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Motivation

Motivation

In the last years a number of static black holes dressed with scalar field have been
found in different dimensions.

Black holes circumvent the no-hair conjecture→ Cosmological constant, potentials
and nonminimal couplings.

In this way, for a self- interacting real scalar field nonminimally coupled to the Ricci
invariant (ξRΦ2), exact static black hole solutions has been found

2 + 1 D [Martínez and Zanelli, 1996, Henneaux et al., 2002, Xu and Zhao, 2013]

3 + 1 D [Bocharova et al., 1970, Bekenstein, 1974, Troncoso, R. et al., 2006]

[Dotti et al., 2008, Charmousis et al., 2009, Anabalón and Cisterna, 2012]

[Bardoux et al., 2012, Caldarelli et al., 2013, Astorino, 2013, Ayón-Beato et al., 2015]

D > 4 [Nadalini et al., 2008, Martínez, 2009, Bravo-Gaete and Hassaïne, 2013b]

[Bravo-Gaete and Hassaïne, 2013a, Giribet et al., 2014, Fan and Lu, 2015]
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Motivation

Motivation

Exact rotating hairy black holes with a conformally coupled scalar field are almost
absent in the literature
[Natsuume and Okamura, 2000, Anabalón and Maeda, 2010, Bardoux et al., 2014]

[Astorino, 2015] =⇒ Nonminimal case in arbitrary dimensions has not been reported.

The lack of stationary hairy solutions arises from the complexity of the field equations

The objective is to fill this gap and describe a new class of rotating hairy black holes
in arbitrary dimensions.
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Static hairy black holes

Static hairy black holes

The action

I[gµν ,Φ] =

∫
dnx
√
−g
[

R
2κ
− 1

2
gµν∂µΦ∂νΦ− ξ

2
RΦ2 − V(Φ)

]
.

Field equations

Gµν = κTµν ,

�Φ = ξRΦ +
dV(Φ)

dΦ
.

The energy-momentum tensor

Tµν = ∂µΦ∂νΦ− 1
2

gµνgαβ∂αΦ∂βΦ + ξ[gµν�−∇µ∇ν + Gµν ]Φ2 − gµνV(Φ).

A class of rotating hairy black holes in arbitrary dimensions 6 / 38



NINTH AEGEAN SUMMER SCHOOL

Static hairy black holes

The black hole solution

It is found that choosing the non-minimal parameter as

ξ =
n− 1

4n
, (1)

the solution is given by

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dσ2, Φ = Φ(r),

f (r) =
r2

l2 + αr2 log
(

1−
(a

r

)n−1
)
,

Φ(r) =

√
4n

κ(n− 1)

(a
r

) n−1
2
,

where a→ integration constant, l→ n-dimensional AdS radius α→ coupling constant and
dσ2 → line element of an n− 2 dimensional Ricci flat base manifold
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Static hairy black holes

The self-intreraction potential takes the form

V(Φ) =− (n− 2)(n− 1)

2κl2 +
α(n− 1)2Φ2 (−κΦ2 + 4n2 + n

(
κΦ2 − 8

))
8n (n (κΦ2 − 4)− κΦ2)

−
α(n− 2)(n− 1) log

(
1− κ(n−1)Φ2

4n

)
2κ

,

The Ricci scalar for the metric reads

R = (n− 1)

[
− n

l2 + α
(a

r

)n−1 (2n− 1)( a
r )n−1 − n

(1− ( a
r )n−1)2 − αn log

(
1−

(a
r

)n−1
)]

,

which determines the existence of curvature singularities at r = 0 and r = a.
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Static hairy black holes

Some properties

Ranging the radial coordinate as r > a, the exterior curvature singularity is set to the
origin.

The lapse f (r) and scalar field Φ(r) are real and regular functions everywhere.

Moreover, f (r) is a monotonically increasing function and has a single non-zero
positive root provided α > 0. This root is given by

r+ = h a, with h =

(
1− exp

(
− 1
αl2

))− 1
n−1

> 1.

Thus, r+ hides the curvature singularity at r = a.
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Static hairy black holes

The effective mass of the scalar field

Expanding the potential around Φ = 0, we get

V(Φ) −−−→
Φ→0

− (n− 1)(n− 2)

2κl2 − (n− 1)3ακ

64n
Φ4 +O(Φ6).

Note that the potential does not contain a mass term.

The non-minimal term ξR appearing in the scalar field equation

�Φ = ξRΦ +
dV(Φ)

dΦ

provides such a massive term.
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Static hairy black holes

The BF saturating mass

The scalar field tends to zero for large r, and the metric locally approaches the AdS
spacetime

f (r) −−−→
r→∞

r2

l2 − α
an−1

rn−3 +O(r−2n+4).

Consequently, the Ricci scalar approaches to R→ −n(n− 1)l−2, so that at infinity
the mass term is

m2
eff = ξR = − (n− 1)2

4l2 ,

which exactly matches the Breitenlohner-Freedman mass bound in n spacetime
dimensions. This is in agreement with the effective mass found in [Fan and Lu, 2015].
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Rotating hairy black holes

Rotating hairy black holes

The idea is to built the rotating black hole from the static one.

The starting point is to consider the set of (n− 2)−dimensional Ricci flat spaces
having the formMn−2 = R×Mn−3 and then split the line element as

dσ2 = dφ2 + dΣ2,

where dΣ2 denotes the line element ofMn−3, which is independent of the r, φ
coordinates.

The second and crucial step is to consider the following improper gauge
transformation:

t→ 1√
1− ω2

(t − lωφ) , φ→ 1√
1− ω2

(
φ− ω

l
t
)
,

where ω2 < 1 (real coordinate transformation).
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Rotating hairy black holes

Some relevant properties

Applying the boost, the stationary axisymmetric line element is obtained

ds2 = −N2(r)f (r)dt2 +
dr2

f (r)
+ H(r)(dφ+ Nφ(r)dt)2 + r2dΣ2,

N2(r) =
r2(1− ω2)

r2 − l2ω2f (r)
, Nφ(r) = − r2 − l2f (r)

r2 − l2ω2f (r)
ω

l
, H(r) =

r2 − l2ω2f (r)
1− ω2 .

In the asymptotic region, r →∞, we have

N2(r) = 1 +O(r−n+1),

Nφ(r) = − αlωan−1

(1− ω2)rn−1 +O(r−2n+2),

H(r) = r2 +
αl2ω2an−1

(1− ω2)rn−3 +O(r−2n+4).

In consequence, the rotating black hole is an asymptotically locally AdS spacetime in
n dimensions.
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Mass and angular momentum
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Mass and angular momentum

Conserved quantities

The Regge-Teitelboim approach [Regge and Teitelboim, 1974] to determine the mass and
angular momentum of this class of rotating hairy black holes is shown. In general, the
canonical generator of an asymptotic symmetry is given by

H[ξµ] =

∫
dn−1x

(
ξ⊥H⊥ + ξiHi

)
+ Q[ξµ].

• ξµ = (ξ⊥, ξi) → Asymptotic Killing vectors
• H⊥,Hi → Hamiltonian constraints
• Q[ξµ] → Surface term that ensures a well-defined generator

Therefore, on-shell evaluation of the canonical generator implies that H[ξµ] = Q[ξµ]
is the conserved charge associated to ξµ.
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Mass and angular momentum

We consider a minisuperspace containing the set of stationary metric and a scalar field
previously considered. In this way, the expressions for the constraints are

H⊥ =−
√

Hγ
f

rn−3
[
(1− κξΦ2)

(
(n−1)R

2κ

)
− 1

2
frn−3Φ′2 − V

]
+

√
f

Hγ

(
4κ

1− κξΦ2

)
πrφπ

rφ − [ξ
√

fHγrn−3(Φ2)′]′,

Hφ =− 2πφr
|r,

where ′ stands for d/dr, (n−1)R is the Ricci scalar of the spatial section of the metric
and γ is the determinant of the base spaceMn−3.

The only nonvanishing canonical momentum of the gravitational field is given by

π r
φ = −H

N

√
Hγrn−3

(
1− κξΦ2

4κ

)
(Nφ)′.
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Mass and angular momentum

Variation of the charge

Then, the expression for the variation of the charge is

δQ[ξµ] =

= 2πΣ lim
r→∞

{√
Hγ
f

[(
−

f
H

(
δH′ −

H′

2H
δH
)

−
(

H′

2H
+

n − 3
r

)
δf
)(

1 − κξΦ2

2κ

)
ξ⊥

+
f
H

[(
1 − κξΦ2

2κ

)
ξ⊥
]′
δH + f

[
ξ⊥(ξ(δΦ2)′ − δΦΦ′) − ξ⊥,r ξδΦ

2
]]

+ 2ξφδπ r
φ

}
,

Additionally, the components of the asymptotic symmetries are given in terms of the
spacetime components ∂t and ∂φ as follows,

ξ⊥ = N
√

f∂t,

ξφ = ∂φ + Nφ∂t.
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Mass and angular momentum

M and J

The black holes considered here have two symmetries.

• ∂t → M = Q(∂t)

• ∂φ→ J = −Q(∂φ)

Using the previous expressions, the conserved charges are

M = π
κ

Σαan−1
(
ω2+n−2

1−ω2

)
, J = π

κ
Σαan−1lω

(
n−1

1−ω2

)
,

such that the ground state

ds2 = − r2

l2 dt2 +
l2

r2 dr2 + r2dσ2, Φ = 0,

possesses M = 0 and J = 0.
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Mass and angular momentum

Some comments about the bounds

ω = 0 =⇒ J = 0, ω2 < 1 =⇒ M > 0.

Mass is bounded from below M > |J/l|.

This bound guarantees the existence of an event horizon as can be seen from

r+ = h

[
κ

2παlΣ

√
M2l2(n− 1)2 − 4J2(n− 2)−Ml(n− 3)

n− 2

] 1
n−1

.

Additionally, the angular velocity reads

ω =
Ml(n− 1)−

√
M2l2(n− 1)2 − 4J2(n− 2)

2J
,

in agreement with the condition ω2 < 1 by virtue of the bound M > |J/l|.
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Thermodynamics
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Thermodynamics

Thermodynamical quantities

The temperature can be determined by means of the surface gravity k at the horizon,

T =
k

2π
=
αh(n− 1)a

√
1− ω2

4π (hn−1 − 1)
.

Due to the nonminimal coupling, the standard Bekenstein-Hawking entropy acquires
an extra factor [Visser, 1993, Ashtekar et al., 2003] and reads

S =
(

1− κξΦ(r+)2
) 2πA+

κ
=

4π2

κ

an−2Σ√
1− ω2

(
hn−1 − 1

h

)
,

where A+ is the area of the horizon.
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Thermodynamics

ω2 < 1 and h > 1 =⇒ T > 0 and S > 0.

First law

dM = TdS + ΩdJ

Exhibits a Smarr formula

M =
n− 2
n− 1

TS + ΩJ.

A class of rotating hairy black holes in arbitrary dimensions 23 / 38



NINTH AEGEAN SUMMER SCHOOL

Thermodynamics Local stability

Local stability

Grand canonical ensemble→ T , Ω are fixed.

Thermodynamical stability→ Gibbs free energy G(T,Ω). The local stability criteria
demand to analyze the concavity of this function, which implies the following
stability conditions:

1
∂2G
∂T2 ≤ 0,

2
∂2G
∂Ω2 ≤ 0,

3
∂2G
∂T2

∂2G
∂Ω2 −

(
∂2G
∂T∂Ω

)2

≥ 0.
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Thermodynamics Local stability

Gibbs free energy

By using the Smarr relation, the Gibbs free energy G = G(T,Ω) = M − TS− ΩJ,
reduces to

G = − TS
n− 1

= −π
κ

Σαan−1,

which in terms of T and Ω is

G(T,Ω) = −πΣα
κ

[
4π(hn−1−1)
αh(n−1)

T√
1−Ω2l2

]n−1

.
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Thermodynamics Local stability

Stability criteria are satisfied as it can be seen explicitly from

1
∂2G
∂T2 = −

4n−1α(n− 2)(n− 1)πnΣ
(
hn−1 − 1

)n−1
Tn−3

κ
(
αh(n− 1)

√
1− Ω2l2

)n−1 ≤ 0,

2
∂2G
∂Ω2 = −

4n−1αl2(n− 1)πnΣ
(
nΩ2l2 + 1

) (
hn−1 − 1

)n−1
Tn−1

κ (1− Ω2l2)2 (αh(n− 1)
√

1− Ω2l2
)n−1 ≤ 0,

3
∂2G
∂T2

∂2G
∂Ω2 −

(
∂2G
∂T∂Ω

)2

=

=
42n−2α4h2l2(n− 1)4π2nΣ2 (hn−1 − 1

)2n−2
T2n−4

κ2
(
αh(n− 1)

√
1− Ω2l2

)2n ×
(

1 +
n− 3

1− Ω2l2

)
≥ 0.
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Thermodynamics Local stability

Therefore, the rotating hairy black holes are thermodynamically locally stable in any
dimension n ≥ 3.

The specific heat at fixed angular velocity,

CΩ =
(
∂M
∂T

)
Ω

= 4π2Σrn−2
+

(1−h1−n)(ω2+n−2)
κ(1−ω2)3/2 > 0.

In consequence, the rotating hairy black hole always attains equilibrium with a heat
bath.
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Thermodynamics Global stability

Global stability

The action principle for a fixed temperature also admits a rotating vacuum solution
[Lemos, 1995]

ds2
0 =− l2f − r2ω2

0

l2(1− ω2
0)

dt2 +
2ω0

(
l2f − r2)

l(1− ω2
0)

dtdφ+
r2 − l2ω2

0 f
1− ω2 dφ2 +

dr2

f
+ r2dΣ2,

• f (ρ) =
ρ2

l2 −
bln−3

ρn−3 ,

• ω0 → boost parameter,

• b > 0 → integration constant and

• dΣ2 → line element of a n− 3 dimensional Ricci-flat hypersurface.

This raises the question of whether one black hole can decay into the other.
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Thermodynamics Global stability

Global stability can be analyzed by comparing the free energy of the hairy black hole
and the vacuum solution.

The temperature, angular velocity and entropy for the vacuum solution are

T0 =
(n− 1)b1/(n−1)

√
1− ω2

0

4πl
, Ω0 =

ω0

l
, S0 =

4π2

κ

Σb(n−2)/(n−1)ln−2√
1− ω2

0

.

The mass and angular momentum can be computed using the expressions found
previously

M0 =
π

κ
Σbln−3

(
ω2

0 + n− 2
1− ω2

0

)
, J0 =

π

κ
Σbln−2ω0

(
n− 1

1− ω2
0

)
.
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Thermodynamics Global stability

Therefore, the Gibbs free energy of the vacuum solution is

G0 = −πΣbln−3

κ
.

Comparing the black holes with equal temperature and angular velocity yields

a =
(hn − h)b1/(n−1)

h2αl
, ω = ω0,

respectively.

Computing the difference between the free energies of the hairy and vacuum black
holes gives

∆G = G− G0 > 0

The vacuum solution is the configuration thermodynamically preferred over the hairy
one.
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Thermodynamics Global stability

Concluding remarks

A class of exact rotating black hole solutions of gravity nonminimally coupled to a
self-interacting scalar field in arbitrary dimensions has been presented.

These geometries are asymptotically locally AdS spacetimes and possess an event
horizon with a Ricci-flat geometry that covers the curvature singularity at the origin.

The scalar field is real and regular everywhere.

The effective mass term saturates the Breitenlohner-Freedman bound for arbitrary
dimension, which ensures the perturbative stability of the global AdS spacetime under
scalar perturbations.
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Thermodynamics Global stability

Concluding remarks

It is found that the mass is bounded from below by the angular momentum as
M > |J/l|, being consistent with the existence of an event horizon.

The thermodynamical analysis was carried out in the grand canonical ensemble.

The first law is satisfied and a Smarr formula is exhibited.

The rotating hairy black hole always attains equilibrium with a heat bath.

The hairy black hole is likely to decay into the vacuum black hole for any temperature.
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Thermodynamics Global stability

Eυχαριστώ !
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