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Motivation

Black holes are fascinating test grounds for GR. 



They represent regions of very strong gravity, and 
constrain any candidate to challenge GR.



Dark Energy in cosmology is a challenge for particle 
physics – and unless Λ, a challenge to mix with a black 
hole.
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o   Black hole no hair

o   Black hole hair
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o   Summary



Black Hole Theorems
Black holes in 4D obey a set of theorems: We know they are 
spherical, that they obey laws of thermodynamics, and that 
they are characterized by relatively few “numbers” – or 
“Black Holes Have No Hair”.


i.e. electrovac solutions are 
uniquely specified by 3 
parameters: M, Q, and J




No Scalar Hair
The essence of “no hair” is that the scalar field must have 
finite energy, and fall off at infinity. Integrating the equation of 
motion gives a simple relation, only satisfied for 
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essence of their argument is to take the scalar equation of motion (shown here for

the Schwarzschild background), to multiply by V,�(⇥)
⌅
g and integrate:
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= [V,�r(r � 2GM)⇥⇥]⇤2GM = 0. (2.2)

Clearly, if V,�� ⇤ 0, as is the case with a wide range of physically relevant potentials,

then the only possibility is that the integrand on the LHS is identically zero, i.e.,

⇥⇥ ⇥ 0, ⇥ = ⇥min. Although at first sight the potentials we are considering appear to

satisfy this constraint, we must be careful, as it is the e⇥ective potential that is the

relevant quantity, and we are looking at a non-uniform environment where the matter

density, �, jumps from being roughly zero to the ambient galactic or local accretion

disc value. Thus, although r2V 2
,� is positive definite, the derivative of V,� with respect

to r contains a delta function, coming from the derivative of �. Combining this with

the intuition that ⇥, if nontrivial, will tend to roll towards large values near the

black hole horizon, we see that the second term in the integrand can potentially be

very large and negative, thus ruling out a simple “no-hair” proof, and opening the

possibility of a nontrivial scalar profile.

Turning now to the case of the black hole, our setup is motivated by a physical

picture of an astrophysical black hole, typically located within some larger distribu-

tion of matter. Although astrophysical black holes will be rotating, for the purpose

of establishing whether or not a nontrivial scalar profile is possible, it will su⇤ce to

consider a purely monopole spherically symmetric set-up, in which the black hole is

descibed by the Schwarzschild metric:

ds2 = �
�
1� Rs

r

⇥
dt2 +

�
1� Rs

r

⇥�1
dr2 + r2d�2 , (2.3)

(denoting Rs = 2GM for clarity), and the density profile by

�(r) ⇥
⇧
0 Rs < r < R0 (Region I)

�⇥ r > R0 (Region II)
(2.4)

The motivation for this profile is that the larger distribution of matter in which the

black hole sits will be characterised by a density �⇥ (taken to be constant in (2.4)),

which is assumed to vary slowly on length scales comparable to the size of the black

hole. Very close to the black hole however, we expect an approximately empty inner

region, motivated by the fact that all black holes have an innermost stable circular

orbit (ISCO – e.g. at 3Rs for the Schwarzschild black hole), inside of which all massive

particles fall into the black hole on a relatively short time-scale. We therefore treat

the density inside some inner radius, R0 as being roughly zero. Our matter profile

(2.4) can thus be viewed as a crude model of either an accretion disk or a galactic

halo where the matter inside R0 has fallen into the black hole.
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No-No Hair!
But this is highly idealised:






•  Static


•  Vacuum


•  Convex potential


•  Λ not negative




And no hair came to mean the much stronger “no field profiles”.




Hair!
Many examples of black holes with nontrivial scalar profiles 
have been constructed:




•  Coloured black holes (unstable)


•  Black holes with strings – or walls (stable!)


•  Monopole black holes (stable)


And that isn’t even from this century!


Schwarzschild: X

GM!5



E.G. Chameleon Kerr Hair

The chameleon mass and VEV 
strongly dependent on density, 
accretion disc provides an anchor 
for hair.


-20 -10 0 10 20
-10

-5

0

5

10

-53 -52 -51 -50 -49 -48

!!" !#" " #" !"
!#"

!$

"

$

#"

!!" !#" " #" !"
!#"

!$

"

$

#"

!$% !$! !$" !%&



(With Anne Davis and Rahul Jha)






Other Hair?
These examples use topology to construct the nontrivial 
configuration – and scalar condensates in string theory use 
negative Λ, so can time-dependence get around no hair? 



Q-balls: scalar solutions with internal time dependence, but 
externally looking “static” 



Time-dependent scalars with black holes found in the context 
of cosmologically rolling scalars.






Acceleration

Cosmological rolling scalars 
arose from the challenge of 
explaining the late time 
acceleration of our 
Universe, which is gently 
accelerating with an 
effective cosmological 
constant of 10-30 g cm-3.




Other Gravity
Other attempts to explain acceleration modify gravity – 
braneworlds, massive gravity, galileons…























So what can we find here?




Scalar Hair

Babichev-Charmousis & Sotiriou-Zhou found hair in a 
Horndeski gravity with inherent time dependence in the 
scalar; (for SCH):









The scalar rolls on the horizon, and throughout the 
geometry, BUT, does not backreact, since we have 
explicitly assumed the Einstein equations.
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Stealth Hair?

It’s hair (Jim) – 




Stealth Hair?

– but not as we know it!




Scalar Hair

How generic is this? For simplicity, consider the plain John 
+ Einstein







THEOREM:



A solution of the Einstein equations can support scalar 
stealth hair iff the metric can be written as a 3+1 
decomposition of a flat 3-space with a time-like vector field


L = �Gµ⌫@µ�@⌫�� ⇣R



Proof

To demonstrate this, we will first use equations of motion to 
derive a set of constraints on any solution for the scalar, 
assuming the background Einstein equations.



We then find the most general solution of these algebraic 
constraints, and show that this implies a 3+1 foliation with 
flat spatial sections.




Preliminaries

Equations of motion:















Where P is the double dual of Riemann, and write
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Tracing the “Einstein” equation: 









Gives





Then contracting the Einstein equation with dφ 

 


First step
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Gives a constraint on derivatives of φ








We now use these constraints to pin down the 
background geometry. Either                       or is normal 
to 



So, define:
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c
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na = �a/|�a|



If                     , n is tangent to a global congruence of 
affinely parametrised geodesics. 



Foliate the spacetime with surfaces of constant φ, these 
have normal na and extrinsic curvature:









Putting this in the Einstein equation gives the result
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Otherwise – again foliate the spacetime with surfaces of 
constant φ, so the metric has the form:









Now define another unit vector orthogonal to n, l:







And complete to an o/n basis (n,l,m1,m2). By 
construction, φ02 = φ03 = 0 and the idea is to apply the 
algebraic constraints to the remaining components of φ
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Doing this, surprisingly, shows that φab has a very 
simple form:















With



This in turn implies                               &



Which is enough to guarantee 
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To check Schwarzschild, recall





Where



giving the Painleve Gullstrand flat foliation:









Other examples: Rindler, Milne…


Check Schwarzschild

� = t+R(r)
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s

p
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Any solution of Einstein equations gives a φ 
proportional to “t” of geodesic form.



Unfortunately, according to the exact solution bible – 
the full set of Einstein spaces with this form is not 
known. 



The case with φ01 = 0 only has flat spacetime as a 
solution. 



The remaining case is in progress.


Summary

ds

2 = N 2
dt

2 � �ij(dx
i �Nidt)(dx

j �Njdt)


