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Viña del Mar, Chile

October 1, 2017

Phys.Lett. B760 393-405 , Phys.Lett. B751 96-106 , JHEP 1510 016

Marco Astorino Kerr/CFT for accelerating and magnetised BH

https://doi.org/10.1016/j.physletb.2016.07.019
https://doi.org/10.1016/j.physletb.2015.10.017
https://doi.org/10.1007/JHEP10(2015)016


Introduction: Distorted Black Holes

We are interested in exact and analytic deformations of Kerr-Newman (KN) black
holes, for instance accelerating KN black hole or KN black hole immersed in an
external electromagnetic field.
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Schwarzschild Black Holes embedded in an external magnetic field

Example: Schwarzschild black hole immersed in Melvin magnetic universe
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Figure: Three Melvin-Schwarzschild horizons embedded in R3. The magnetic field
parameters are: a) B = 0.1, b) B = 2.0 and c) B = 4.0. Axes are in units of m = r+/2.
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Properties of Schwarzschild-Melvin black holes

1 Equatorial Ceqt and polar Cpol circumferences of the horizon
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√
gφφ dφ
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4
r
2
+

)
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2 The horizon area A is unchanged by the presence of the external magnetic
field:

A =

∫ 2π

0
dφ

∫ π
0
dθ
√
gθθ

√
gφφ = 4πr

2
+

3 Melvin Magnetic Universe Background for m→ 0 (ρ := r sin θ, z := r cos θ)

ds
2
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(
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4
ρ
2
)2 [
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2
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2
]

+
ρ2 dφ2(

1 + B2
4 ρ2

)2

4 The Melvin magnetic universe is a static, non-singular, cylindrical symmetric
space-time in which there exists an axial magnetic field aligned with the
z-axis. It describes a universe containing a parallel bundle of electromagnetic
flux held together by its own gravitational field.
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Kerr black holes embedded in an external magnetic field

Electrovacuum, axisymmetric and stationary Kerr (Newman) black hole immersed
in an external magnetic field
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1 When the external magnetic field vanish B = 0, the above solution recovers
the Kerr black hole

2 For m = a = 0 the metric recovers the Melvin Magnetic Universe.

3 Exactly as Kerr black hole, the magnetised solution posses an inner r̃− and
an outer (event) horizon r̃+ located at

r̃± = m±
√
m2 − a2 .

4 Magnetised Black hole area

A =

∫ 2π

0
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∫ 1

−1
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√
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Accelerating Schwarzschild Black Holes (C-metrics)

ds
2

=
1

(1 + Ar cos θ)2

[
−Q(r) dt

2
+

dr2

Q(r)
+
r2 dθ2

P (θ)
+
P (θ) r2 sin2 θ

(1 + 2Am)2
dφ

2
]

where
P (θ) = 1 + 2Am cos θ , Q(r) = (1− A2

r
2
)
(
1−

2m

r

)
.

The event and accelerating horizon are respectively located at

rh = 2m , rA =
1

A

Figure: The surface of constant t and r embedded into E3. This is regular at θ = 0, but
there is a conical singularity at θ = π corresponding to the deficit angle δπ = 8πAm

1+2Am .
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Accelerating Kerr-Newman Black Holes (acceleration)

In the weak field limit, m = 0, the black hole can be considered as a test particle
and cease to deform the spacetime and inertial frames around it.

The timelike worldlines

x
µ

(λ) =

(
(1 + Ar cos θ)√

1− A2r2
λ, r, 0, 0

)

of an observer with r = constant and θ, φ = 0 can be obtained by the property
uµuµ = −1 of the four-velocity uµ = dxµ/dλ.

The magnitude a of the 4-acceleration, aµ = (∇νuµ)uν , for this kind of observer is

|a| =
√
aµaµ

∣∣∣
r=0

= A (1)

Since aµuµ = 0, the value |a| is also the magnitude of the 3-acceleration in the rest
frame of the observer. From eq. (1) we conclude that the origin of the
weak-metric, r = 0, is being accelerated with an uniform acceleration whose value
is given by the parameter A.
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Accelerating Kerr-Newman Black Holes (Plebanski-Demianski)

Accelerating Kerr-Newman black hole metric:

ds
2

=
1

(1 + r̃xA)2

{
G(r̃)

r̃2 + a2x2

[
dt̃ + a(1− x2

)∆ϕdϕ̃
]2
−
r̃2 + a2x2

G(r̃)
dr̃

2

+
H(x)

r̃2 + a2x2

[
(r̃

2
+ a

2
)∆ϕdϕ̃ + adt̃

]2
+
r̃2 + a2x2

H(x)
dx

2
}

where

G(r̃) :=
(
A

2
r̃
2 − 1

) (
r̃ − r+

) (
r̃ − r−

)
,

H(x) :=
(
1− x2

) (
1 + Axr+

) (
1 + Axr−

)
.

The horizon are r̃± = m±
√
m2 − a2 − q2 − p2 , rA = 1

A
.

While the electromagnetic potential remains basically the same of the
(non-accelerating) Kerr-Newman solution

Aµ =

{
−
qr̃ + pax

r̃2 + a2x2
, 0, 0, −

aqr̃(1− x2)− px(r̃2 + a2)

r̃2 + a2x2
∆ϕ

}
.

The accelerating KN black hole area

A =

∫ 2π

0
dϕ̃

∫ 1

−1
dx
√
gϕ̃ϕ̃gxx

∣∣∣∣
r̃=r+

= 4π∆ϕ
r2+ + a2

1− A2r2+

.
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Near horizon geometry at extremality (metric)

Near horizon dimensionless coordinates (t, r, ϕ) :

r̃(r) := re + λr0r , t̃(t) :=
r0

λ
t , ϕ̃(ϕ, t) := ϕ + Ω

ext
J

r0

λ
t .

Near horizon electromagnetic gauge fixing A
t̃
→ A

t̃
+ Φe ,

The angular velocity ΩJ and the Coulomb electromagnetic potential Φe

ΩJ := −
g
t̃ϕ̃

gϕ̃ϕ̃

∣∣∣∣∣
r̃=r+

= −
a

a2 + r2+

1

∆ϕ
, Φe := −χµAµ

∣∣∣∣
r̃=r+

=
q r+

a2 + r2+

, χ = ∂
t̃
+ΩJ∂ϕ̃

The near horizon, extreme, accelerating Kerr-Newman geometry (NHEAKN) is
obtained as the limit of the EAKN for λ→ 0. It can be cast as a warped and
twisted product of AdS2 × S

2

ds
2

= Γ(x)

[
−r2dt2 +

dr2

r2
+ α

2
(x)

dx2

1− x2
+ γ

2
(x)

(
dϕ + κrdt

)2]
,

Γ(x) =
a2x2 + r+r−[

1− A2r+r−
] (

1 + Ax
√
r+r−

)2
, r0 = ±

√√√√ a2 + r+r−
1− A2r+r−

,

γ(x) = ±
(a2 + r+r−)

√
1− x2∆extϕ

Γ
√

1− A2r+r−
(
1 + Ax

√
r+r−

) , κ = −
2ar20

√
r+r−

(a2 + r+r−)2∆extϕ
,

α(x) = ±

√
1− A2r+r−

1 + xA
√
r+r−

.
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2
(x)

(
dϕ + κrdt

)2]
,

Γ(x) =
a2x2 + r+r−[

1− A2r+r−
] (

1 + Ax
√
r+r−

)2
, r0 = ±

√√√√ a2 + r+r−
1− A2r+r−

,

γ(x) = ±
(a2 + r+r−)

√
1− x2∆extϕ

Γ
√

1− A2r+r−
(
1 + Ax

√
r+r−

) , κ = −
2ar20

√
r+r−

(a2 + r+r−)2∆extϕ
,

α(x) = ±

√
1− A2r+r−

1 + xA
√
r+r−

.
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Near horizon geometry at extremality (electromagnetic field)

Also the electromagnetic connection fall into the same general class of near
horizon gauge potential

A = `(x)(dϕ + κrdt)−
e

κ
dϕ ,

where

`(x) = −
r20

κ

q(r+r− − a
2x2) + 2axp

√
r+r−

(r+r− + a2x2)(a2 + r+r−)
, e = qr

2
0

r+r− − a
2(

r+r− + a2
)2

.

The near horizon Killing vectors

ζ−1 = ∂t , ζ0 = t∂t − r∂r

ζ1 =

(
1

2r2
+
t2

2

)
∂t − t r ∂r −

κ

r
∂ϕ , L0 = ∂ϕ .

span SL(2,R)× U(1) algebra

[ζ0, ζ±] = ±ζ± , [ζ−1, ζ1] = ζ0
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Near horizon boundary conditions

According to the Kerr/CFT correspondence it is possible to infer the
thermodynamic properties of extremal black holes from the asymptotic symmetry
of their near horizon fields. The fall-off behaviour for the metric, at large radial
distance r, is taken as follows

gtt = O
(
r
2
)

, gtϕ = κ Γ(x) γ
2
(x) r +O (1) ,

gtx = O
(

1

r

)
, gtr = O

(
1

r2

)
, gϕϕ = O(1) ,

gϕx = O
(

1

r

)
, gϕr = O

(
1

r

)
, gxr = O

(
1

r2

)
,

gxx =
Γ(x)α(x)2

1− x2
+O

(
1

r

)
, grr =

Γ(x)

r2
+O

(
1

r3

)
,

while the electromagnetic field is considered to decay in the following way

At = O (r) , Aϕ = `(θ)−
e

κ
+O

(
1

r

)
,

Ax = O (1) , Ar = O
(

1

r2

)
.
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Generators expansion

These boundary conditions are preserved by the following asymptotic Killing
vectors

ζε = ε(ϕ)∂ϕ − rε′(ϕ)∂r + subleading terms ,

ξε = −
[
`(θ)−

e

κ

]
ε(ϕ) + subleading terms .

Expanding the generators in Fourier modes such that

ε(ϕ) = −e−inϕ ,

we can verify that each n−mode couple in the Fourier series expansion can be
considered as a generator, Ln = (ζn, ξn), which obey the following Witt algebra
(Virasoro algebra without the central extension)

i [Lm,Ln] = (m− n) Lm+n .

The commutation bracket are defined by

[Lm,Ln] := [(ζm, ξm), (ζn, ξn)] = ([ζm, ζn], [ξm, ξn]ζ) ,

where [ζm, ζn] is the standard Lie commutator, while [ξm, ξn]ζ := ζ
µ
m∂µξn − ζ

µ
n∂µξm
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Central charge

Evaluating the Dirac bracket between the charges associated with the generators of
the asymptotic symmetries, one can observe that the Witt algebra is enlarged into
the full Virasoro algebra. The central charge can be calculated as the coefficient of
the cubic factor in the m-expansion of the following asymptotic charge

cJ = 12 i lim
r→∞Q

Einstein
Lm

[LL−mḡ; ḡ]
∣∣∣
m3 ,

QEinstein
ξ [h; ḡ] is the conserved charge associated with the Killing vector ξµ of the

linearised metric hµν around the background ḡµν ; for general relativity it reads

QEin
ξ [h; ḡ] =

1

8πGN

∫
S
dSµν

(
ξ
ν∇µh+ξ

µ∇σhσν+ξσ∇νhσµ+
1

2
h∇νξµ+

1

2
h
µσ∇σξν+

1

2
h
νσ∇µξσ

)

From the above near horizon geometry we obtain a general expression for the
central charge given by

cJ = 3κ

∫ 1

−1

dx√
1− x2

Γ(x)α(x)γ(x) =
12a
√
r+r−[

1− A2r+r−
]2 .
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QEin
ξ [h; ḡ] =
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Cardy Formula

Kerr/CFT correspondence exploits the assumption that near horizon geometry of
extremal black holes can be described by the left sector of a CFT in two
dimensions. For these latter theories Cardy found that the asymptotic grown of
density states is given by

SCFT = 2π

√
cLL0

6
.

For L0 >> cL and using the definition of left temperature ∂SCFT
∂L0

= 1
TL

, Cardy

formula become
SCFT =

π

3
cL TL .

We cannot associate to the left temperature the Hawking temperature TH
because, as the surface gravity ks, it vanishes on the event horizon since the outer
and inner horizon overlap in a double degenerate horizon

TH :=
h̄ ks

kB 2π
=

1

2π

√
−

1

2
∇µχν∇µχν

∣∣∣∣∣
r+

=
1− A2r2+

2π

r+ − r−
2(r2+ + a2)

.
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Horizon temperature and Entropy

To take into account the rotational degrees of freedom, the Frolov-Thorne vacuum
is used to define a temperature. This can be considered as a generalisation of the
Hartle-Hawking vacuum originally built for the static Schwarzschild black hole.
The Frolov-Thorne vacuum is defined for stationary black holes, in the region
where a timelike Killing vector, such as the generator of the horizon, remains
timelike. At extremality it is defined as

Tϕ := lim
r̃+→r̃e

TH

Ωext
J
− ΩJ

= −
∆extϕ

4π

(a2 + r+r−)
[
1− A2r+r−

]
a
√
r+r−

=
1

2πκ
.

Finally inserting the central charge and the rotational left temperature in the
Cardy formula we can obtain the value of the entropy of the conformal field theory
model associated to the extremal accelerating black hole

CFT Entropy

SCFT =
π2

3
cLTL =

π(a2 + r+r−)∆extϕ

1− A2r+r−
=

1

4
Aext .

This dual entropy coincides with the classical Bekenstein-Hawking entropy of the
black hole, i.e. with one quarter of its event horizon area, as expected.
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Summary & Conclusions

At extremality the near horizon geometry of an accelerating Kerr-Newman
can be written as a warped and twisted product of AdS2 × S

2, but it is
different from the extremal KN near horizon geometry.

All the methods of the Kerr/CFT can be smoothly applied in presence of the
acceleration (or in presence of an external electromagnetic field).

We confirmed that, at extremality, the entropy, computed with the tools
provided by the CFT, matches the gravitational Bekenstein-Hawking entropy
for the accelerating and rotating extremal black hole.

However, outside the extremal case, it is not clear how to implement
some of the ad-hoc assumptions on the nature of the central charges of the
standard Kerr/CFT correspondence.
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