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Motivation

special feature FQH Effect: existence of a gapped collective

non-relativistic massive spin-2 excitation, known as the GMP mode

Girvin, MacDonald and Platzman (1985)

recent proposal for a non-relativistic spatially covariant bimetric EFT

describing non-linear dynamics of this massive spin-2 GMP mode
Gromov and Son (2017)

proposal is reminiscent to non-relativistic and massive gravity

Cartan (1923); de Rham, Gabadadze, Tolley (2011)

see also lectures by Hassan and De Felice

Can EFT be obtained by some limit of Relativistic Massive Graviy?
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Condensed Matter

Effective Field Theory (EFT) coupled to NC background fields

serve as response functions and lead to restrictions on EFT

compare to

Coriolis force

Luttinger (1964), Greiter, Wilczek, Witten (1989), Son (2005, 2012), Can, Laskin, Wiegmann (2014)

Jensen (2014), Gromov, Abanov (2015), Gromov, Bradlyn (2017)
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NC Gravity in a Nutshell

• Inertial frames: Galilean symmetries

• Constant acceleration: Newtonian gravity/Newton potential Φ(x)

• no frame-independent formulation

(needs geometry!)

Riemann (1867)
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Galilei Symmetries

• time translations : δt = ξ0 but not δt = λix i !

• space translations : δx i = ξi i = 1, 2, 3

• spatial rotations : δx i = λi
j x

j

• Galilean boosts : δx i = λi t

[Jab,Pc ] = −2δc[aPb] , [Jab,Gc ] = −2δc[aGb] ,

[Ga,H ] = −Pa , [Jab, Jcd ] = δc[aJb]d − δa[cJd]b , a = 1, 2, 3
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‘Gauging’ Galilei

symmetry generators gauge field curvatures

time translations H τµ Rµν(H)

space translations Pa eµ
a Rµν

a(P)

Galilean boosts G a ωµ
a Rµν

a(G)

spatial rotations Jab ωµ
ab Rµν

ab(J)

Imposing Constraints

Rµν
a(P) = 0 : does only solve for part of ωµ

ab

Rµν(H) = ∂[µτν] = 0 → absolute time T=

∫

C
dxµτµ =

∫

C
dτ
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‘Gauging’ Bargmann

symmetry generators gauge field curvatures

time translations H τµ Rµν(H)

space translations Pa eµ
a Rµν

a(P)

Galilean boosts G a ωµ
a Rµν

a(G)

spatial rotations Jab ωµ
ab Rµν

ab(J)

central charge transf. Z mµ Rµν(Z )

Imposing Constraints

Rµν
a(P) = 0 , Rµν(Z ) = 0 : solve for spin-connection fields

Rµν(H) = ∂[µτν] = 0 → absolute time (‘zero torsion’)
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The NC Transformation Rules

The independent NC fields {τµ, eµa,mµ} transform as follows:

δτµ = 0 ,

δeµ
a = λa

b eµ
b + λaτµ ,

δmµ = ∂µσ + λa eµ
a

The spin-connection fields ωµ
ab and ωµ

a are functions of e, τ and m
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The NC Equations of Motion

Élie Cartan 1923

The NC equations of motion are given by

τµeνaRµν
a(G) = 0 1

eνaRµν
ab(J) = 0 a + (ab)

• after gauge-fixing and assuming flat space the first NC
e.o.m. becomes △Φ = 0

• there is no known action that gives rise to these equations of motion



Newton-Cartan Gravity Massive Gravity Non-relativistic Limits Conclusions

Outline

Newton-Cartan Gravity

Massive Gravity

Non-relativistic Limits

Conclusions



Newton-Cartan Gravity Massive Gravity Non-relativistic Limits Conclusions

What is Massive Gravity ?

Massive Gravity is the name we have given to the attempt to

understand what the gravitational force would be like if the

graviton, the carrier of the gravitational force, has a small, but

non-zero, mass
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1939: Fierz-Pauli

• the free massive graviton, with mass m, is a spin-2 particle

described by a symmetric tensor field hµν(x)

• for m = 0 this tensor can be viewed as the linearized

approximation to a metric tensor gµν(x):

gµν(x) = ηµν + hµν(x) + O(h2)

• the Fierz-Pauli kinetic term is the linearization of the

Einstein-Hilbert term of general relativity
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The Fierz-Pauli mass term

LFP(mass) ∼ m2
(

hµνhµν − h2
)

h ≡ ηµνhµν

The Fierz-Pauli mass term

• breaks the linearized g.c.t. of the kinetic term:

δhµν = ∂µξν + ∂νξµ

• contains a reference metric ḡµν = ηµν

• requires fine-tuning
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New Developments

First proposals for a non-linear mass term date back to

Salam, Strathdee (1969); Isham, Salam, Strathdee (1970); Zumino (1970)

• recent proposal in 4D by

de Rham, Gabadadze, Tolley (2011), Hassan, Rosen (2012)

• use Vierbeins eµ
a instead of metric gµν

Hinterbichler, Rosen (2010)

• 3D: Chern-Simons formulation in terms of (eµ
a, ωµ

a)

Deser, Jackiw, ’t Hooft (1984)

Achucarro, Townsend (1986); Witten (1988)
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The 3D dRGT Chern Simons Model

LdRGT(e, ω; ē) = −MP

{

ea ∧ Ra(ω) + ǫabc
(

α1 ea ∧ eb ∧ ec +

β1 ea ∧ eb ∧ ēc + β2 ea ∧ ēb ∧ ēc
)

}

Ra(ω) = dωa +
1

2
ǫabcωb ∧ ωc : curvature tensor

• reduces to Fierz-Pauli in linearized approximation
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The 3D dRGT CS model can be obtained as a scaling limit of an

underlying 3D “ZDG model” containing zwei Dreibeine
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Zwei-Dreibein Gravity

4D : Hassan, Rosen (2012); de Haan, Hohm, Merbis, Townsend (2013)

we introduce two (“zwei”) Dreibeine eIµ
a and two independent

spin-connections ωIµ
a (I = 1, 2)

LZDG(eI
a, ωI

a) = −MP

{

e1a ∧ Ra
1 + e2a ∧ Ra

2

+ǫabc
(

α1 e1a ∧ e1b ∧ e1c + α2 e2a ∧ e2b ∧ e2c +

+β1 e1a ∧ e1b ∧ e2c + β2 e1a ∧ e2b ∧ e2c

)

}
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From General Relativity to NC gravity

Poincare ⊗ U(1)
‘gauging’
=⇒ GR plus ∂µMν − ∂νMµ = 0

contraction ⇓ ⇓ the NC limit

Bargmann
‘gauging’
=⇒ Newton-Cartan gravity
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Contraction Poincare

[

PA,MBC

]

= 2 ηA[B PC ] ,
[

MAB ,MCD

]

= 4 η[A[C MD]B]

P0 =
1

2ω
H , Pa = Pa , A = (0, a)

Mab = Jab , Ma0 = ω Ga

Taking the limit ω → ∞ gives the Galilei algebra:

[

Pa,Gb

]

= 0
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Contraction Poincare ⊗ U(1)

[

PA,MBC

]

= 2 ηA[B PC ] ,
[

MAB ,MCD

]

= 4 η[A[C MD]B] plus Z

P0 =
1

2ω
H + ω Z , Z =

1

2ω
H − ω Z , A = (0, a)

Pa = Pa , Mab = Jab , Ma0 = ω Ga

Taking the limit ω → ∞ gives the Bargmann algebra including Z:

[

Pa,Gb

]

= δab Z
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The NC Limit I
Dautcourt (1964); Rosseel, Zojer + E.B. (2015)

STEP I: express relativistic fields {Eµ
A,Mµ} in terms of non-relativistic

fields {τµ, eµa,mµ}

Eµ
0 = ω τµ +

1

2ω
mµ , Mµ = ω τµ − 1

2ω
mµ , Eµ

a = eµ
a ⇒

Eµ
a = eµa −

1

2ω2
τµeρamρ +O

(

ω−4
)

and similar for Eµ
0
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The NC Limit II

STEP II: take the limit ω → ∞ in e.o.m. ⇒

• the NC transformation rules are obtained

• the NC equations of motion are obtained (but no action!)

Note: the standard textbook limit gives Newton gravity
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What about Matter?
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Real Representations

consider a real scalar field with mass M

E−1 Lrel = −1

2
gµν ∂µΦ∂νΦ− M2

2
Φ2

Rescale Φ = 1√
ω
φ and take non-relativistic limit ω → ∞ →

e−1Lnon−rel. = −1

2

(

∂aφ
)2 − M2

2
φ2
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Complex Representations: from KG to Schrödinger
Jensen, Karch (2014), Rosseel, Zojer + E.B. (2015), Fuini, Karch, Uhlemann (2015)

Klein-Gordon + GR
‘limit’
=⇒ Schrödinger + NC

general frames ⇑ ⇓ inertial frames

Klein-Gordon =⇒ Schrödinger
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The Schrödinger Limit I

consider a complex scalar field with mass M
Lévy Leblond (1963,1967)

E−1Lrel = −1

2
gµν DµΦ

∗DνΦ− M2

2
Φ∗Φ with

DµΦ = ∂µΦ− iM MµΦ , δΦ = iM ΛΦ

• Mµ is not an electromagnetic field (M 6= q)!

• Mµ couples to the current that expresses conservation of

# particles – # antiparticles
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The Schrödinger Limit II

Take non-relativistic limit extended with M = ωm ,Φ =
√

ω

m
φ →

e−1LSchroedinger =
[ i

2

(

φ∗D0φ− φD0φ
∗
)

− 1

2m

∣

∣Daφ
∣

∣

2
]

with

Dµφ = ∂µφ+ immµ φ , δφ = ξµ∂µφ− im σ φ

• mµ couples to the current that expresses conservation of # particles

• going to inertial frames gives Schrödinger equation
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Massive Particle

complex helicity mode ⇔ Schrödinger
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The Massive Spin 1 Case
J. Rosseel, P. Townsend + E.B., in preparation

consider a complex Proca field in D dimensions with mass M :

E−1Lrel = −1

4
gµρgνσF ∗

µν
Fρσ − 1

2
M2 gµνA∗

µ
Aν with

Fµν = 2D[µAν] = 2 ∂[µAν] − 2 iM M[µAν] , δAµ = iM ΛAµ

Take non-rel. limit extended with M = ωm and go to inertial frames →

e−1Lnon−rel = −1

4
F ∗
abF

ab − 1

2
imA∗

aFa0 +
1

2
imAa F

∗
a0 +

1

2
m2

∣

∣A0

∣

∣

2
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Three Dimensions

flat background : Q = A1 + iA2 , Q̃ = A1 − iA2

• Q and Q̃ transform under spatial rotations and Q
P⇔ Q̃

solve for A0 : mA0 = i∂Q + i ∂̄Q̃ ⇒

Q̇ + i
2m ∂̄∂Q = 0 and

˙̃
Q + i

2m ∂̄∂Q̃ = 0
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Alternative Limit Real Proca

2 complex helicity modes ⇔ 2 x Schrödinger

but also

2 real P even helicity modes ⇔ P odd Schrödinger

Q = A1 + iA2 , A1,A2 real
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Proca →
√
Proca

L√
Proca = ǫµνρA∗

µ∂νAρ +MA⋆

µA
µ

Proca
non rel. limit

=⇒ Q + Q̃

‘truncation’ ⇓ ⇓ truncation

√
Proca

‘special’ limit
=⇒ Q



Newton-Cartan Gravity Massive Gravity Non-relativistic Limits Conclusions

Proca →
√
Proca

L√
Proca = ǫµνρA∗

µ∂νAρ +MA⋆

µA
µ − M

2
B⋆

µB
µ

Proca
non rel. limit

=⇒ Q + Q̃

‘truncation’ ⇓ ⇓ truncation

√
Proca

‘special’ limit
=⇒ Q
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• there is an interesting relation with Scherk-Schwarz null
reductions and 4D complex self-dual Maxwell

• consider NR limit of
√
Proca → TME

• spinning article
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A Road Map for Non-relativistic Massive Spin-2

• extend Proca to Fierz-Pauli (FP) and
√
Proca to

√
FP

• Take non-relativistic limit of Zwei-Dreibein Gravity

• two NC metrics → bimetic NC Gravity

• one NC metric and one complex ‘matter’ metric

→ 2 x Schrödinger

• one NC metric and one real ‘matter’ metric

→ P odd Schrödinger

• no action!
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3D Gravity is not unique!

• 3D Galilei Algebra allows two central extensions. The second central
extension is related to anyons

Jackiw, Nair (2000)

• limit of 3D General Relativity plus term with two auxiliary vector

fields of the form ǫµνρMµ∂νSρ gives 3D Extended Bargmann Gravity
Rosseel + E.B. (2016)

• consider limit of Zwei-Dreibein Gravity with extra vector fields ⇒

• Bimetric Extended Bargmann Gravity

• EFT describing non-linear dynamics of massive spin 2?
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Open questions

• Does non-relativistic limit of some 3D Massive Relativistic Gravity

model give the fully-covariant completion of the proposal of the

EFT for the GMP mode in the FQE Effect?

Gromov and Son (2017)

• If so, can you also construct extensions involving

• higher derivatives?

• higher spins?
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Take-Home Message

Taking non-relativistic limits is non-trivial!
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Save the Date: March 12 - 16, 2018 !
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