

Horndeski Superconductor

Georgios Filios

(Work in progress with E. Papantonopoulos and Xiao Mei Kuang)

National Technical University of Athens School of Applied Mathematical and Physical Sciences Department of Physics

18 September 2017

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Superconductors

Superconductors are materials with the following two important properties:

- 1. Infinite DC conductivity
- 2. The ability to expell any magnetic field from their inside Meissner Effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

These properties can be described by a phase transition at some critical temperature T_c

- Appearance of electron pairs with opposite spin \rightarrow Cooper Pairs
- For $T < T_c$ these pairs forms a condensation \rightarrow Spontaneous Breaking of the U(1) symmetry \rightarrow Creation of a gap, Δ , on the energy spectrum
- Macroscopic theories like Ginzburg Landau description of the Helmholtz free energy
- Microscopic theories like the Bardeen-Cooper-Schrieffer theory
- London Equation $\nabla^2 \vec{B} = \frac{1}{\lambda^2} \vec{B}$, for Meissner Effect

- In the context of these theories, T_c is usually small
- 1986: Discovery of the first superconductor with high T_c
- Until 2015 more High T_c have been discovered: Cuprates, Hydrogen sulfide, Iron based superconductors etc.
- The known theories about superconductivity cannot describe them. It seems that the condensation mechanics cannot be explained with the Cooper pairs.
- Appearance of strong interactions in these materials

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here Comes Holography!

Holography is the statement of equivalence between two different theories:

- 1. Strongly interacting quantum field theories in *d* spacetime dimensions (boundary)
- 2. Theories of gravity in d + 1 spacetime dimensions (bulk)

Key relation [Witten, 98]

$$Z_{QFT}[\phi_0] = \int DA \exp\left(iS_{QFT} + i \int \phi_0 \mathcal{O}(A)\right) = e^{iS_{\text{bulk}}}|_{\phi \to \phi_0}$$
(1)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

But Why Holography?

- Need for a microscopic theory of superconductivity
- Since the CFT that governs the Superconductor is strongly coupled, perturbation theory and almost free particle descriptions are not valid
- The condensation that arises from holography it isn't a Cooper condensation. It's something more general
- One can use a holographic description in such cases since strongly coupled d- dimensional field theories are dual to weakly coupled (classical) gravitational theories asymptoticaly AdS in D = d + 1 dimensions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

AdS/CFT Dictionary

What are the minimal ingredients for a superconductor model?

$\partial AdS: CFT$	Bulk AdS: Gravity	
Global Symmetry	Gauge Symmetry	
Temperature	Hawking Temperature	
Chemical potential/charge density	Boundary values of the gauge field	
Scalar operator $\mathcal{O}(x)$	scalar field $\phi(r, x)$	
Energy - Momentum Tensor T_{ab}	Metric tensor $g_{\mu u}$	
Global internal symmetry current J_a	Maxwell field A_{μ}	

Holographic Superconductor

We will study the Einstein-Maxwell action with one scalar field minimally coupled in 3 + 1 dimensions [Hartnoll-Herzog-Horowitz, 2008]

$$S_{\text{Bulk}} = S_{\text{gravity}} + S_{\text{matter}}$$
(2)
$$= \int d^4x \sqrt{-g} \left[\underbrace{\frac{\text{Einstein}}{R+\Lambda}}_{16\pi G} - \underbrace{\frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{F\mu\nu} - \underbrace{|\nabla\psi - iqA\psi|^2 - m^2|\psi|^2}_{\nabla\psi - iqA\psi|^2 - m^2|\psi|^2} \right]$$

• Minimization of S with respect to $g_{\mu\nu} \Rightarrow$ Einstein field equations

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}, \quad T_{\mu\nu} = T^{(\psi)}_{\mu\nu} + T^{(EM)}_{\mu\nu}$$

where

$$\begin{split} T^{(\psi)}_{\mu\nu} &= D_{\mu}\psi(D_{\nu}\psi)^{*} + D_{\nu}\psi(D_{\mu}\psi)^{*} - g_{\mu\nu}(g^{ab}D_{a}\psi(D_{b}\psi)^{*} + m^{2}|\psi|^{2})\\ T^{(EM)}_{\mu\nu} &= F_{\mu}^{\ a}F_{\nu a} - \frac{1}{4}g_{\mu\nu}F_{ab}F^{ab} \end{split}$$

Minimization of S with respect to A_{µν} ⇒ Maxwell Equations

$$\nabla_{\nu}F^{\mu\nu} + g^{\mu\nu}[2q^{2}A_{\nu}|\psi|^{2} + iq(\psi^{*}\nabla_{\nu}\psi - \psi\nabla_{\nu}\psi^{*})] = 0$$

• Minimization of S with respect to $\psi \Rightarrow$ Klein-Gordon Equation

$$(\partial_{\mu} - iqA_{\mu})[\sqrt{-g}g^{\mu\nu}(\partial_{\nu} - iqA_{\nu})\psi] = \sqrt{-g}m^{2}\psi$$

The Probe Limit

Rescaling the fields:

$$A_{\mu}=rac{ ilde{A_{\mu}}}{q}, \hspace{1em} \psi=rac{ ilde{\psi}}{q}$$

The action (2) becomes:

$$S = S_{gravity} + rac{1}{q^2} ilde{S}_{matter}$$

- In the limit $q \to \infty$ the second term becomes small. Then we can neglect that term and solve the field equations without the presence of matter. This is called the Probe limit.
- However, the interesting physics are captured by the interaction of the scalar field $\psi(r)$ with the gauge field A_{μ} .

We consider a planar Schwarzschild ADS black hole:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(dx^{2} + dy^{2}), \quad f(r) = r^{2} - \frac{r_{h}^{3}}{r}$$

Taking the symmetric ansatz $\psi = |\psi(r)|$, $A_x = A_y = A_r = 0$ and $A_t = \phi(r)$ equations Maxwell and Klein-Gordon become:

$$\psi'' + \left(\frac{f'}{f} + \frac{2}{r}\right)\psi' + \left(\frac{\phi^2}{f^2} - \frac{m^2}{f}\right)\psi = 0$$
$$\phi'' + \frac{2}{r}\phi' - \frac{2|\psi|^2}{f}\phi = 0$$

It is important to assume the correct boundary conditions at infinity and the horizon, in order to get the correct correspondence. In the horizon we impose $\phi(r) = 0$. The asymptotic behaviour of the fields for $r \to \infty$ is:

$$\psi = \frac{\psi^{(1)}}{r} + \frac{\psi^{(2)}}{r^2}, \quad \phi = \mu - \frac{\rho}{r}$$

We choose $\psi^{(1)} = 0$. For the condensating operator: $\langle \mathcal{O}_2 \rangle = \sqrt{2} \psi^{(2)}$.

▲□▶▲圖▶▲圖▶▲圖▶ = ● ● ●

Condensate

- We observe the condensation of the operator for a critical value of the temperature *T_c*.
- Same results with BCS theory.
- The approximation doesnt't work at low temperatures where the condesate is large.
- After fitting the curve at temperatures close to the critical temperature we find for the condensate,

 $< \mathcal{O}_+ > \approx 144 T_c^2 (1 - \frac{T}{T_c})^{\frac{1}{2}}.$

• The square root behaviour is typical for a second order transition.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Optical Conductivity

The next step is to compute the optical conductivity $\sigma(\omega)$ of the CFT. We need to solve for fluctuations of the vector potential A_x in the bulk. Taking $\delta A_x = e^{-i\omega t} A_x(r)$ with zero spatial momentum, the x component of the Maxwell equations gives:

$$A_x^{\prime\prime} + \frac{f^\prime}{f}A_x^\prime + \left(\frac{\omega^2}{f^2} - \frac{2\psi^2}{f}\right)A_x = 0$$

The asymptotic behaviour of the Maxwell field is:

$$A_x = A_x^{(0)} + \frac{A_x^{(1)}}{r} + \dots$$

To compute causal behaviour, we will take ingoing wave boundary conditions at the horizon, $f^{-i\omega/3r_0}$. The AdS/CFT dictionary tells us that the dual sourse and expectation value for the current are given by:

$$A_{x,CFT} = A_x^{(0)}, \quad < J_{x,CFT} > = A_x^{(1)}$$

Now from Ohm's law we can obtain the conductivity:

$$\sigma(\omega) = \frac{\langle J_{x,CFT} \rangle}{E_{x,CFT}} = -\frac{\langle J_{x,CFT} \rangle}{\dot{A}_{x,CFT}} = -\frac{i\langle J_{x,CFT} \rangle}{\omega A_{x,CFT}} = -\frac{iA_x^{(1)}}{\omega A_x^{(0)}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The subsequent curves describe successively lower values of the temperature (for fixed charge density).
- From the real part of the conductivity we observe the creation of the energy gap Δ.
- The real part must have a delta function in the limit ω → 0, which doesn't appear in our numerical results. Although, due to the Kramers-Kronig relations:

$$Im[\sigma(\omega)] = -\frac{1}{\pi}P \int_{\infty}^{\infty} \frac{Re[\sigma(\omega')]}{\omega' - \omega} d\omega'$$

The pole of the imaginary part $\frac{1}{\omega}$ is equivalent with a delta function for the real part.

- Fitting the curve we can obtain for the energy gap, $2\Delta \approx 8.4T_c$
- The theoretical estimation of the BCS theory is $2\Delta \approx 3.54T_c$

Remarks

- This simple model for the holographic superconductor gave good results, which agree with the experimental data.
- However, the value for the energy gap is almost two times that which is obtained from the BCS theory.
- In real materials, the energy gap is decreased with the introduction of paramagnetic impurities.
- There is need for a dual description of these impurities with Ads/CFT correspondence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Non Minimal Model

Now we consider the action [Papantonopoulos-Xiao Mei, 2016]

$$\begin{split} S_{bulk} &= S_{gravity} + S_{matter} = \\ &\int d^4x \sqrt{-g} \left[\frac{R+\Lambda}{16\pi G} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - (g^{\mu\nu} + kG^{\mu\nu}) D_{\mu} \psi (D_{\nu}\psi)^* - m^2 |\psi|^2 \right] \end{split}$$

In this case the scalar field is coupled with the Einstein tensor $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$. Puting:

$$\begin{array}{llll} \Phi_{\mu\nu} & \equiv & D_{\mu}\psi(D_{\nu}\psi)^{*} \\ \Phi & \equiv & g^{\mu\nu}\Phi_{\mu\nu} \\ C^{\mu\nu} & \equiv & g^{\mu\nu}+kG^{\mu\nu} \end{array}$$

The Einstein field equations are:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}, \quad T_{\mu\nu} = T^{(\psi)}_{\mu\nu} + T^{(EM)}_{\mu\nu} + k\Theta_{\mu\nu}$$

where:

$$\begin{split} \Theta_{\mu\nu} &= -g_{\mu\nu}R^{ab}\Phi_{ab} + R_{\nu}^{\ a}(\Phi_{\mu a} + \Phi_{a\mu}) + R_{\mu}^{\ a}(\Phi_{a\nu} + \Phi_{\nu a}) - \frac{1}{2}R(\Phi_{\mu\nu} + \Phi_{\nu\mu}) \\ &- G_{\mu\nu}\Phi - \frac{1}{2}\nabla^{a}\nabla_{\mu}(\Phi_{a\nu} + \Phi_{\nu a}) - \frac{1}{2}\nabla^{a}\nabla_{\nu}(\Phi_{\mu a} + \Phi_{a\mu}) + \frac{1}{2}\Box(\Phi_{\mu\nu} + \Phi_{\mu\nu}) \\ &+ \frac{1}{2}g_{\mu\nu}\nabla_{a}\nabla_{b}(\Phi^{ab} + \Phi^{ba}) + \frac{1}{2}(\nabla_{\mu}\nabla_{\nu} + \nabla_{\nu}\nabla_{\mu})\Phi - g_{\mu\nu}\Box\Phi \end{split}$$

.

Maxwell Equations now have the following form:

$$\nabla_{\nu}F^{\mu\nu} + C^{\mu\nu}[2q^{2}A_{\nu}|\psi|^{2} + iq(\psi^{*}\nabla_{\nu}\psi - \psi\nabla_{\nu}\psi^{*})] = 0$$

and the Klein-Gordon equation

$$(\partial_{\mu} - iqA_{\mu})[\sqrt{-g}C^{\mu\nu}(\partial_{\nu} - iqA_{\nu})\psi] = \sqrt{-g}m^{2}\psi$$

Following the same process as before, the new equations which we have to numerically solve are:

$$\left(1+k\left(\frac{f}{r^2}+\frac{f'}{r}\right)\right)\psi'' + \left[\frac{2}{r}+\frac{f'}{f}+k\left(\frac{3f'}{r^2}+\frac{(f')^2}{rf}+\frac{f''}{r}\right)\right]\psi' + \left[\frac{\phi^2}{f^2}\left(1+k\left(\frac{f}{r^2}+\frac{f'}{r}\right)\right)-\frac{m^2}{f}\right]\psi = 0$$

and

$$\phi^{\prime\prime} + \frac{2}{r}\phi^\prime - \frac{2|\psi|^2}{f}\left[1 + k\left(\frac{f^\prime}{r} + \frac{f}{r^2}\right)\right]\phi = 0$$

(ロト (個) (E) (E) (E) (の)

Notice that now the equations depend on the second derivative of f.

k	-0.01	0	0.01	0.1	0.5
T_c	0.1218	0.1184	0.1158	0.1043	0.09053
C_1	243	140	73	2	0.01

- With the introduction of the new coupling k we observe that the strength of the condensation decreases
- The critical temperature decreases as well

Fitting the curve for temperatures near the critical temperature gives:

$$< \mathcal{O}_+ > \approx C_1(k)T_c^2(1-\frac{T}{T_c})^{\frac{1}{2}}$$
 (3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Optical Conductivity

Again for the calculation of the optical conductivity we will find the fluctuations of the A_x component. The corresponding Maxwell equation now has the form:

$$A_{x}^{\prime\prime} + \frac{f'}{f}A_{x}^{\prime} + \left[\frac{\omega^{2}}{f^{2}} - \frac{2|\psi|^{2}}{f}\left(1 + k\left(\frac{f^{\prime\prime}}{2} + \frac{f'}{r}\right)\right)\right]A_{x} = 0$$

Т

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusions

- By introducing the coupling k we observe a decrease in the strength of the condensation and the critical temperature. The decrease in the temperature means that the phase transition is hard to occur.
- Increasing the coupling, the condensation decreases faster than the temperature, so the energy gap tends to 0 for low temperatures.
- The order of the phase transition doesn't change in this case.
- Fitting the curve for high coupling, k = 0.5, we find that $2\Delta \approx 4T_c$, reproducing the same relation as the BCS theory.
- This means that the coupling k can be interpeted as the dual description of the paramagnetic impurities on real materials.

Future Study

- One characteristic of this model is it's symmetry to spatial translations.
- But real materials doesn't have this symmetry.
- So we must break that symmetry. We achieve that by giving the scalar field a spatial dependence $\phi = \phi(r, x)$, with $\nabla_x^2 \phi = -\tau^2 \phi$.

- We notice the appearance of some peaks for $\omega \neq 0$ at the real part of the conductivity.
- These peaks signal the creation of new charged degrees of freedom that contribute to the conductive current.
- The energy of these new degrees can be found from the distance between the peak and the energy gap.
- They appear even when k = 0. So they don't have any relation to the paramagnetic impurities.

- There is need for additional work in order to understand the nature of these peaks.
- The main idea for future work involves studying the normal phase of the superconductor with holography.