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Superconductors

Superconductors are materials with the
following two important properties:

1. Infinite DC conductivity

2. The ability to expell any magnetic
field from their inside - Meissner
Effect

These properties can be described by a phase transition at some critical temperature Tc

• Appearance of electron pairs with opposite spin→ Cooper Pairs

• For T < Tc these pairs forms a condensation→ Spontaneous Breaking of the
U(1) symmetry→ Creation of a gap, ∆, on the energy spectrum

• Macroscopic theories like Ginzburg - Landau description of the Helmholtz free
energy

• Microscopic theories like the Bardeen-Cooper-Schrieffer theory

• London Equation ∇2~B = 1
λ2
~B, for Meissner Effect



• In the context of these theories, Tc is usually small
• 1986: Discovery of the first superconductor with high Tc

• Until 2015 more High Tc have been discovered: Cuprates,
Hydrogen sulfide, Iron based superconductors etc.

• The known theories about superconductivity cannot describe
them. It seems that the condensation mechanics cannot be
explained with the Cooper pairs.

• Appearance of strong interactions in these materials



Here Comes Holography!
Holography is the statement of equivalence between two different
theories:

1. Strongly interacting quantum field theories in d spacetime
dimensions (boundary)

2. Theories of gravity in d + 1 spacetime dimensions (bulk)

Key relation [Witten, 98]

ZQFT [φ0] =

∫
DA exp

(
iSQFT + i

∫
φ0O(A)

)
= eiSbulk |φ→φ0 (1)



But Why Holography?

• Need for a microscopic theory of superconductivity
• Since the CFT that governs the Superconductor is strongly

coupled, perturbation theory and almost free particle
descriptions are not valid

• The condensation that arises from holography it isn’t a Cooper
condensation. It’s something more general

• One can use a holographic description in such cases since
strongly coupled d- dimensional field theories are dual to weakly
coupled (classical) gravitational theories asymptoticaly AdS in
D = d + 1 dimensions.



AdS/CFT Dictionary

What are the minimal ingredients for a superconductor model?

∂AdS: CFT Bulk AdS: Gravity
Global Symmetry Gauge Symmetry

Temperature Hawking Temperature
Chemical potential/charge density Boundary values of the gauge field

Scalar operator O(x) scalar field φ(r, x)
Energy - Momentum Tensor Tab Metric tensor gµν

Global internal symmetry current Ja Maxwell field Aµ



Holographic Superconductor
We will study the Einstein-Maxwell action with one scalar field minimally coupled in
3 + 1 dimensions [Hartnoll-Herzog-Horowitz, 2008]

SBulk = Sgravity + Smatter (2)

=

∫
d4x
√
−g


Einstein︷ ︸︸ ︷
R + Λ

16πG
−

Maxwell︷ ︸︸ ︷
1
4

FµνFµν −

Scalar︷ ︸︸ ︷
|∇ψ − iqAψ|2 −m2|ψ|2


• Minimization of S with respect to gµν ⇒ Einstein field equations

Gµν + Λgµν = 8πTµν , Tµν = T (ψ)
µν + T (EM)

µν

where

T (ψ)
µν = Dµψ(Dνψ)∗ + Dνψ(Dµψ)∗ − gµν(gabDaψ(Dbψ)∗ + m2|ψ|2)

T (EM)
µν = F a

µ Fνa −
1
4

gµνFabFab

• Minimization of S with respect to Aµν ⇒ Maxwell Equations

∇νFµν + gµν [2q2Aν |ψ|2 + iq(ψ∗∇νψ − ψ∇νψ∗)] = 0

• Minimization of S with respect to ψ ⇒ Klein-Gordon Equation

(∂µ − iqAµ)[
√
−ggµν(∂ν − iqAν)ψ] =

√
−gm2ψ



The Probe Limit

Rescaling the fields:

Aµ =
Ãµ

q
, ψ =

ψ̃

q

The action (2) becomes:

S = Sgravity +
1
q2 S̃matter

• In the limit q→∞ the second term becomes small. Then we can
neglect that term and solve the field equations without the
presence of matter. This is called the Probe limit.

• However, the interesting physics are captured by the interaction
of the scalar field ψ(r) with the gauge field Aµ.



We consider a planar Schwarzschild ADS black hole:

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2(dx2 + dy2), f (r) = r2 −

r3
h

r

Taking the symmetric ansatz ψ = |ψ(r)|, Ax = Ay = Ar = 0 and At = φ(r) equations
Maxwell and Klein-Gordon become:

ψ′′ +

(
f ′

f
+

2
r

)
ψ′ +

(
φ2

f 2
−

m2

f

)
ψ = 0

φ′′ +
2
r
φ′ −

2|ψ|2

f
φ = 0

It is important to assume the correct boundary conditions at infinity and the horizon,
in order to get the correct correspondence. In the horizon we impose φ(r) = 0. The
asymptotic behaviour of the fields for r →∞ is:

ψ =
ψ(1)

r
+
ψ(2)

r2
, φ = µ−

ρ

r

We choose ψ(1) = 0. For the condensating operator: < O2 >=
√

2ψ(2).



Condensate
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• We observe the condensation of the
operator for a critical value of the
temperature Tc .

• Same results with BCS theory.

• The approximation doesnt’t work at
low temperatures where the
condesate is large.

• After fitting the curve at temperatures
close to the critical temperature we
find for the condensate,
< O+ >≈ 144T2

c (1− T
Tc

)
1
2 .

• The square root behaviour is typical
for a second order transition.



Optical Conductivity

The next step is to compute the optical conductivity σ(ω) of the CFT. We need to solve
for fluctuations of the vector potential Ax in the bulk. Taking δAx = e−iωtAx(r) with
zero spatial momentum, the x component of the Maxwell equations gives:

A′′x +
f ′

f
A′x +

(
ω2

f 2
−

2ψ2

f

)
Ax = 0

The asymptotic behaviour of the Maxwell field is:

Ax = A(0)
x +

A(1)
x

r
+ ...

To compute causal behaviour, we will take ingoing wave boundary conditions at the
horizon, f−iω/3r0 . The AdS/CFT dictionary tells us that the dual sourse and
expectation value for the current are given by:

Ax,CFT = A(0)
x , < Jx,CFT >= A(1)

x

Now from Ohm’s law we can obtain the conductivity:

σ(ω) =
< Jx,CFT >

Ex,CFT
= −

< Jx,CFT >

Ȧx,CFT
= −

i < Jx,CFT >

ωAx,CFT
= −

iA(1)
x

ωA(0)
x
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• The subsequent curves describe
successively lower values of the
temperature (for fixed charge density).

• From the real part of the conductivity
we observe the creation of the energy
gap ∆.

• The real part must have a delta
function in the limit ω → 0, which
doesn’t appear in our numerical
results. Although, due to the
Kramers-Kronig relations:

Im[σ(ω)] = −
1
π

P

∫ ∞
∞

Re[σ(ω′)]

ω′ − ω
dω′

The pole of the imaginary part 1
ω

is
equivalent with a delta function for
the real part.

• Fitting the curve we can obtain for
the energy gap, 2∆ ≈ 8.4Tc

• The theoretical estimation of the BCS
theory is 2∆ ≈ 3.54Tc



Remarks

• This simple model for the holographic superconductor gave good
results, which agree with the experimental data.

• However, the value for the energy gap is almost two times that
which is obtained from the BCS theory.

• In real materials, the energy gap is decreased with the
introduction of paramagnetic impurities.

• There is need for a dual description of these impurities with
Ads/CFT correspondence.



Non Minimal Model
Now we consider the action [Papantonopoulos-Xiao Mei, 2016]

Sbulk = Sgravity + Smatter =∫
d4x
√
−g

[
R + Λ

16πG
−

1
4

FµνFµν − (gµν + kGµν)Dµψ(Dνψ)∗ −m2|ψ|2
]

In this case the scalar field is coupled with the Einstein tensor Gµν = Rµν − 1
2 gµνR.

Puting:

Φµν ≡ Dµψ(Dνψ)∗

Φ ≡ gµνΦµν

Cµν ≡ gµν + kGµν

The Einstein field equations are:

Gµν + Λgµν = 8πTµν , Tµν = T (ψ)
µν + T (EM)

µν + kΘµν

where:

Θµν = −gµνRabΦab + R a
ν (Φµa + Φaµ) + R a

µ (Φaν + Φνa)−
1
2

R(Φµν + Φνµ)

− GµνΦ−
1
2
∇a∇µ(Φaν + Φνa)−

1
2
∇a∇ν(Φµa + Φaµ) +

1
2
�(Φµν + Φµν)

+
1
2

gµν∇a∇b(Φab + Φba) +
1
2

(∇µ∇ν +∇ν∇µ)Φ− gµν�Φ



Maxwell Equations now have the following form:

∇νFµν + Cµν [2q2Aν |ψ|2 + iq(ψ∗∇νψ − ψ∇νψ∗)] = 0

and the Klein-Gordon equation

(∂µ − iqAµ)[
√
−gCµν(∂ν − iqAν)ψ] =

√
−gm2ψ

Following the same process as before, the new equations which we have to numerically
solve are: (

1 + k

(
f

r2
+

f ′

r

))
ψ′′ +

[
2
r

+
f ′

f
+ k

(
3f ′

r2
+

(f ′)2

rf
+

f ′′

r

)]
ψ′

+

[
φ2

f 2

(
1 + k

(
f

r2
+

f ′

r

))
−

m2

f

]
ψ = 0

and

φ′′ +
2
r
φ′ −

2|ψ|2

f

[
1 + k

(
f ′

r
+

f

r2

)]
φ = 0

Notice that now the equations depend on the second derivative of f.
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• With the introduction of the new coupling k we observe that the strength of the
condensation decreases

• The critical temperature decreases as well

Fitting the curve for temperatures near the critical temperature gives:

< O+ >≈ C1(k)T2
c (1−

T

Tc
)

1
2 (3)



Optical Conductivity
Again for the calculation of the optical conductivity we will find the
fluctuations of the Ax component. The corresponding Maxwell
equation now has the form:

A′′
x +

f ′

f
A′

x +

[
ω2

f 2 −
2|ψ|2

f

(
1 + k

(
f ′′

2
+

f ′

r

))]
Ax = 0
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Conclusions

• By introducing the coupling k we observe a decrease in the
strength of the condensation and the critical temperature. The
decrease in the temperature means that the phase transition is
hard to occur.

• Increasing the coupling, the condensation decreases faster than
the temperature, so the energy gap tends to 0 for low
temperatures.

• The order of the phase transition doesn’t change in this case.
• Fitting the curve for high coupling, k = 0.5, we find that

2∆ ≈ 4Tc, reproducing the same relation as the BCS theory.
• This means that the coupling k can be interpeted as the dual

description of the paramagnetic impurities on real materials.



Future Study

• One characteristic of this model is it’s symmetry to spatial
translations.

• But real materials doesn’t have this symmetry.
• So we must break that symmetry. We achieve that by giving the

scalar field a spatial dependence φ = φ(r, x), with ∇2
xφ = −τ2φ.
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• We notice the appearance of some peaks for ω 6= 0 at the real
part of the conductivity.

• These peaks signal the creation of new charged degrees of
freedom that contribute to the conductive current.

• The energy of these new degrees can be found from the distance
between the peak and the energy gap.

• They appear even when k = 0. So they don’t have any relation to
the paramagnetic impurities.

• There is need for additional work in order to understand the
nature of these peaks.

• The main idea for future work involves studying the normal
phase of the superconductor with holography.


