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Motivation

* Cosmological observations offer a testing ground for extra
dimensional scenarios.

* Possible Dark Matter candidates in K-K modes (LKPs)

* The dynamics of the extra space could have offered an alternative to
the cosmological constant.

 We will look for the circumstances under which a UED scenario could
be an alternative to A-CDM.



Introduction to K-K extra dimensions

* |nitially K-K wanted to unify E/M and Gravity by introducing an extra
compactified dimension. In UED scenarios every SM particle is allowed to
propagate everywhere.
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Setup

gundxMdxN = —dt? + a?(t)y;jdxtdx’ + b2(t)P,qdxPdx?
* The expanded E-H action

e Our metric
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* We can bring this in an equivalent 4-d Einstein frame form by performing a Weyl transformation:

gyv = bng_uv
giving us Gravity+Radion field:
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Friedmann Equations
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while from conservation of energy, T4,., = 0, we have:
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Equations of the Hubble Parameters

We will consider the case k, = k;, = 0, with simple equations of state:
Pab = Wa,pP
Moreover we will work with the equations of the Hubble parameters instead, by using:
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We can immediately read an exact stabilization constraint (Bringmann et al. 2003):
3w, — 2w, —1 =0

By eliminating time we get a single diff. equation that is always integrable for constant w,, w,,.



Solutions

* |ts solution is

A V2+n(3+n—-3wg—nwp)+V3n(2+n)(wg—wp)
const. = ‘65 + (Sn + \/3n(2 + n)) :
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* To study this it is important to know the sign off the exponents.

* So if for example we wanted to study an “equilibrium” case where A,B — 0 but 3/, — ¢ we can
see that the only way possible is if the third factor goes to zero, i.e.

(n-Dwg—nwp+1



Consistency of solution

Wp

e Region 1: all positive

* Region 2: K3 part
negative

* Region 3: only K1
part positive




Solutions

* Moreover, each one of these factors represents a special case solution of the form
B =cA
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* The first two correspond to the Kasner solutions (Kasner 1922)
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They both give:
p = 0and g = const



Solutions

* The third one (K3) is another Kasner-type solution with much better properties.

A(t) = 2+2(n—1Dw, —nwy)A,
C242Mm - Dw, —2nwp, + (3 — 3wZ + n(1 + 3wZ + 2wZ — 6waw,)) Aot

B(t) = 22wy, — 3w, + 1A,
242 - Dw, —2nwy, + (3 — 3wZ + n(1 + 3wZ + 2wZ — 6waw,))Aot

* It has a singularity that is defined by the values of the w parameters, as is its deceleration
parameter and p.

* More importantly it acts as an attractor for the general solution for most cosmologically relevant
cases.
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A specific model

* We will use this to our advantage to quantify the behavior of the
general solution by using the analytical expressions of the K3 solution
to achieve:

1. Stabilization (Ab/b ~ 1%) of the extra space from as early as
radiation domination until today. (Bergstrom et al, 1999)

2. A transition to an accelerating expanding era.
3. qo~= —0.6
4. Hy=70km/s-Mpc
B T

~1/3 ~ —7/10
W ~ 0 ~ —1/2 ~ —3/2
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A large exponent for a(t)

* One last interesting property of the K3 solution: the scale factors have a particular
relation too! For n = 2 for example:
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* We see that the denominator has a solution that happens to also be a solution of
the exact stabilization constraint:
Wq = —1, Wp = —2
* So by a suitable pair of w parameters very close to these we can have a very
positive exponent for a(t) and at the same time a negative exponent for b(t).

* For larger n we might have a larger variety in the values of the w’s that can
achieve this.




Conclusion and Remarks

We see that for most cosmologically relevant cases, the study of the general solution of
this UED scenario reduces to the study of its special solution, K3.

That, in turn, depends on the w parameters, and can be made to follow a number of
observational constraints for suitable values of the w’s.

We can thus manipulate the general solution into being stabilized very early in its
evolution, by simply stabilizing the corresponding K3’s for each pair of w’s, enabling us to
recreate a very similar picture to that of the A-CDM.

Moreover, we have shown that a period of extremely fast evolution for a(t) is possible in
this model, with a much slower accompanying contraction of the extra space.

However, the w parameters that achieve this are rather exotic and their nature is to be
explained to give credibility to such a model. (Brandenberger 1989, Kaya-Rador 2003) or
(Caldwell 1999, 2003)

Alternatively, a different approach may be needed in terms of the equation of state for
the extra space.



Thank you!



