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Fact: GR is a unique theory

Theoretical consistency: In 4 dimensions, consider L = L(M, g ,∇g ,∇∇g).
Then Lovelock’s theorem in D = 4 states that GR with cosmological constant is
the unique metric theory, emerging from

S(4) =
∫
M

d4x
√
−g (4) [R − 2Λ],

giving,

Equations of motion of 2nd-order
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-metric 4 dimensional theory
of gravity!
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Modified gravity theories

GR agrees to growing accuracy with local gravity experiments
Cosmological observations point towards the presence of a tiny cosmological
constant fueling the late time acceleration of the Universe.
Astrophysical observations point towards an unknown and undiscovered dark
matter component

Could it be that GR is not only modified at the UV but also at the IR?
→ Modified gravity theories

Extra dimensions
4-dimensional modification of GR: Scalar-tensor theories, vector-tensor, Massive
gravity, bigravity
Breaking of Lorentz invariance: Horava theory, Einstein-Aether theories
Theories modifying geometry: torsion, choice of geometric connexion
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Scalar-tensor theories

are the simplest modification of gravity with one additional degree of freedom
Admit a uniqueness theorem due to Horndeski 1973.
contain or are limits of other modified gravity theories. f (R), f (G), massive
gravity etc.
Can have late time de Sitter behavior.
Have non trivial black hole solutions in Horndeski theory
Have insightful screening mechanisms (Vainshtein) providing a "classical" limit
to GR
Include theories that can screen classically a big cosmological constant
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Jordan-Brans-Dicke theory [review by Sotiriou 2014]

Simplest scalar tensor theory

SBD =
1

16πG

∫
d4x
√
−g
(
ϕR −

ω0
ϕ
∇µϕ∇µϕ−m2(ϕ− ϕ0)2

)
+ Sm(gµν , ψ)

ω0 Brans Dicke coupling parameter fixing scalar strength
φ = φ0 constant gives GR solutions (with a cosmological constant) but
spherically symmetric solutions are not unique!
For spherical symmetry we find,

γ ≡
hij |i=j

h00
=

2ω0 + 3− exp
[
−
√

2ϕ0
2ω0+3mr

]
2ω0 + 3 + exp

[
−
√

2ϕ0
2ω0+3mr

]
where γ = 1 + (2.1± 2.3)× 10−5

ω0 > 40000... Need higher order kinetic terms in order to screen the scalar mode
locally : Vainshtein mechanism [Review: Babichev, Deffayet]
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(φ,X),
L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime. Examples:
G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

K = X − X2 −→ ghost condensate Second order field equations guarantee
absence of Ost ghosts. The converse is however not true [Gleyzes et al.] Beyond
Horndeski theories can be as stable as Horndeski [Crisostomi]. Horndeski theory
includes Fab 4 theory with self tuning properties.

LJohn =
√
−g VJohn(φ)Gµν∇µφ∇νφ,

LPaul =
√
−g VPaul(φ)Pµναβ∇µφ∇αφ∇ν∇βφ,

LGeorge =
√
−g VGeorge(φ)R,

LRingo =
√
−g VRingo(φ)Ĝ,

Horndeski theory is related to higher dimensional theories: Lovelock theory via Kaluza Klein reduction [Van Acoleyen, Van
Doorsselaere] and to DGP via the decoupling limit [Nicolis, Rattazzi]. Theory screens generically scalar mode locally by the
Vainshtein mechanism [Babichev, Deffayet]. See also the cases of K-mouflage [Babichev, Deffayet, Ziour] as well as KGB
[Deffayet, Pujolas, Sawicki, Vikman] for late time de Sitter behavior
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = K(X),
L3 = −G3(X)�φ,

L4 = G4(X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
Horndeski theory includes Shift symmetric theories where Gi ’s depend only on X
and φ→ φ+ c.
Associated with the symmetry there is a Noether current, Jµ which is conserved
∇µJµ = 0.
Presence of this symmetry permits a very general no hair argument
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Black holes have no hair [recent review Herdeiro and Radu 2015]

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
and no details
black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding
degrees of freedom lead to singular solutions...
For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff’s theorem will not function.
Spherical symmetry thus does not guarantee staticity.
Scalar tensor black holes radiate monopole gravity waves.
There is no reason for metric and scalar not to radiate for spherical symmetry
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No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
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Hair versus no hair [figure: Lehébel]
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Introducing time dependence, q 6= 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.

Furthermore, for self accelerating [Babichev, Esposito-Farese] or self tuning solutions
[Charmousis] one has a time dependence for the scalar in FRW coordinates
In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.
So let us allow time dependence for the scalar as a first step while keeping for a
static and spherically symmetric spacetime.
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The question of time dependence, qt + ψ(r)

Consistency theorem [Babichev, CC, Hassaine]

Consider an arbitrary shift symmetric Horndeski theory and a scalar-metric ansatz with
q 6= 0. The unique solution to the scalar field equation Eφ = 0 and the “matter flow”
metric equation Etr = 0 is given by J r = 0.

We are killing two birds with one stone.
The current now reads, JµJµ = −h(Jt)2 + (J r )2/f and is regular. Time
dependence renders theorem irrelevant.
Given the higher order nature of Horndeski theory this theorem basically tells us
that if φ = qt + ψ(r) then there exist φ′ 6= 0 solutions to the field equations.
One can prove for some theories that if φ = φ(t, r) then the only compatible φ
are φ = qt + ψ(r) and also φ = φ1(r2 − t2) for flat spacetime (Fab 4 self tuning
solution)

C. Charmousis No hair theorems and compact objects in Horndeski theories



Introduction: From scalar-tensor to Horndeski theory and beyond
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
Conclusions

General solution

Consider, L = R − η(∂φ)2 + βGµν∂µφ∂νφ− 2Λ For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and
φ = φ(t, r) is given as a solution to the following third order algebraic equation with
respect to

√
k(r):

(qβ)2
(
κ+ r2

2β

)2
−
(
2κ+ (1− 2βΛ) r2

2β

)
k(r) + C0k3/2(r) = 0

All metric and scalar functions given with respect to k.
For general shift symmetric G2,G4 the result can be extended, [Kobayashi, Tanahashi]

Let us now give some specific examples for the different cases...
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Shift symmetric theories
Beyond shift symmetry

Scalar with constant velocity q 6= 0

Consider the action,

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
,

Scalar field equation and conservation of current,

∇µJµ = 0, Jµ = (ηgµν − βGµν) ∂νφ.

Take ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2, and φ = φ(t, r) then

φ = ψ + qt −→ J r = 0
βG rr − ηg rr = 0 or φ′ = 0

For a higher order theory J r = 0 does not necessarily imply φ = const.

J r = 0 means that we kill primary hair since, ∇µJµ = 0→
√
−g(βG rr − ηg rr )∂rφ = c

We now solve for the remaining field eqs...

C. Charmousis No hair theorems and compact objects in Horndeski theories



Introduction: From scalar-tensor to Horndeski theory and beyond
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
Conclusions

Shift symmetric theories
Beyond shift symmetry

Solving the remaining EoM

From (rr)-component get ψ′

ψ′ = ±
√
r

h(β + ηr2)

(
q2β(β + ηr2)h′ −

ζη + βΛ
2

(h2r2)′
)1/2

.

and finally (tt)-component gives h(r) via,

h(r) = −
µ

r
+

1
r

∫
k(r)

β + ηr2
dr ,

with
q2β(β + ηr2)2 −

(
2ζβ + (2ζη − λ) r2

)
k + C0k3/2 = 0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!
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Shift symmetric theories
Beyond shift symmetry

Asymptotically flat limit : Λ = 0, η = 0

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Algebraic equation to solve: q2β3 − 2ζβk + C0k3/2 = 0→ k = constant!
f (r) = h(r) = 1− µ/r

φ± = qt ± qµ
[
2
√ r

µ
+ log

√
r−√µ√
r+√µ

]
+ φ0

Consider v = t +
∫

(fh)−1/2dr then ds2 = −hdv2 + 2
√

h/f dvdr + r2dΩ2

Regular chart for horizon, EF coordinates ([Jacobson], [Ayon-Beato, Martinez & Zanelli])

φ+ = q
[
v − r + 2√µr − 2µ log

(√ r
µ

+ 1
)]

+ const

Scalar regular at future black hole horizon!

Schwarzschild geometry with a non-trivial regular scalar field.
Exterior geometry for star
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Shift symmetric theories
Beyond shift symmetry

Star solutions [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Take stealth solution for exterior and consider PF matter for interior with ρ and
P that does not couple to scalar.
J r = 0, and therefore G rr = 0 which effects star interior.
For fixed star radius β > 0 (β < 0) gives heavier (lighter) stars than GR.
No GR limit for q → 0
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Shift symmetric theories
Beyond shift symmetry

Self tuning de Sitter black hole

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
f = h = 1− µ

r + η
3β r

2 de Sitter Schwarzschild!

ψ′ = ± q
h
√
1− h and φ(t, r) = q t + ψ(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,
Self tuning relation : q2η = Λ− Λeff > 0
Hence for any Λ > Λeff fixes q, integration constant.
where Λeff = − η

β
is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [Gubitosi, Linder]
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Shift symmetric theories
Beyond shift symmetry

Hair versus no hair [Lehébel]

Shift-symmetric
Horndeski theories

Gi(X)

John, ���φ(∂φ)2

e.g. Babichev et al.,
Kobayashi et al. Stealth
Schwarzschild black hole

John
e.g. Rinaldi, Anabalon

et al., Minamitsuji

G4X = 0, G4XX = 0
Babichev et al. Stealth
solutions (⊃ Kerr)

Everything else
Hui-Nicolis theorem

e.g. G4 ⊃
√−X

Babichev et al.
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Shift symmetric theories
Beyond shift symmetry

The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
Variation with respect to the metric gives the 4 dim Lovelock identity,
Hµν = −2PµcdeRν cde + gµν

2 Ĝ = 0. If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
Numerical solution can be found where the scalar and mass integration constants
are fixed so that the solution is regular at the horizon.
The mass of the black hole has a minimal size fixed by the GB coupling α. The
singularity is attained at positive r .
The solution has infinite current norm at the horizon because J r 6= 0
Solutions with q 6= 0 and regular Noether current are in a different branch and
are singular.
Are there other cases where scalar is sourced by non trivial geometry?
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totic flatness

Asymptotic
flatness

No kinetic term Kinetic term

Jr 6= 0Jr = 0

C. Charmousis No hair theorems and compact objects in Horndeski theories



Introduction: From scalar-tensor to Horndeski theory and beyond
A no hair theorem and ways to evade it

Constructing black hole solutions: Examples
Conclusions

Shift symmetric theories
Beyond shift symmetry

Square root Lagrangian [Babichev, CC, Lehébel]

Current for spherical symmetry:

J r = −f φ′G2X − f
rh′ + 4h

rh
XG3X + 2f φ′

fh − h + rfh′

r2h
G4X+

+4f 2φ′
h + rh′

r2h
XG4XX − fh′

1− 3f
r2h

XG5X + 2
h′f 2

r2h
X2G5XX

where X ≡ − 1
2∇

µφ∇µφ
Keeping the kinetic term G2 ∼ X the GB term Ĝ ∼ lnX kills φ dependence and acts
as a source to the scalar field equation.
Same can happen if we take eg. G4 ∼

√
−X . Consider the theory,

G2 = ηX , G4 = ζ + β
√
−X

Solve J r = 0 to get φ′ = ±
√
2β

ηr2
√
f
.

We have a black hole solution, ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2

f (r) = h(r) = 1−
µ

r
−

β2

2ζηr2
Solution has a RN type of black hole potential with real or imaginary charge
which is fixed in this case
Solution is a black hole even in the absence of mass for η > 0
Solution is never flat. The theory cannot have trivial solutions.
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Shift symmetric theories
Beyond shift symmetry

Purely quartic model, G4 [Babichev, CC, Lehébel]

Suppose now that we keep G4 analytic but do away with the kinetic term.
Consider again spherical symmetry (q = 0)

Field equations dictate that X = X0

Regularity, G4X (X0) = 0 and G4XX (X0) = 0.
Any theory of the type, G4(X) = ζ +

∑
n≥2 βn(X − X0)n will admit a stealth Schw.

solution.
Further examination shows that, the Kerr metric is also an exact solution of the theory
with

φ(r , θ) =
√
−2X0

[
a sin θ −

√
a2 − 2mr + r2 −m ln

(√
a2 − 2mr + r2 −m + r

)]
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Shift symmetric theories
Beyond shift symmetry

Slowly rotating solutions [Maselli, Silva, Minamitsuji, Berti]

Using the Hartle Thorne perturbative approximation in which frame-dragging is
assumed linear in angular velocity

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2θdϕ2)− 2ω(r)r2sin2θdtdϕ,

We get an ode to linear order:

2(1− βX)
[
ω′′ +

ω′

2

( f ′
f

+
8
r
−

h′

h

)]
− 2βX ′ω′ = 0

which agrees with GR for X constant.
What happens for X 6= const.
We can integrate once,

(1− βX)ω′ =
C1
√
k

r4(1 + r2
2β )

but, one can show by using remaining field equations that correction is always
identical to GR [Lehébel].
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Kaluza-Klein reduction
Start from Einstein → Lovelock theory in vacuum [CC, Gouteraux and Kiritsis]

S(4+n) =
∫

d4+nx
√
−g (4+n)

[
R − 2Λ + αĜ

]
, Ĝ = RABCDRABCD − 4RABRAB + R2

Consider a simple metric Anzatz and show it is a consistent truncation (see eg.
[Kanitscheider and Skenderis]),

ds2(4+n) = ds̄2(p+1) + eφdK̃2
(n) .

Compactify on some curved n dimensional constant curvature manifold K̃ .

S̄galileon =
∫

dp+1x
√
−ḡ e

n
2φ
{
R̄ − 2Λ + α̂Ḡ +

n
4

(n − 1)∂φ2 − α̂n(n − 1)Ḡµν∂µφ∂νφ

−
α̂

4
n(n − 1)(n − 2)∂φ2�φ+

α̂

16
n(n − 1)2(n − 2)

(
∂φ2
)2

+e−φR̃
[
1 + α̂R̄ + α̂4(n − 2)(n − 3)∂φ2

]
+ α̂G̃e−2φ

}
,

Tilded quantities are related to compactified K̃ geometry and are constants.
They yield 4 dim potentials.
Barred quantities are 4 dimensional. Notice that Lovelock densities interact with
the scalar field.
Coefficient n is extended to the real line.
We have a generalised scalar tensor theory which admits 2nd order field
equations.



Take Lovelock black hole with m 2-spheres H = S(2) × S(2)...× S(2).
Compactify on m − 1 of these keeping one S(2) in 4 dims.
We obtain,

ds̄2(4) = −V (R)dt2 +
dR2

V (R)
+

R2

n + 1
dS2 ,

V (R) = κ+
R2

α̃r

[
1∓

√
1−

2α̃2
r κ

2

(n − 1)R4 +
4α̃rm

R3+n

]
,

α̃r = 2α̂n(n + 1), κ = 1

eφ/n =
R2

n + 1
,

Taking n→ 0 gives us Schwarzchild.
Taking α̃r → 0 gives Einstein Dilaton solution [Chan Horne and Mann]

Solution has solid deficit angle. Solution is similar to the external field of the
gravitational monopole.
Solution for zero mass is therefore singular and has non-trivial topology
distinguishing it from GR.
For large R and small α̃r we have
V (R) ∼ 1 + α̃r

(n−1)R2 − 2m
Rn+1 + ...

Higher order terms give rise to an extra horizon, a bit like in RN geometry.
For m = 0 and 0 < n < 1 we hide the singularity at R = 0
Higher order term cloaks an otherwise naked singularity
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Conclusions

Starting from a no hair theorem we have seen how to construct hairy black holes.
Similar theorem exists for neutron stars [Lehébel].
Using Lovelock solutions we can construct black holes in Horndeski theory.
Many questions about stability of solutions; staticity of spacetime quite unclear
Higher order terms essential for novel branches of black holes
One can construct solutions with EM fields and black hole solutions with primary
hair by adding additional scalar fields
Techniques for shift symmetric Horndeski can be extended to Maxwell-Proca
theories [Heisenberg].
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