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Modification of gravity 

Why modify gravity?  
- cosmological constant problems, 
- non-renormalizability problem, 
- benchmarks for testing General Relativity (LIGO detection of a 
gravitational wave) 
- theoretical curiosity. 
!
Many ways to modify gravity:  
- f(R), scalar-tensor theories, 
- Galileons, Horndeski (and beyond) theory, KGB, Fab-four,  
- higher-dimensions,  
- DGP,  
- Horava, Khronometric 
- massive gravity
- Most general scalar-tensor theory leading to equations of motions 

with no more than 2 derivatives; 
- Cancellation of Lambda (Fab-Four), Self-tuning, Self-acceleration; 

- Vainshtein mechanism

[Christos’s talk today]



Horndeski theory (Galileons)

The most generic scalar-tensor theory in 4D, whose equations of 
motion contain no more than second derivatives  

Horndeski‘1974

? Horndeski theory

No more than 2 derivatives in EOMs to avoid 
the Ostrogradski ghost ! 

When the equations of motion are of higher 
order, in general it means a new degree of 

freedom which is a ghost
[See also Marco’s talk]

[Christos’s talk today]



Examples of Horndeski
and beyond

canonical field 
  

k-essence 
!

DGP-like term 
!

and more
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Possible pathologies

Monday 15 June 15

Ghosts - negative energies (even if Ostrogradski ghost 
does not appear.) 

Monday 15 June 15

Gradient instabilities - catastrophic exponential instability 

Monday 15 June 15

Formation of caustics



Pressureless perfect fluid
Non-relativistic 1+1 case
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Caustic formation
Characteristics cross

x

t

ts

dx

dt

= v

For generic initial conditions 
characteristics cross  
=> caustics

Pressureless fluid arises in: 
✤ Low energy limit of Horava gravity 
✤ Ghost condensate 
✤ Mimetic theory 
✤ …



Linear theory

1+1 case

- All characteristics are straight lines (45 degrees) 
- Characteristics are determined by the kinetic part

x

t
future cone

past cone

- Perturbations propagate along characteristics 
- Signals (wave fronts) propagate along characteristics 
- Cones of influence are defined by characteristics

causal structure
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wavefront

Canonical kinetic term + quadratic mass:
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future  
cone

past 
cone

k-essence
equations of motion & causal structure

Variation with respect to the scalar field gives: 
- quasi-linear equations 
- second order in derivatives

Cones of influence for the scalar field do not 
coincide with those of the photons and gravitons.
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non-linear example
hydrodynamics

�

�
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Are there caustics in k-essence?



K-essence: EOM

for the canonical scalar field is the sum of f1 and f2. Due to the non-linearity, f1 + f2 is not a

solution for k-essence in general.

A similar result holds also for the galileon field, as it has been shown in [17, 18]: a subclass

of the galileon model supports travelling waves (on fixed Minkowski spacetime), i.e. solutions

of the form (5). This result has been later generalised to the case of the most general Horndeski

theory with a dynamical metric [19].

In this paper we study in detail propagation of waves in the the shift-symmetric k-essence

and galileon models in 1+1 dimension spacetime. We first show that in the case of the k-

essence theory (3), the travelling wave, Eq. (5), is not a generic solution and it corresponds to

very particular initial conditions. On the contrary, as we demonstrate by using the method of

characteristics, a generic wave solution in k-essence does not keep its form when propagating and

eventually leads to the formation of caustics3 Finally, any wave solution for the pure k-essence

model L = K(X) in 1+1 dimensional spacetime is also a solution for the shift-symmetric galileon

model L = K(X)+H(X,∇∇φ), whereH(X,∇∇φ) is the most general shift-symmetric Galileon

Lagrangian containing second derivatives4. We discuss the obtained results and outline open

issues.

2 Dynamics in two dimensions and characteristics

A general action for a shift-symmetric scalar field k-essence reads,

SK =

∫

d4x
√
−gL(X), (6)

where X ≡ 1
2
(∂µϕ∂µϕ) is the canonical kinetic term of a scalar field. Eq. (6) is invariant under

the transformation ϕ → ϕ+const, hence the name “shift-symmetric”. The simplest example of

the above k-essence action is the standard massless scalar field with L(X) = X. In addition,

through the main part of the paper we assume that the metric is flat and non-dynamical,

therefore the only dynamical variable in the theory is the scalar field. In this case the equations

of motion for the scalar field is linear, while for a generic L(X) the equations of motion is

nonlinear. Variation of (6) with respect to ϕ gives equation of motion (see e.g. Ref. [15]),

(LXgµν + LXX∇µϕ∇νϕ)∇µ∇νϕ = 0, (7)

where the subscript denotes the corresponding derivative, i.e. LX ≡ dL/dX, LXX ≡ d2L/(dX)2.

3In [20] it was shown that caustics are formed in a specific non-canonical scalar field model, the Born-Infeld field

theory, due to the fact that there is a regime for which the Born-Infeld scalar field behaves as dust, see also [21].

Here, however, we show that the caustics is a generic feature for all k-essence models, independently of whether they

behave as dust in some regime or not. Other theories, which are known to have the problem of caustics include ghost

condensate [22] and the Gauss-Bonnet theory [23] (see discussion e.g. in [24]).
4 With this requirement we exclude the k-essence term from H(X,∇∇φ), but allow all other shift-symmetric

galileon terms. So that in the Lagrangian the k-essence term is presented solely by K(X).
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K-essence: characteristics

New variables:

To simplify the study, we restrict ourselves to the case of two-dimensional motion, i.e. ϕ

is a function of the time coordinate t and one spatial coordinate x. Taking into account that

the equation of motion (7) does not depend on ϕ explicitly, it will be convenient to define the

following variables,

τ = φ̇, χ = φ′, (8)

where dot denotes derivative with respect to time and prime is the derivative with respect to x.

The consistency d
dt(

d
dxφ) =

d
dx(

d
dtφ) requires the following relation to be hold,

τ ′ = χ̇. (9)

In terms of the new variables (8) the kinetic term reads, X = 1
2
(τ2 − χ2). Using (8) and (9),

Eq. (7) can be rewritten in the following form,

Aτ̇ + 2Bτ ′ + Cχ′ = 0, (10)

where we defined,

A = LX + τ2LXX , B = −τχLXX , C = −LX + χ2LXX . (11)

It is easy to see that in the case of the canonical scalar field, L = X, the above equation takes the

form τ̇ −χ′ = 0, which by substitution of (8) assumes the form of the wave equation ϕ̈−ϕ′′ = 0.

In general, however, the coefficients A,B,C are functions of τ and χ.

We will study (10) by the method of characteristics5. First, let us consider an arbitrary

smooth curve in the (x, t) plane, with a parameter σ along the curve. The derivatives of the

coordinates t and x along the curve we denoted by tσ ≡ dt/dσ and xσ ≡ dx/dσ. Then we can

easily compute the derivatives of τ and χ along the curve σ in terms of xσ and tσ,

τσ = τ̇ tσ + τ ′xσ,

χσ = χ̇tσ + χ′xσ.
(12)

Using (12) (and assuming non-zero tσ and xσ along the curve σ) Eq. (10) can be rewritten as

follows,
A

tσ
τσ +

C

xσ
χσ −

τ ′

ξ

(

Aξ2 − 2Bξ + C
)

= 0, (13)

where we introduced the derivative along the curve ξ ≡ (dx/dt)σ = xσ/tσ . Now, if the expression

in the parentheses vanishes,

Aξ2 − 2Bξ + C = 0, (14)

then Eq. (13) becomes an ordinary (in general nonlinear) differential equation,

(ξA)dτ + Cdχ = 0,

5In this section we mostly follow the mathematical literature on quasilinear differential equations, see e.g. [25] and

[26].
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Introduce two families of curves in (t,x) plane, with parameters       
along the curves.

Characteristic equation

1+1 dimensions

�±

Signals propagate along characteristics (small 
perturbations on top of a particular solution in the eikonal 
approximation,                ).! ! 1
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K-essence: characteristics

which holds along the curve σ. Eq. (14) is called the characteristic equation, and the solutions

of the characteristic equations ξ are the characteristics. Physically, the characteristic curve

describes the propagation of a signal, made of small perturbations, on top of a particular solution.

Note that the signal speed does not coincide in general neither with the group velocity nor phase

velocity, since the characteristic curve corresponds to the high-frequency limit ω → ∞. See a

relevant discussion, e.g. in [15]. Provided that

B2 −AC > 0,

which, by use of (11) reads,

L2
X + 2XLXLXX > 0 (15)

the characteristic equation (14) has two real roots ξ = ξ±, giving two families of characteristics,

ξ± =
−τχLXX ±

√

L2
X + 2XLXLXX

LX + τ2LXX
. (16)

Notice that the condition (15) coincides with the hyperbolicity condition for the k-essence field,

see e.g. Ref. [15]. When the expression in the square root is positive, i.e. the characteristic

equation has two real roots, the equation is hyperbolic, while two complex roots correspond to

an elliptic equation.

Thus, provided that the hyperbolicity condition (15) is satisfied, the partial differential

equation (10) is now rewritten as a system of four ODEs on t, x, τ and χ as functions of two

independent variables σ+ and σ−,

dx

dσ+
= ξ+

dt

dσ+
,

dx

dσ−
= ξ−

dt

dσ−
, (17)

(ξ+A)
dτ

dσ+
+ C

dχ

dσ+
= 0, (ξ−A)

dτ

dσ−
+ C

dχ

dσ−
= 0, (18)

where σ+ and σ− are parameters along the characteristics ξ+ and ξ− correspondingly, Eq. (17)

is simply the definition of characteristics, and Eq. (18) is (13) with (14) taken into account. It

is still a complicated problem to analyse the system (17) and (18), but luckily, in our case of a

shift-symmetric k-essence field, the problem is simplified. Indeed, note that the equations on τ

and χ, i.e. Eq. (18), decouple from the other two equations, Eq. (17), since t and x do not enter

Eq. (18) explicitly. Such set of equations is called reducible system [25].

Let us therefore focus on (18) for the moment. By substituting the solution of ξ = ξ± from

(14) and definitions of A and C into Eq. (18), we obtain,

(

dτ

dχ

)

±

= −ξ∓. (19)

As one can see from (19), the characteristics Γ± ≡ (dτ/dχ)± in the (τ,χ) plane are connected to

the characteristics ξ± in the (t, x) plane in a particularly simple way, Γ+ = −ξ− and Γ− = −ξ+.

It is worth to note that in the canonical case, L = X, the characteristics are the straight lines

5

We can rewrite the original PDE as a set of ODEs:

The equations 
are decoupled.

⇠± =
v ± cs
1± vcs

Monday 15 June 15

Pressureless perfect fluid:  

Monday 15 June 15

Canonical kinetic term:                                                         

Monday 15 June 15

Travelling wave                        ,     

LX = X ) cs = 1 ) ⇠± = ±1

' = '(t± x) ⌧ = ±� ) ⇠± = ±1, X = 0

⇠can± = ±1, independently on the value of � and ⌧ , since the equation of motion is linear. On the

contrary, in the non-canonical case, the characteristics depend on the solution. At this point it

is convenient to introduce the following quantity,

c2
s

=

✓
1 + 2X

L
XX

L
X

◆�1

. (20)

Using (20), Eq. (16) can be simplified to,

⇠+ =
⌧c

s

� �

⌧ � �c
s

, ⇠� = �⌧c
s

+ �

⌧ + �c
s

. (21)

The quantity c
s

has the meaning of the speed of propagation of small perturbations with respect

to the background solution with timelike @
µ

�. Indeed, from (21), for a background solution

� = 0, ⌧ 6= 0 (which, for example, corresponds to a homogeneous cosmological solution), we get

⇠± = ±c
s

. Similarly, for static solutions, � 6= 0, ⌧ = 0, we obtain from (21) ⇠± = ±1/c
s

. In

particular, for the linear theory, L(X) = X, the sound speed is constant, c
s

= 1, as it can be

seen from (20). It is also convenient to introduce the “velocity” of the k-essence as follows,

v = ��

⌧
. (22)

The minus sign in (22) is due to the di↵erence of the co- and contravariant components of a

vector. With the notations (22), Eq. (21) becomes simply the standard expressions for relativistic

addition of velocities. Using (22), the characteristic equations (21) can be integrated along each

of the characteristics,

h(X) + ln

✓
1 + v

1� v

◆
= C1(��), h(X)� ln

✓
1 + v

1� v

◆
= C2(�+), (23)

where,

h(X) =

Z
dX

c
s

X
. (24)

In the canonical case, Eq. (24) can be easily integrated, and substituting the result in Eq. (23),

we obtain,

⌧ � � = C̃1(��), ⌧ + � = C̃2(�+), (25)

from which, with the identifications �± = t±x, the standard result of the linear theory follows,

�(t, x) = �1(t� x) + �2(t+ x). (26)

The characteristics for any solution are straight lines both in the real space time and the (⌧,�)

plane, as it immediately follows from (21), �± = ⌥1. The characteristic curves are not straight

lines in a generic k-essence. In particular, Fig. 1 shows the characteristics for L(X) = X + 1
2X

2

(left plot) and L(X) = X � 1
2X

2 (right plot) models. The model L(X) = X + 1
2X

2 corresponds

to subluminal propagation of signals, as it can be inferred from (20) or (21). The grey regions

in Fig. 1 correspond to the values of (⌧,�), where the equation of motion is not hyperbolic, for

both models. In the blue region of the left panel of Fig. 1 (the model L(X) = X + 1
2X

2) the

6

cs = 0 ) ⇠± = v

[EB, Mukhanov, Vikman’07, Evslin’11, EB’12]



K-essence: generic wave
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Figure 3: The solution of a wave propagating in the right direction is shown for the model

L(X) = X + 1

2
X2 in the (τ,χ) plane (left panel) and in the (t, x) plane (right panel). In

the (τ,χ) plane the solution fully lies on the section ÃB̃C̃ of a singe characteristic Γ0
− .

The characteristic Γ0
− is not a straight line in this case (compare to Fig. 2) This solution

leads to formation of caustics, as it is shown on the right panel. The right-directed

characteristics ξ+ are not parallel, unlike the solution in Fig. 2 and caustics form, when

different characteristics intersect (shown by red dots.)

this condition. In fact, a physical situation leading to X ̸= 0 is quite generic. In particular,

a wave propagating on a cosmological background has X ̸= 0. Indeed, for a homogeneous

cosmology we have χ = φ′ = 0, while φ̇ is generically non-zero, τ ̸= 0 (in k-essence models

designed to explain the present-day acceleration of the Universe, φ̇ is necessarily non-zero). For

simplicity assume a constant φ̇, i.e. τc =const. This assumption does not affect the main result.

Consider a propagating wave travelling in the positive x direction. In the (τ,χ) plane, the whole

wave lies on the characteristic Γ0
−, see Fig. 3, similar to the case considered in section 3.1. The

homogeneous cosmology corresponds to the point C̃ on the left panel and to the white regions

on the right panel of Fig. 2. The wave is shown by the grey color and its image lies on the

characteristic Γ0
−.

The characteristics ξ+ are straight lines in the (t, x) domain, because each characteristic

ξ+ collapses to a point in the (τ,χ) plane. However, in contrast to the travelling wave, the

slope of a characteristic ξ+ now depends on the position, see the right panel of Fig. 3, therefore

the characteristics ξ+, although being straight lines, are not parallel. In particular, in ξ+ has

different values at the points A, B, C. This is a consequence of the fact that Γ0
− is not a straight

10

Caustics form
Other galileon terms do not influence the solution => 
singularity is not cured when other galileons are included



Are caustics dangerous?

Optical caustics: 
Light rays form caustics, 
but the underlying theory 
- EM - resolves the 
problem (e.g. infinite 
radiation power)



Are caustics dangerous?

Fluids: Explosion shock 
wave.



k-essence as a model of 2 scalar 
fileds
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Other models as well
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Idea : Promote       to a dynamical degree of freedom�
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The model is manifestly caustic free and signals 
propagate with the speed of light



Let us take the simplest renormalizable potential

V ( ) =
↵M2| |2

2
+

�M4| |4

4⇤4

↵ > 0, � = 0

↵ < 0, � > 0

↵ > 0, � < 0
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                               :    pressureless perfect fluid 

Monday 15 June 15

                               :    subluminal k-essence 

Monday 15 June 15

                               :    superluminal k-essence 
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                               :    ghost condensate↵ > 0, � > 0



Pressureless fluid: general case
2 vs 1 degrees of freedom

General solution

 =

Z
dk↵(k)eikx+i

p
k

2+M

2
t +

Z
dk�(k)e�ikx�i
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 One branch of the solution should be killed to reproduce 
pressureless perfect fluid:
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Provided that 

one can show that pressureless fluid 
dynamics is reconstructed
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Pressureless fluid: homogeneous case
2 vs 1 degrees of freedom

Again, special initial conditions are required
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Pressureless fluid: non-relativistic case
2 vs 1 degrees of freedom
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Consider non-relativistic limit k2 ⌧ M2
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“Quantum pressure”
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Caustic formation
Characteristics cross
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For generic initial conditions 
characteristics cross  
=> caustics

Pressureless fluid arises in: 
✤ Low energy limit of Horava gravity 
✤ Ghost condensate 
✤ Mimetic theory 
✤ …



Resolving caustic singularity
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In pressureless fluid case 
there is a singularity

ts ! T = T1 � iT2

Collapse time is promoted to a complex number, i.e. the singularity 
is not developed in real time!



K-essence case

In the homogeneous case we were able to show that the 
cosmology for k-essence is reproduced in the 2-field model.
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Conclusions
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Evolution of a generic simple wave leads to formation of caustics in k-
essence and Horndeski (and beyond) 

Monday 15 June 15

Exceptional cases are the standard kinetic term and pure k-essence DBI. 

Monday 15 June 15

K-essence, pressureless perfect fluid and ghost condensate can be seen 
as the the same two scalar field model with different potential. 
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Simple caustic free completion by means of the complex scalar field. 
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Specific initial conditions are required to reproduce pressureless perfect 
fluid or k-essence 
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Mechanism of resolving caustics: the collapse time is promoted to a 
complex number in the complete picture


