-d Einstein frame form by performing a Weyl transformation:

$$
\hat{g}_{\mu \nu}=b^{n} \bar{g}_{\mu \nu}
$$

giving us Gravity+Radion field:

$$
S_{4}=\int d^{4} x \sqrt{-\hat{g}}\left[\frac{1}{2 \hat{k}^{2}} \hat{R}-\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi+V_{e f f}(\Phi)\right]
$$

by introducing:

$$
\begin{gathered}
\Phi=\sqrt{\frac{n(n+2)}{2 \hat{k}^{2}}} \ln b, V_{e f f}(\Phi)=C_{1} \exp \{-\Phi\}-C_{2} \widetilde{V} \mathfrak{L}_{m} \exp \{-\Phi\} \\
\hat{k}^{2}=\frac{k^{2}}{\widetilde{V}}, \widetilde{\mathrm{~V}}=\int d^{n} y \sqrt{\tilde{g}} \propto L^{n} \\
\Rightarrow \text { Stabilization! }
\end{gathered}
$$

Friedmann Equations

- We get

$$
\begin{gathered}
3\left[\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k_{a}^{2}}{a^{2}}\right]+3 n \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{n(n-1)}{2}\left[\left(\frac{\dot{b}}{b}\right)^{2}+\frac{k_{b}^{2}}{b^{2}}\right]=k^{2} \rho \\
2 \frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k_{a}^{2}}{a^{2}}+n \frac{\ddot{b}}{b}+2 n \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{n(n-1)}{2}\left[\left(\frac{\dot{b}}{b}\right)^{2}+\frac{k_{b}^{2}}{b^{2}}\right]=-k^{2} p_{a} \\
3 \frac{\ddot{a}}{a}+3\left(\frac{\dot{a}}{a}\right)^{2}+3 \frac{k_{a}^{2}}{a^{2}}+(n-1) \frac{\ddot{b}}{b}+3(n-1) \frac{\dot{a}}{a} \frac{\dot{b}}{b}+\frac{(n-1)(n-2)}{2}\left[\left(\frac{\dot{b}}{b}\right)^{2}+\frac{k_{b}^{2}}{b^{2}}\right]=-k^{2} p_{b}
\end{gathered}
$$

while from conservation of energy, $T^{A}{ }_{0 ; A}=0$, we have:

$$
\frac{\dot{\rho}}{\rho}=-3\left(1+w_{a}\right) \frac{\dot{a}}{a}-n\left(1+w_{b}\right) \frac{\dot{b}}{b}
$$

Equations of the Hubble Parameters

We will consider the case $k_{a}=k_{b}=0$, with simple equations of state:

$$
p_{a, b}=w_{a, b} \rho
$$

Moreover we will work with the equations of the Hubble parameters instead, by using:

$$
\begin{gathered}
A=\frac{\dot{a}}{a}, B=\frac{\dot{b}}{b} \rightarrow \frac{\ddot{a}}{a}=\dot{A}+A^{2}, \frac{\ddot{b}}{b}=\dot{B}+B^{2} \\
=\frac{3\left((n-1) w_{a}-n w_{b}-n-1\right)}{2+n} A^{2}+\frac{n\left((n-1)\left(3 w_{a}-1\right)-3 n w_{b}\right)}{2+n} A B+\frac{n(n-1)\left(1+(n-1) w_{a}-n w_{b}\right)}{2(2+n)} B^{2} \\
\dot{B}=\frac{-3\left(3 w_{a}-2 w_{b}-1\right)}{2+n} A^{2}+\frac{-3\left(2+3 n w_{a}-2 n w_{b}\right)}{2+n} A B+\frac{-n\left(3(n-1) w_{a}-2(n-1) w_{b}+n+5\right)}{2(2+n)} B^{2}
\end{gathered}
$$

We can immediately read an exact stabilization constraint (Bringmann et al. 2003):

$$
3 w_{a}-2 w_{b}-1=0
$$

By eliminating time we get a single diff. equation that is always integrable for constant w_{a}, w_{b}.

Solutions

- Its solution is

$$
\begin{gathered}
\text { const. }=\left|6 \frac{A}{B}+(3 n+\sqrt{3 n(2+n)})\right|^{\sqrt{2+n}\left(3+n-3 w_{a}-n w_{b}\right)+\sqrt{3 n}(2+n)\left(w_{a}-w_{b}\right)} \\
\left|6 \frac{A}{B}+(3 n-\sqrt{3 n(2+n)})\right|^{\sqrt{2+n}\left(3+n-3 w_{a}-n w_{b}\right)-\sqrt{3 n}(2+n)\left(w_{a}-w_{b}\right)} \\
\left|\left(3 w_{a}-2 w_{b}-1\right) \frac{A}{B}+\left((n-1) w_{a}-n w_{b}+1\right)\right|^{-\sqrt{2+n}\left(3-3 w_{a}^{2}+n\left(1+3 w_{a}^{2}-6 w_{a} w_{b}+2 w_{b}^{2}\right)\right)} \\
|B|^{\sqrt{2+n}}\left[3\left(w_{a}^{2}-1\right)+n\left(1-3 w_{a}^{2}+6 w_{a} w_{b}-2 w_{b}\left(1+w_{b}\right)\right)\right]
\end{gathered}
$$

- To study this it is important to know the sign off the exponents.
- So if for example we wanted to study an "equilibrium" case where $A, B \rightarrow 0$ but ${ }^{B} /{ }_{A} \rightarrow \tilde{C}$ we can see that the only way possible is if the third factor goes to zero, i.e.

$$
\tilde{c} \rightarrow \frac{3 w_{a}-2 w_{b}-1}{(n-1) w_{a}-n w_{b}+1}
$$

Consistency of solution

- Region 1: all positive
- Region 2: K3 part negative
- Region 3: only K1 part positive

Solutions

- Moreover, each one of these factors represents a special case solution of the form

$$
c_{1}=-\frac{6}{3 n+\sqrt{3 n(2+n)}}, \quad c_{2}=-\frac{B=c A}{3 n-\sqrt{3 n}}
$$

- The first two correspond to the Kasner solutions (Kasner 1922)

$$
\begin{aligned}
& A(t)=\frac{A_{0}(n-1)}{n-1+A_{0} t(-3+\sqrt{3 n(2+n)})}, B(t)=-\frac{6 A_{0}}{3 n+\sqrt{3 n(2+n)}+(3 n+3 \sqrt{3 n(2+n)}) A_{0} t} \\
& A(t)=\frac{A_{0}(n-1)}{n-1-A_{0} t(3+\sqrt{3 n(2+n)})}, B(t)=\frac{6 A_{0}}{-3 n+\sqrt{3 n(2+n)}+(-3 n+3 \sqrt{3 n(2+n)}) A_{0} t}
\end{aligned}
$$

They both give:

$$
\rho=0 \text { and } q=\text { const }
$$

Solutions

- The third one (K3) is another Kasner-type solution with much better properties.

$$
\begin{aligned}
A(t) & =\frac{\left(2+2(n-1) w_{a}-n w_{b}\right) A_{0}}{2+2(n-1) w_{a}-2 n w_{b}+\left(3-3 w_{a}^{2}+n\left(1+3 w_{a}^{2}+2 w_{b}^{2}-6 w_{a} w_{b}\right)\right) A_{0} t}, \\
B(t) & =\frac{2\left(2 w_{b}-3 w_{a}+1\right) A_{0}}{2+2(n-1) w_{a}-2 n w_{b}+\left(3-3 w_{a}^{2}+n\left(1+3 w_{a}^{2}+2 w_{b}^{2}-6 w_{a} w_{b}\right)\right) A_{0} t}
\end{aligned}
$$

- It has a singularity that is defined by the values of the w parameters, as is its deceleration parameter and ρ.
- More importantly it acts as an attractor for the general solution for most cosmologically relevant cases.

Phase Space Diagram
 $\mathrm{n}=1, w_{a}=-0.7, w_{b}=-1.48$

A specific model

- We will use this to our advantage to quantify the behavior of the general solution by using the analytical expressions of the K3 solution to achieve:

1. Stabilization ($\Delta \mathrm{b} /{ }_{b} \approx 1 \%$) of the extra space from as early as radiation domination until today. (Bergstrom et al, 1999)
2. A transition to an accelerating expanding era.
3. $q_{0} \approx-0.6$
4. $H_{0} \approx 70 \mathrm{~km} / \mathrm{s} \cdot M p c$

	Radiation Era	Matter Era	Dark Energy Era
w_{a}	$\approx 1 / 3$	≈ 0	$\approx-7 / 10$
w_{b}	≈ 0	$\approx-1 / 2$	$\approx-3 / 2$

$$
\mathrm{n}=1
$$

-- $H_{a}(z)$

- $H_{\Lambda C D M}{ }^{\prime}$

$\mathrm{n}=1$

$$
\mathrm{n}=1
$$

$\mathrm{n}=1$

*Using data from Suzuki et al. (2012)

A large exponent for a(t)

- One last interesting property of the K3 solution: the scale factors have a particular relation too! For $n=2$ for example:

$$
\begin{aligned}
& a(t)=\left|f\left(w_{a}, w_{b}\right)+\mathrm{g}\left(w_{a}, w_{b}\right) A_{0} t\right|^{\frac{2+2 w_{a}-4 w_{b}}{5+3 w_{a}^{2}-12 w_{a} w_{b}+4 w_{b}{ }^{2}}} \\
& b(t)=\left|f\left(w_{a}, w_{b}\right)+\mathrm{g}\left(w_{a}, w_{b}\right) A_{0} t\right|^{\frac{2\left(1-3 w_{a}+2 w_{b}\right)}{5+3 w_{a}^{2}-12 w_{a} w_{b}+4 w_{b}^{2}}}
\end{aligned}
$$

- We see that the denominator has a solution that happens to also be a solution of the exact stabilization constraint:

$$
w_{a}=-1, \quad w_{b}=-2
$$

- So by a suitable pair of w parameters very close to these we can have a very positive exponent for $a(t)$ and at the same time a negative exponent for $b(t)$.
- For larger n we might have a larger variety in the values of the w 's that can achieve this.

Conclusion and Remarks

- We see that for most cosmologically relevant cases, the study of the general solution of this UED scenario reduces to the study of its special solution, K3.
- That, in turn, depends on the w parameters, and can be made to follow a number of observational constraints for suitable values of the w^{\prime} s.
- We can thus manipulate the general solution into being stabilized very early in its evolution, by simply stabilizing the corresponding K3's for each pair of w 's, enabling us to recreate a very similar picture to that of the Λ-CDM.
- Moreover, we have shown that a period of extremely fast evolution for $a(t)$ is possible in this model, with a much slower accompanying contraction of the extra space.
- However, the w parameters that achieve this are rather exotic and their nature is to be explained to give credibility to such a model. (Brandenberger 1989, Kaya-Rador 2003) or (Caldwell 1999, 2003)
- Alternatively, a different approach may be needed in terms of the equation of state for the extra space.

Thank you!

