Stochastic backgrounds

Michele Maggiore

8th Aegean Summer School, Rethymno 2015

FACULTÉ DES SCIENCES Département de physique théorique

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Stochastic backgrounds of GWs can be a vast subject

Experimental searches

- ♦ GW interferometers
 - data analysis techniques. Wiener filtering, two-detector correlations
 - existing limits and sensitivities of adv. LIGO/Virgo, eLISA
- ♦ CMB
 - temperature anisotropies, polarization (E- and B-modes)
 - Planck, Bicep2
- ♦ pulsar timing arrays

Cosmological production mechanisms

- \diamond inflation
- phase transition
- ◊ cosmic strings
- ٥ ...

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

we will develop only one topic:

Stochastic GWs and inflation

... but (hopefully) we will do it well !

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Final aims:

- compute the production of stochastic GWs during inflation
- understand the Planck results in the (n_s, r) plane
- compute the relic background today

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved pace

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

...still a long and interesting journey

Cosmological perturbations

- Basics of FRW cosmology
- Scalar-vector-tensor decomposition
- Evolution of cosmological perturbations
- Power spectra, the tensor-to-scalar ratio r, Ω_{gw}

Inflationary cosmology

- Large- and small-field models
- Starobinsky inflation

Computation of the stochastic background

- Quantum fields in de Sitter space
- Computation of power spectra, r and n
- Comparison of inflationary models with Planck data
- The stochastic background at the present epoch

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw}

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

...still a long and interesting journey

Cosmological perturbations

- Basics of FRW cosmology
- Scalar-vector-tensor decomposition
- Evolution of cosmological perturbations
- Power spectra, the tensor-to-scalar ratio r, Ω_{gw}

Inflationary cosmology

- Large- and small-field models
- Starobinsky inflation

Computation of the stochastic background

- Quantum fields in de Sitter space
- Computation of power spectra, r and n
- Comparison of inflationary models with Planck data
- The stochastic background at the present epoch

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

A ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q Q

...still a long and interesting journey

Cosmological perturbations

- Basics of FRW cosmology
- Scalar-vector-tensor decomposition
- Evolution of cosmological perturbations
- Power spectra, the tensor-to-scalar ratio r, Ω_{gw}

Inflationary cosmology

- Large- and small-field models
- Starobinsky inflation

Computation of the stochastic background

- Quantum fields in de Sitter space
- Computation of power spectra, r and ns
- Comparison of inflationary models with Planck data
- The stochastic background at the present epoch

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw}

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

References

we will follow:

MM, Phys. Rept. 331 (2000) 283-367

MM, *Gravitational Waves. Vol. 1. Theory and Experiments, Oxford University Press, 574 p., 2007.*

...and, yes, Vol. 2 is almost finished! (>500 pages ready)

...where full references to the original literature can be found

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gy} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved pace

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Cosmological perturbations

Basics of FRW

 $ds^2 = -dt^2 + a^2(t)d\mathbf{x}^2$, $H = \dot{a}/a$ (spatially flat)

Horizon scale $\lambda_H \equiv H^{-1}$. Today $H_0^{-1} \simeq 4.3 \,\text{Gpc}$

Physical coordinates $\mathbf{x}_{ph} = a(t)\mathbf{x}$

$$ds^{2} = -\left(1 - H^{2}\mathbf{x}_{\rm ph}^{2}\right)dt^{2} + d\mathbf{x}_{\rm ph}^{2} - 2H\mathbf{x}_{\rm ph}\cdot d\mathbf{x}_{\rm ph}dt$$

Newtonian intuition applies at $x_{ph} \ll \lambda_H$

compare TT gauge and proper detector frame for the metric of a GW!

Correspondingly, we have comoving momentum **k** and physical momentum $\mathbf{k}_{\rm ph} = \mathbf{x}/a(t)$

Introductio

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{gw}

ummary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Dynamics:	$G^\mu_ u = 8\pi GT^\mu_ u$			
perfect fluid:	$T_0^0 = -\rho(t) , \qquad T_0^i = 0 , \qquad T_j^i = p(t) \delta_j^i$			
eq. of state:	$p = w\rho$			
${oldsymbol abla}_\mu T^\mu_ u = 0 \;\;\Rightarrow\;\;$	$\dot{\rho} + 3H(\rho + p) = 0$			
$\mu=\nu=0 \ \Rightarrow$	$H^2 = \frac{8\pi G}{3}\rho$			

	W	$\rho(a)$	a(t)
radiation	1/3	a^{-4}	$t^{1/2}$
matter	0	a^{-3}	$t^{2/3}$
vacuum energy	-1	const.	e^{Ht}

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{me}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Conformal time η :

$$d\eta = \frac{dt}{a(t)}$$

FRW metric:

$$ds^2 = a^2(\eta) \left(-d\eta^2 + d\mathbf{x}^2 \right)$$

When using conformal time, one also introduces

$$\mathcal{H} = \frac{a'}{a}$$

notation:
$$f' = df/d\eta$$
, $\dot{f} = df/dt$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{me}

ummary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Scalar-vector-tensor decomposition

Helicity decomposition in flat space: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$h_{00} = 2\psi, \qquad h_{0i} = \frac{\beta_i}{\beta_i} + \partial_i\gamma$$
$$h_{ij} = -2\phi\delta_{ij} + [\partial_i\partial_j - (1/3)\delta_{ij}\nabla^2]\lambda + (1/2)(\partial_i\epsilon_j + \partial_j\epsilon_i) + \frac{h_{ij}^{\text{TT}}}{h_{ij}}$$

$$\partial_i \beta^i = 0, \quad \partial_i \epsilon^i = 0, \quad \partial^j h_{ij}^{\mathrm{TT}} = 0, \quad \delta^{ij} h_{ij}^{\mathrm{TT}} = 0$$

In Fourier space $\partial_i \leftrightarrow ik_i$, e. g.

$$\tilde{h}_{0i}(\mathbf{k}) = \tilde{\beta}_i(\mathbf{k}) + ik_i\tilde{\gamma}(\mathbf{k}) \,,$$

where $\mathbf{k} \cdot \tilde{\boldsymbol{\beta}}(\mathbf{k}) = 0$. Is a decomposition in helicity eigenstates

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Gauge transformation:

$$\begin{split} h_{\mu\nu}(x) &\to h_{\mu\nu}(x) - (\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}) \\ \xi_0 &= A \,, \qquad \xi_i = B_i + \partial_i C \,, \qquad (\partial_i B^i = 0) \end{split}$$
$$\begin{split} \psi &\to \psi - \dot{A} \qquad \qquad \beta_i \to \beta_i - \dot{B}_i \,, \\ \phi &\to \phi + (1/3) \nabla^2 C \qquad \qquad \epsilon_i \to \epsilon_i - 2B_i \,, \\ \gamma &\to \gamma - A - \dot{C} \\ \lambda &\to \lambda - 2C \qquad \qquad h_{ij}^{\text{TT}} \to h_{ij}^{\text{TT}} \end{split}$$

 h_{ii}^{TT} is gauge-inv for trivial reasons: no tensor part in ξ_{μ}

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Synchronous gauge:

 $h_{00} = h_{0i} = 0$, i.e. $\psi = \gamma = \beta_i = 0$

Residual gauge transformation:

 $A = -f(\mathbf{x}), \quad C = f(\mathbf{x})t, \quad B_i = B_i(\mathbf{x})$

 \Rightarrow spurious gauge modes

• Newtonian gauge: $\lambda = \gamma = \beta_i = 0$

no residual gauge freedom

scalar pert: $ds^2 = -(1 - 2\psi)dt^2 + (1 - 2\phi)dx^2$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Better approach: gauge-inv variables (Bardeen variables)

$$\begin{split} \psi & \rightarrow & \psi - \dot{A} & \Phi &= -\phi - \frac{1}{6}\nabla \\ \phi & \rightarrow & \phi + (1/3)\nabla^2 C & \Psi &= -\psi + \dot{\gamma} - \\ \gamma & \rightarrow & \gamma - A - \dot{C} & \Psi &= -\psi + \dot{\gamma} - \\ \lambda & \rightarrow & \lambda - 2C & \\ \beta_i & \rightarrow & \beta_i - \dot{B}_i, & \Xi_i &= \beta_i - \frac{1}{2}\dot{\epsilon}_i \\ \epsilon_i & \rightarrow & \epsilon_i - 2B_i & h_{ij}^{\text{TT}} \end{split}$$

In the Newtonian gauge: $\Psi = -\psi, \quad \Phi = -\phi$ $ds^{2} = -(1+2\Psi)dt^{2} + (1+2\Phi)d\mathbf{x}^{2}$ so, in the scalar sector:

Is quite convenient to work in the Newtonian gauge:

- no residual gauge freedom, so no spurious gauge mode
- \blacktriangleright the equations that one obtains for Φ and Ψ are valid in any gauge

$$\begin{split} \Phi &= -\phi - \frac{1}{6} \nabla^2 \lambda \,, \\ \Psi &= -\psi + \dot{\gamma} - \frac{1}{2} \ddot{\lambda} \\ \Xi_i &= \beta_i - \frac{1}{2} \dot{\epsilon}_i \,, \end{split}$$

Scalar-vector-tensor decomnosition

Linearized Einstein eqs

$$T_{00} = \rho, \qquad T_{0i} = \frac{S_i}{S} + \partial_i S$$

$$T_{ij} = p\delta_{ij} + [\partial_i\partial_j - (1/3)\delta_{ij}\nabla^2]\sigma + (1/2)(\partial_i\sigma_j + \partial_j\sigma_i) + \sigma_{ij}^{TT}$$

$$\partial_i \sigma^i = 0, \quad \partial_i S^i = 0, \quad \partial^i \sigma^{\mathrm{TT}}_{ij} = 0, \quad \delta^{ij} \sigma^{\mathrm{TT}}_{ij} = 0$$

$$\begin{aligned} \nabla^2 \Phi &= -4\pi G\rho \\ \nabla^2 \Psi &= +4\pi G(\rho - 2\nabla^2 \sigma) \\ \nabla^2 \Xi_i &= -16\pi GS_i \\ \Box h_{ii}^{\text{TT}} &= -16\pi G\sigma_{ii}^{\text{TT}} \end{aligned}$$

- 4 pure gauge dof
- ► 4 physical but non-propagating dof: Φ, Ψ, Ξ_i note that $\Phi + \Psi = -8\pi G\sigma \Rightarrow \Psi = -\Phi$ if $\sigma = 0$
- 2 physical propagating dof: h_{ij}^{TT}

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations Power spectra, $r, \Omega_{\rm gw}$

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday Similar construction in FRW: $ds^2 = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu}$

$$\Phi = -\phi - \frac{1}{6} \nabla^2 \lambda + \mathcal{H} \left(\gamma - \frac{1}{2} \frac{d\lambda}{d\eta} \right)$$
$$\Psi = -\psi + \frac{1}{a} \frac{d}{d\eta} \left[a \left(\gamma - \frac{1}{2} \frac{d\lambda}{d\eta} \right) \right]$$

gauge-invariant Bardeen variables

▲□▶▲□▶▲□▶▲□▶ □ ● ●

conformal Newtonian gauge:

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + (1+2\Phi)d\mathbf{x}^{2} + \mathbf{h}_{ij}^{\text{TT}}dx^{i}dx^{j} \right]$$

- vector perts decay with time and are irrelevant
- scalar and tensor perts evolve separately but we must study both to extract the predictions from a model

e.g. prediction in the (n_s, r) plane, see later

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial calar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Evolution of cosmological perturbations

$$\delta G^{\mu}_{\nu} = 8\pi G \, \delta T^{\mu}_{\nu}$$

Scalar sector

• $\Psi = -\Phi$ if $\sigma = 0$

• Φ still a non-propagating dof

 $\nabla^2 \Phi = -4\pi G a^2 (\delta \rho - 3\mathcal{H} \delta S) \qquad (T_{0i} = \partial_i S)$

► but time-evolving. Master eq for $\tilde{\Phi}(\eta, \mathbf{k})$: $\tilde{\Phi}'' + 3\mathcal{H}(1 + c_s^2)\tilde{\Phi}' + [3\mathcal{H}^2(c_s^2 - w) + c_s^2k^2]\tilde{\Phi} = 0$ $(p = w\rho, \delta p = c_s^2\delta \rho)$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor lecomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data The relic GW background

Results:

the evolution depends on whether $k \ll \mathcal{H}(\eta)$ or $k \gg \mathcal{H}(\eta)$ and on whether we are in RD, MD, or dark-energy dominance

(日)

Evolution of cosmological

Tensor perturbations

 $(h_{ij}^{\mathrm{TT}})'' + 2\mathcal{H}(h_{ij}^{\mathrm{TT}})' - \boldsymbol{\nabla}^2 h_{ij}^{\mathrm{TT}} = 16\pi G a^2 \sigma_{ij}^{\mathrm{TT}}$

note: perfect fluids are not sources for GWs!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

go in momentum space and expand

$$ilde{h}^{ ext{TT}}_{ij}(\eta,\mathbf{k}) = \sum_{A=+, imes} e^A_{ij}(\hat{\mathbf{k}}) ilde{h}_A(\eta,\mathbf{k})$$

$$e_{ij}^+(\hat{\mathbf{k}}) = \hat{\mathbf{u}}_i\hat{\mathbf{u}}_j - \hat{\mathbf{v}}_i\hat{\mathbf{v}}_j, \qquad e_{ij}^ imes(\hat{\mathbf{k}}) = \hat{\mathbf{u}}_i\hat{\mathbf{v}}_j + \hat{\mathbf{v}}_i\hat{\mathbf{u}}_j$$

when
$$\hat{\mathbf{k}} = (0, 0, 1),$$
 $e_{ab}^+ = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_{ab},$ $e_{ab}^{\times} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{ab}$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday Then:

$$\tilde{h}_A'' + 2\mathcal{H}\tilde{h}_A' + k^2\tilde{h}_A = 16\pi Ga^2\tilde{\sigma}_A$$
 set $\tilde{\sigma}_A = 0$

both in RD and MD, inside the horizon,

$$ho_{
m GW} \propto \langle \dot{h}^2
angle \propto a^{-4}$$

the notion of graviton only makes sense inside the horizon!

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

'he relic GW background oday

Effect of stochastic GWs on the CMB

- Only GW modes with $k\eta_{dec} \lesssim 1$ contribute
- A GW with wave-number k imprints anisotropies on the CMB on a length-scale $\lambda = 2\pi/k \gtrsim 2\pi\eta_{dec}$
- An observer at the Earth sees the corresponding perturbations under an angle

$$\theta \gtrsim \frac{(\lambda/2)}{\eta_0 - \eta_{dec}} \simeq \frac{\lambda}{2\eta_0} \qquad (\eta_0 \simeq 13.7 \,\mathrm{Gpc}, \eta_0/\eta_{dec} \simeq 49.4)$$

Thus, GWs can only affect large-angle anisotropies. Numerically

$\theta \gtrsim 3.6 \deg$

which corresponds to CMB multipoles with

$$l \simeq \frac{\pi}{\theta} \lesssim O(50)$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Power spectra, r, and Ω_{gw}

Initial conditions in cosmology are stochastic

for gaussian initial conditions all information is contained in the 2-point correlator

$$\langle \tilde{\Phi}_{\rm in}(\mathbf{k}) \tilde{\Phi}_{\rm in}^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} - \mathbf{k}') P_{\Phi,{\rm in}}(k)$$

 $P_{\Phi,in}(k)$ is the (primordial) power spectrum

$$\begin{split} \langle \Phi_{\rm in}(\mathbf{x})\Phi_{\rm in}(\mathbf{x}')\rangle &= \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} \langle \tilde{\Phi}_{\rm in}(\mathbf{k})\tilde{\Phi}_{\rm in}^*(\mathbf{k}')\rangle e^{i\mathbf{k}\cdot\mathbf{x}-i\mathbf{k}'\cdot\mathbf{x}'} \\ &= \int \frac{d^3k}{(2\pi)^3} P_{\Phi,{\rm in}}(k) e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')} \\ \langle \Phi_{\rm in}^2(\mathbf{x})\rangle &= \int \frac{d^3k}{(2\pi)^3} P_{\Phi,{\rm in}}(k) = \frac{1}{2\pi^2} \int_0^\infty \frac{dk}{k} k^3 P_{\Phi,{\rm in}}(k) \end{split}$$

Define

$$\mathcal{P}_{\Phi,\mathrm{in}}(k) = rac{k^3}{2\pi^2} P_{\Phi,\mathrm{in}}(k)$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

Power spectra, r, Ω_{ww}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

The initial power spectrum is parametrized as

$$\mathcal{P}_{\Phi,\mathrm{in}}(k) = A_{\Phi} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

- ▶ $n_s = 1$ Harrison-Zeldovich spectrum
- ▶ $n_s > 1$ "blue", $n_s < 1$ "red" spectrum
- The pivot scale k_* is a parameter chosen by the experimentalist.

► running index:
$$\mathcal{P}_{\Phi,in}(k) = A_{\Phi} \left(\frac{k}{k_*}\right)^{n_s - 1 + \frac{1}{2}(\frac{dm_s}{d\log k})\log(k/k_s)}$$

• a technical point: instead of Φ one uses the curvature perturbation $\mathcal{R} = \Phi + \mathcal{H}v$, where the velocity potential v is defined by $\delta T_0^i = -(\bar{\rho} + \bar{p})\partial^i v$. For adiabatic initial conditions it is constant on super-horizon scales (even at the RD-MD transition). Deep in RD $\mathcal{R} = (3/2)\Phi$. Then

 $\mathcal{P}_{\mathcal{R},\mathrm{in}}(k) = A_{\mathcal{R}} \left(\frac{k}{k_*}\right)^{n_s-1}, \qquad A_{\mathcal{R}} = (9/4)A_{\Phi}$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations

Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Tensor perturbations

$$\langle \tilde{h}_{A,\mathrm{in}}(\mathbf{k})\tilde{h}_{A',\mathrm{in}}^*(\mathbf{k}')\rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k}-\mathbf{k}')\delta_{AA'}\frac{1}{4}P_{T,\mathrm{in}}(k)$$

Then

$$\langle \tilde{h}_{ij}^{\mathrm{TT}}(\eta_{\mathrm{in}},\mathbf{k})(\tilde{h}_{ij}^{\mathrm{TT}})^*(\eta_{\mathrm{in}},\mathbf{k}')\rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k}-\mathbf{k}')P_{T,\mathrm{in}}(k).$$

Define again

$$\mathcal{P}_{T,\mathrm{in}}(k)\equiv rac{k^3}{2\pi^2}P_{T,\mathrm{in}}(k)$$

We parametrize it as

$$\mathcal{P}_{T,\mathrm{in}}(k) = \mathbf{A}_T \left(\frac{k}{k_*}\right)^{n_T}$$

The tensor-to-scalar ratio r is

$$r(k) \equiv rac{\mathcal{P}_{T,\mathrm{in}}(k)}{\mathcal{P}_{\mathcal{R},\mathrm{in}}(k)}$$

In particular, setting $k = k_*$

$$r \equiv r(k_*) = \frac{A_T}{A_R}$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Relation to the GW energy density

1

$$p_{gw} = \frac{1}{32\pi G} \langle \dot{h}_{ij} \dot{h}^{ij} \rangle$$
$$= \int_{f=0}^{f=\infty} d(\log f) \frac{d\rho_{gw}}{d\log f}$$

The critical density of the Universe is

$$\rho_c = \frac{3H_0^2}{8\pi G}$$

Define

$$\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \, \frac{d\rho_{\rm gw}}{d\log f}$$

Then

$$\Omega_{\rm gw}(f) = \frac{\pi^2}{3H_0^2} f^2 \mathcal{P}_{T,0}(f$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition ivolution of cosmological

Power spectra, r, Ω_{gw}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Summary

degrees of freedom of the gravitational field

- 4 pure gauge dof,
- 4 physical but non-propagating dof: Φ, Ψ, Ξ_i
- 2 physical propagating dof: h_{ij}^{TT}
- evolution eqs for Φ , h_{ij}^{TT} in FRW (while typically $\Psi = -\Phi$, and Ξ_i only has decreasing modes)
- stochasticity enters through the initial conditions
 - def of scalar and tensor power spectra; $P_{T,0}(f)$, $\mathcal{P}_{T,0}(f)$
 - amplitudes and tilts A_{Φ} (or $A_{\mathcal{R}}$), n_S ; A_T , n_T ; $r = A_T/A_{\mathcal{R}}$
 - $\Omega_{gw}(f)$ and relation to $\mathcal{P}_{T,0}(f)$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

perturbations

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

A ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q Q

Inflationary cosmology

Single-field slow-roll inflation

$$S_{\phi} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right]$$

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
$$p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

effectively acts as a fluid with

$$w = \frac{p_{\phi}}{\rho_{\phi}} = \frac{(1/2)\dot{\phi}^2 - V(\phi)}{(1/2)\dot{\phi}^2 + V(\phi)}$$

 $(1/2)\dot{\phi}^2 \ll V(\phi) \Rightarrow w \simeq -1 \Rightarrow$ accelerated expansion

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological perturbations

Power spectra, r, SZ_g, Summary

Inflationary cosmology

Slow-roll inflation

Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

eq. of motion

$$3H^2 = 8\pi G \rho_{\phi}$$
$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$

first slow-roll condition

$$\frac{1}{2}\dot{\phi}^{2} \ll V(\phi) \qquad \qquad \varepsilon \equiv \frac{1}{16\pi G} \left(\frac{V'}{V}\right)^{2} \ll 1$$
second slow-roll condition

$$|\ddot{\phi}| \ll |V'(\phi)| \qquad \qquad \eta \equiv \frac{1}{8\pi G} \frac{V''}{V} \ll 1$$

Inflation ends when one of the two conditions is violated.

Number of e-folds:

$$N(t_2, t_1) \equiv \int_{t_1}^{t_2} H(t) dt \stackrel{\text{de Sitter}}{=} \log \frac{a(t_2)}{a(t_1)}$$

The number of e-folds $N_e(\phi)$ to the end of inflation is

$$N_e(\phi) = 8\pi G \int_{\phi_e}^{\phi} d\phi_1 \, rac{V(\phi_1)}{V'(\phi_1)}$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations

Power spectra, r, S2_{gw} Summary

nflationary cosmology

Slow-roll inflation

Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Large- and small-field models

Large-field models: typical example: $V(\phi) = g_n \phi^n$

$$arepsilon = rac{n^2}{16\pi} rac{M_{
m Pl}^2}{\phi^2} \qquad \qquad \eta = rac{n(n-1)}{8\pi} rac{M_{
m Pl}^2}{\phi^2}$$

Inflation takes place at $\phi \gtrsim M_{\rm Pl}$!

Consistency problems with quantum gravity ? Non-trivial to embed in a fundamental theory

Trading ϕ for N_e

$$\varepsilon = \frac{n}{4N_e}$$

 $\eta = \frac{n-1}{2N_e}$

Introduction

Cosmological erturbations Basics of FRW cosmo

ecomposition ivolution of cosmological erturbations

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation

Large- and small-field models

Starobinsky inflatior

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

'he relic GW background oday

Small-field models: typical example: $V(\phi) \simeq V_0 - \frac{\lambda}{4}\phi^4$

The slow-roll conditions are satisfied for sufficiently small $\phi,$ and inflation ends when

$$\phi_e^2 \simeq rac{8\pi}{3} rac{V_0}{\lambda M_{
m Pl}^2}$$

Since we assumed $(\lambda/4)\phi^4 \ll V_0$, this is consistent as long as $(\lambda/4)\phi_e^4 \ll V_0$, i.e.

$$N_0 \ll \left(rac{3}{4\pi}
ight)^2 \, \lambda M_{
m Pl}^4$$

Introduction

Cosmological perturbations

lasics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation

Large- and small-field models

Starobinsky inflation

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

In this model

$$N_e(\phi) \simeq rac{4\pi V_0}{\lambda M_{
m Pl}^2 \phi^2}$$

and we get

$$\varepsilon = \frac{27}{2N_e^3} \left[\left(\frac{4\pi}{3}\right)^2 \frac{V_0}{\lambda M_{\rm Pl}^4} \right] \ll \frac{27}{2N_e^3}$$
$$\eta = -\frac{3}{2N_e}$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw}

Summary

Inflationary cosmology

Slow-roll inflation

Large- and small-field models

Starobinsky inflation

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Starobinsky inflation

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + \frac{R^2}{6M^2} \right]$$

where M is a new mass scale. It belongs to a more general class of theories

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R)$$

Equivalence to scalar-tensor theories:

see De Felice-Tsujikawa 2010

$$S[g_{\mu\nu},\chi] = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \, \left[f(\chi) + (R-\chi)f'(\chi) \right]$$

In fact, the variation with respect to χ gives

$$f''(\chi)(R-\chi)=0$$

so, as long as $f''(\chi) \neq 0$, we have $\chi = R$.

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor lecomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models

Starobinsky inflation

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Define $\varphi = f'(\chi), \tilde{g}_{\mu\nu} = \varphi g_{\mu\nu}$. Then

$$S[\tilde{g}_{\mu\nu},\varphi] = \int d^4x \sqrt{-\tilde{g}} \left[\frac{1}{16\pi G} \tilde{R} - \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right]$$

where

$$V(\phi) = \frac{M_{\rm Pl}^2}{16\pi} \, \frac{\chi(\varphi)\varphi - f[\chi(\varphi)]}{\varphi^2}$$

For Starobinsky model

 $V(\phi) = \frac{3M_{\rm Pl}^2 M^2}{32\pi} \left(1 - e^{-\sqrt{\frac{16\pi}{3}}\frac{\phi}{M_{\rm Pl}}}\right)^2$ $\phi_e \simeq 0.19 M_{\rm Pl}$ $\phi_i \simeq M_{\rm Pl} \left(1.07 + 0.24 \log \frac{\Delta N}{60}\right)$

In terms of N_e :

$$arepsilon \simeq rac{3}{4N_e^2}$$

 $\eta \simeq -rac{1}{N_e}$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

Power spectra, r, Ω_{ww}

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models

Starobinsky inflation

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

- small-field and large-field inflation, super-Planckian problem
- definition of the slow-roll parameters ε, η
- relation of ε , η to N_e
 - $\varepsilon = \mathcal{O}(1/N_e)$ in large-field models of the form $V(\phi) \propto \phi^n$
 - $\varepsilon = \mathcal{O}(1/N_e^2)$ in Starobinsky model
 - and possibly even smaller in small-field models

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition

Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Quantum fields in curved space

Consider a real massive scalar field ϕ in curved space

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left[g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + m^2 \phi^2 \right]$$

The equation of motion is the KG equation

$$(\Box - m^2)\phi = 0$$
$$\Box \phi = \nabla_{\mu} \nabla^{\mu} \phi = \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \right) \phi$$

In flat space the solutions are the plane waves

$$u_{\mathbf{k}}(x) = \frac{1}{\sqrt{2\omega_k}} e^{-i\omega_k t + i\mathbf{k}\cdot\mathbf{x}}$$

and the quantum field is

$$\phi(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \left[a_{\mathbf{k}} u_{\mathbf{k}}(\mathbf{x}) + a_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^*(\mathbf{x}) \right]$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

In FRW, using conformal time

$$\phi_{\mathbf{k}}^{\prime\prime} + 2\mathcal{H}\phi_{\mathbf{k}}^{\prime} + k^{2}\phi_{\mathbf{k}} = 0$$

Introduce

$$\chi(\eta, \mathbf{x}) = a(\eta)\phi(\eta, \mathbf{x})$$

$$\chi_{\mathbf{k}}^{\prime\prime} + \left(k^2 - \frac{a^{\prime\prime}}{a}\right)\chi_{\mathbf{k}} = 0$$

For de Sitter $a(\eta) = -1/(H\eta)$ (with $\eta < 0$):

$$\chi_k'' + \left(k^2 - \frac{2}{\eta^2}\right)\chi_k = 0$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

Power spectra, r, Ω_{gw}

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Two independent solutions of this equations are $f_k(\eta)$ and $f_k^*(\eta)$, with

$$f_k(\eta) = rac{1}{\sqrt{2k}} e^{-ik\eta} \left(1 - rac{i}{k\eta}\right)$$

The quantum field is

$$\chi(\eta, \mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \left(f_k(\eta) e^{i\mathbf{k}\cdot\mathbf{x}} a_{\mathbf{k}} + f_k^*(\eta) e^{-i\mathbf{k}\cdot\mathbf{x}} a_{\mathbf{k}}^\dagger \right)$$

with

$$[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{k} - \mathbf{k}')$$

 $a_{\mathbf{k}}|0\rangle_{a}=0$

This choice of modes defines the Bunch-Davies vacuum.

Introduction

Cosmological perturbations

Basics of FRW cosmology

alar-vector-tensor composition

erturbations Power spectra, r, Ω_{\dots}

Summary

inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Bogolubov transformation

One could choose the modes

$$F_k(\eta) = \alpha_k f_k(\eta) + \beta_k f_k^*(\eta)$$

write

$$\chi(\eta, \mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \left(F_k(\eta) e^{i\mathbf{k}\cdot\mathbf{x}} A_{\mathbf{k}} + F_k^*(\eta) e^{-i\mathbf{k}\cdot\mathbf{x}} A_{\mathbf{k}}^\dagger \right)$$

and define a vacuum state from $A_{\mathbf{k}}|0\rangle_{A} = 0$

NB. The modes are chosen orthonormal wrt the scalar product

$$\langle u_1|u_2\rangle = i \int_{\Sigma} d\Sigma^{\mu} \left[u_1^* \partial_{\mu} u_2 - (\partial_{\mu} u_1^*) u_2\right]$$

This requires

$$\alpha_k|^2 - |\beta_k|^2 = 1$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Expressing F_k in terms of f_k, f_k^* we get

$$a_{\mathbf{k}} = \int \frac{d^3k'}{(2\pi)^3} \left[\alpha_{\mathbf{k}'\mathbf{k}}A_{\mathbf{k}'} + \beta_{\mathbf{k}'\mathbf{k}}^*A_{\mathbf{k}'}^{\dagger} \right]$$

or

$$A_{\mathbf{k}} = \int \frac{d^{3}k'}{(2\pi)^{3}} \left[\alpha_{\mathbf{k}\mathbf{k}'}^{*} a_{\mathbf{k}'} - \beta_{\mathbf{k}\mathbf{k}'}^{*} a_{\mathbf{k}'}^{\dagger} \right]$$

Then

$$\langle 0_a | A_{\mathbf{k}}^{\dagger} A_{\mathbf{k}} | 0_a
angle = \int rac{d^3 k'}{(2\pi)^3} \left| eta_{\mathbf{k}\mathbf{k}'}
ight|^2$$

The vacuum state wrt to $a_{\mathbf{k}}$ is not a vacuum state wrt $A_{\mathbf{k}}$

The *Bunch-Davies vacuum* is selected physically by the fact that, well inside the horizon, where $|k\eta| \gg 1$, it reduces to a positive frequency mode with respect to Minkowski space

Because of the cosmological red-shift, it is a very sensible choice for all momenta relevant today

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Svolution of cosmological perturbations

Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary nodels with Planck data

The relic GW background oday

Vacuum fluctuations of scalar fields

We now compute in FRW the quantum expectation value

$$\begin{aligned} 0|\phi^{2}(\eta,\mathbf{x})|0\rangle &= \frac{1}{a^{2}(\eta)}\langle 0|\chi^{2}(x)|0\rangle \\ &= \frac{1}{a^{2}(\eta)}\int \frac{d^{3}k}{(2\pi)^{3}}|f_{k}(\eta)|^{2} \\ &= \frac{1}{2\pi^{2}a^{2}(\eta)}\int_{0}^{\infty}\frac{dk}{k}k^{3}|f_{k}(\eta)|^{2} \end{aligned}$$

Recalling the definition of the power spectrum

$$\langle 0|\phi^2(\eta,\mathbf{x})|0\rangle = \int_0^\infty \frac{dk}{k} \,\mathcal{P}_\phi(k)$$

we get

$$\mathcal{P}_{\phi}(k) = rac{1}{2\pi^2 a^2(\eta)} k^3 |f_k(\eta)|^2$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

In Minkowski space, $|f_k| = (2k)^{-1/2}$, so

$$\mathcal{P}_{\phi}(k) = rac{k^2}{4\pi^2}$$

In de Sitter space, with a Bunch-Davies vacuum

$$\mathcal{P}_{\phi}(k)=rac{H^2k^2}{4\pi^2}\left(\eta^2+rac{1}{k^2}
ight)$$

► at sufficiently early time $|k\eta| \gg 1$, the mode is well inside the horizon and fluctuations of field $\chi = a^{-1}\phi$ approaches the Minkowski value.

when the mode is well outside the horizon,

$$\mathcal{P}_{\phi}(k) \simeq rac{H^2}{4\pi^2}$$

so the power spectrum approaches a constant value.

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prediction for primordial scalar and tensor spectra Scalar power spectrum

start from

$$\delta G^{\mu}_{\nu} = 8\pi G \, \delta T^{\mu}_{\nu}$$

metric sector:

inflaton perturbations:

$$\Psi(\eta, \mathbf{x})$$
 $(\Phi = -\Psi)$
 $\phi(\eta, \mathbf{x}) = \phi_0(\eta) + \delta\phi(\eta, \mathbf{x})$

 $T^{\mu}_{\nu} = g^{\mu\rho}\partial_{\rho}\phi\partial_{\nu}\phi - \delta^{\mu}_{\nu}\left[\frac{1}{2}g^{\rho\sigma}\partial_{\rho}\phi\partial_{\sigma}\phi + V(\phi)\right]$ For the inflaton SO

ф

$$\delta T_0^0 = -\frac{1}{a^2} \left[-(\phi_0')^2 \Psi + \phi_0' \delta \phi' \right] - \frac{dV(\phi_0)}{d\phi_0} \delta \phi$$

$$\delta T_0^i = \frac{1}{a^2} \phi_0' \partial_i \delta \phi$$

Using $\delta T_0^i = -(\bar{\rho} + \bar{p})\partial^i v$, we get the velocity potential $v_{\phi} = -\frac{\delta\phi}{\phi'}$

Scalar power spectrum

from the definition $\mathcal{R} = \Phi + \mathcal{H}v$ it follows that

$${\cal R}=-\Psi-{{\cal H}\delta\phi\over\phi_0'}$$

define:

$$z(\eta) = \frac{a\phi'_0}{\mathcal{H}}$$
 $u(\eta, \mathbf{x}) = -z\mathcal{R}$

Then

$$u'' - \frac{z''}{z}u - \nabla^2 u = 0$$

To leading order in the slow-roll expansion ϕ_0'/\mathcal{H} is constant. Then $z''/z \simeq a''/a$

 \Rightarrow *u* satisfies the same eq as the scalar field that we called χ !

(and its action has the canonical normalization)

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition volution of cosmological erturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

on super-horizon scales its power spectrum is then

$$\mathcal{P}_{u/a}(k)\simeq rac{H^2}{4\pi^2}$$

 $\frac{u(x)}{a} = -\frac{\phi_0'}{\mathcal{H}}\mathcal{R}$

so, passing to cosmic time,

$$\mathcal{R} = -\frac{H}{\dot{\phi}_0} \frac{u(x)}{a}$$

Then, the primordial spectrum of \mathcal{R} for super-horizon modes is given by

$$\mathcal{P}_{\mathcal{R}}(k) = \left(\frac{H}{\dot{\phi}_0}\right)^2 \mathcal{P}_{u/a}(k) \simeq \left(\frac{H^2}{2\pi\dot{\phi}_0}\right)^2$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition Evolution of cosmological erturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

This result is valid to lowest order in the slow-roll expansion, i.e. assuming that H and $\dot{\phi}_0$ are exactly constant

In this approximation we find $n_s = 0$

To next order in the slow-roll expansion:

- as long as the mode is well inside the horizon, $z''/z \simeq a''/a$ is negligible and the solution reduces to the standard Minkowski modes $(2k)^{-1/2} e^{-ik\eta}$
- When the wavelength of the mode becomes of order of the horizon size we can no longer neglect the term a''/a. However, for a limited number of e-folds near horizon crossing, the solution that matches the mode $(2k)^{-1/2} e^{-ik\eta}$ inside the horizon is obtained replacing *H* is the value at time of horizon crossing, $H_k \equiv H(\eta_k)$, where the conformal time of horizon exit, η_k , is the solution of

$$H(\eta_k) = rac{k}{a(\eta_k)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

To first order in the slow-roll expansion, the result for the power spectrum is obtained simply replacing *H* by H_k and similarly $\dot{\phi}_0$ by $(\dot{\phi}_0)_k = \phi_0(\eta_k)$

Introduction

Cosmological perturbations

Basics of FRW cosmology Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday The result for the primordial power spectrum of \mathcal{R} on super-horizon scales is then

$$\mathcal{P}_{\mathcal{R}}(k) = \left(rac{H^2}{2\pi |\dot{\phi}_0|}
ight)_k^2$$

using the slow-roll eqs.

$$\mathcal{P}_{\mathcal{R}}(k) = \frac{128\pi}{3M_{\rm Pl}^6} \left(\frac{V^3}{V'^2}\right)_{\rm Pl}$$

The amplitude at a pivot scale k_* is then

$$A_{\mathcal{R}} = \frac{128\pi}{3M_{\rm Pl}^6} \left(\frac{V^3}{V'^2}\right)_{k_*}$$

Writing

$$\log \mathcal{P}_{\mathcal{R}}(k) = \log A_{\mathcal{R}} + (n_s - 1) \log(k/k_*)$$

we get

$$n_s(k) - 1 = \frac{d \log \mathcal{P}_{\mathcal{R}}(k)}{d \log k} = \frac{d \log (V^3/V'^2)_k}{d \log k}$$

and then

$$n_s \equiv n_s(k_*)$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

the dependence of V and V' on k follows from the fact that they are functions of $\phi(\eta)$, and $\phi(\eta)$ must be evaluated at the time η_k

Next transform the derivative with respect to k into a derivative with respect to $\phi_k \equiv \phi(\eta_k)$

Let t_k be the cosmic time corresponding to conformal time η_k , and $t_* = t_{k*}$ be the cosmic time at which the mode with momentum k_* equal to the pivot scale crosses the horizon. Integrating the slow-roll eq from an initial time t_* to $t_k = t_* + dt_k$ we get

$$d\phi_k = -\frac{M_{\rm Pl}}{\sqrt{24\pi}} \left(\frac{V'}{V^{1/2}}\right)_{k_*} dt_k$$

where $d\phi_k = \phi(t_k) - \phi(t_*)$. In slow-roll inflation H(t) is to first approximation constant, while a(t) evolves exponentially with t. Therefore, to lowest order, t_k is approximately determined by the equation $a(t_k) \simeq k/H_*$, so

$$\left(\frac{da}{dt}\right)_{t_*} dt_k \simeq \frac{dk}{H_*}$$

Therefore

$$\left(aH\right)_{t_*} dt_k \simeq \frac{dk}{H_*}$$

which gives

$$dt_k = \frac{1}{H_*} \frac{dk}{k}$$

Finally

$$d\phi_k = -\frac{M_{\rm Pl}^2}{8\pi} \left(\frac{V'}{V}\right)_{k*} d\log k$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Introduction

Cosmological perturbations

Basics of FRW cosmology Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

'he relic GW background oday

Then we get

$$n_{s} - 1 = \frac{M_{\text{Pl}}^{2}}{8\pi} \left[\left(\frac{V'}{V} \right) \left(\frac{2V''}{V'} - \frac{3V'}{V} \right) \right]_{k_{*}}$$
$$= \frac{M_{\text{Pl}}^{2}}{8\pi} \left[2\frac{V''}{V} - 3\left(\frac{V'}{V} \right)^{2} \right]_{k_{*}}$$

Recalling the definition of the slow-roll parameters, we finally find

$$n_s - 1 = 2\eta - 6\epsilon$$

where it is understood that η and ϵ are evaluated at the time $\eta(k_*)$.

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Tensor power spectrum

We already saw that, when the anisotropic stress $\sigma_A = 0$:

 $\tilde{h}_A^{\prime\prime} + 2\mathcal{H}\tilde{h}_A^\prime + k^2\tilde{h}_A = 0$

This is exactly the same as the equation of motion of a scalar field ϕ !

Normalization determined looking at the action. Expanding to quadratic order

$$S_2[h] = -\frac{1}{32\pi G} \sum_A \int d^4x \sqrt{-\bar{g}} \,\bar{g}^{\mu\nu} \partial_\mu h_A \partial_\nu h_A$$

where $\bar{g}_{\mu\nu} = a^2 \eta_{\mu\nu}$ is the background FRW metric. Then

$$arphi_A(\eta, \mathbf{x}) = rac{1}{\sqrt{16\pi G}} h_A(\eta, \mathbf{x})$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

$$\frac{1}{4}P_{T,\text{in}}(k) = \langle |\tilde{h}_{A,\text{in}}(\mathbf{k})|^2 \rangle = 16\pi G P_{\varphi}(k)$$

Using the result for $\mathcal{P}_{\varphi}(k)$ we get

$$\mathcal{P}_T(k) = rac{16}{\pi} rac{H_k^2}{M_{
m Pl}^2}$$

and, using the slow-roll eqs.

$$\mathcal{P}_T(k) = rac{128}{3} rac{V_k}{M_{
m Pl}^4}$$

This gives the amplitude and tilt

$$A_T = \frac{16}{\pi} \frac{H_*^2}{M_{\rm Pl}^2} \simeq \frac{128}{3} \frac{V_{k_*}}{M_{\rm Pl}^4}$$
$$n_T = \left(\frac{d\log V}{d\log k}\right)_{k_*} = -2\varepsilon$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Summary

Single-field slow-roll inflation predicts

$$A_{\mathcal{R}} = \frac{128\pi}{3M_{\rm Pl}^6} \left(\frac{V^3}{V'^2}\right)_{k_*}$$
$$n_s - 1 = 2\eta - 6\epsilon$$

$$A_T = \frac{128}{3} \frac{V_{k_*}}{M_{\rm Pl}^4}$$
$$n_T = -2\varepsilon$$

Therefore

$$r = \frac{A_T}{A_R} = 16\varepsilon$$

Observe also that $r = -8n_T$ independently of the potential $V(\phi)$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Comparison of inflationary models with Planck data

 $\varepsilon = \varepsilon(k_*)$ depends on $N_* = N_e(\phi_{k_*})$. We take N_* as the free parameter of the model (typically $N_* \sim 60$ for having sufficient inflation)

♦ For $V(\phi) \propto \phi^n$, we found $\varepsilon = n/(4N_*)$, $\eta = (n-1)/(2N_*)$

$$n_s - 1 = -\frac{n+2}{2N_*}$$
$$r = \frac{4n}{N_*} = \frac{n}{15} \left(\frac{60}{N_*}\right)$$

- $\lambda \phi^4$ ruled out by far (already by WMAP)
- $m^2 \phi^2$ almost ruled out by Planck
- For Starobinsky model,

$$n_s - 1 \simeq -\frac{2}{N_*}$$

 $r \simeq \frac{12}{N_*^2}$

Starobinsky (1980), Mukhanov and Chibisov (1981) Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological perturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

Consistent with the Planck 2015 data (at 95% c.l.) for $54 < N_* < 62$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Temperature anisotropies

Planck, paper XX (2015)

Comparison of inflationary models with Planck data

<ロ> < 同> < 同> < 回> < 回> < 回 > = □ > = □ = □

Polarization anisotropies

The extrapolation of the *Planck* measurement of dust polarization at the BICEP2 frequency and in the BICEP2 field of view (vertical bands) compared to a primordial GW signal with r = 0.2 (black line).

Planck Collaboration (2014)

Joint analysis of data from BICEP2/Keck Array and Planck:

- strong evidence for dust and no statistically significant evidence for tensor modes
- ► $r_{0.05} < 0.12$ at 95% c.l. $(k_* = 0.05 \,\mathrm{Mpc}^{-1})$

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations

Power spectra, r, Ω_g Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved pace

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background oday

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The relic GW background today

We now evolve the relic inflationary background to the present epoch, to make contact with the searches at GW interferometers

As long as a GW is outside the horizon, its amplitude stays constant, inside the horizon it decays

Depending on its comoving momentum, the mode will then re-enter the horizon during RD or during MD.

Which mode re-enters at the RD-MD transition? Solving $k_{eq} = \mathcal{H}(\eta_{eq})$, we get $k_{eq} \simeq 0.015 (h_0/\text{Mpc})$.

 $\Rightarrow f_{\rm eq} = k_{\rm eq}/(2\pi) \simeq 1.62 \times 10^{-17} \,\mathrm{Hz}$

(comoving quantities are the same as physical quantities today, since $a(t_0) = 1$)

LIGO/Virgo, eLISA, PTA, etc. are therefore potentially sensitive to primordial GWs with $f \gg f_{eq}$, so $\lambda \ll \lambda_{eq}$, which re-entered the horizon deep in the RD era.

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological perturbations

Power spectra, r, s z_{gy} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved pace

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that, in RD,

$$ilde{h}(\eta,k) = ilde{h}_{
m in}(k) rac{\sin(k\eta)}{k\eta}$$

and $a(\eta) \propto \eta$, so in RD $\tilde{h}(\eta, k) \propto \sin(k\eta)/a(\eta)$

the scaling $\tilde{h}(\eta, k) \propto 1/a(\eta)$ persists in MD

$$\Rightarrow \qquad \tilde{h}_k^2(\eta_0) = \frac{1}{2} \tilde{h}_{k,\text{in}}^2 \left(\frac{a_*(k)}{a_0}\right)^2$$

where

- $\bar{h}_{k,in}$ is the primordial value of the tensor perturbation, determined when it is well outside the horizon
- $a_*(k)$ is the value of the scale factor when the mode with comoving momentum k re-enters the horizon, and $a_0 = 1$
- the factor of 1/2 comes from $\langle \sin^2(k\eta) \rangle$ (precise numerical factors require numerical integration)

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor decomposition Evolution of cosmological perturbations

Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today The tensor power spectrum today $\mathcal{P}_{T,0}(k)$ is related to the primordial power spectrum $\mathcal{P}_{T,in}(k)$ by

$$\mathcal{P}_{T,0}(k) = \frac{1}{2}a_*^2(k)\mathcal{P}_{T,\mathrm{in}}(k)$$

 $a_*(k)$ is determined by

$$H[a_*(k)] = \frac{k}{a_*(k)}$$

H(a) is determined by the Friedmann eq

$$H^2 = \frac{8\pi G}{3}\rho$$

define

$$\rho_0 = \frac{3H_0^2}{8\pi G} \qquad \Omega_R = \frac{\rho_{R,0}}{\rho_0} \qquad \Omega_M = \frac{\rho_{M,0}}{\rho_0}$$

Since $\rho_R(a) \propto a^{-4}$, $\rho_M(a) \propto a^{-3}$, we have

$$\rho_R(a) = \rho_0 \Omega_R a^{-4}, \qquad \rho_M(a) = \rho_0 \Omega_M a^{-3}$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor ecomposition ivolution of cosmological

Power spectra, r, Ω_{gw} Summary

Inflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Then, in RD, $H(a) \simeq H_0 \Omega_R^{1/2} / a^2$

More precisely, taking into account the effective number of relativistic species, deep in RD

$$H(a) \simeq 0.62 \left(\frac{106.75}{g_*(T)}\right)^{1/6} \frac{H_0 \Omega_R^{1/2}}{a^2}$$

Then

$$a_*(k) \simeq 0.62 \left(\frac{106.75}{g_*(T_k)}\right)^{1/6} \frac{H_0 \Omega_R^{1/2}}{k}$$

 $(g_{\ast}(T_k)$ is the value of $g_{\ast}(T)$ when the mode with comoving momentum k re-enters the horizon) Then

$$\mathcal{P}_{T,0}(k) \simeq 0.38 \, \left(\frac{106.75}{g_*(T_k)}\right)^{1/3} \, \frac{H_0^2 \Omega_R}{2k^2} A_T \, \left(\frac{k}{k_*}\right)^{n_T} \,, \qquad (k \gg k_{\rm eq})$$

Introduction

Cosmological perturbations

Basics of FRW cosmology

icalar-vector-tensor lecomposition ivolution of cosmological lerturbations

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial calar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Recalling that

$$\Omega_{\rm gw}(f) = \frac{\pi^2}{3H_0^2} f^2 \mathcal{P}_{T,0}(f)$$

we get (setting henceforth $g_*(T_k) = 106.75$)

$$\Omega_{\rm gw}(f) \simeq \frac{0.38}{24} \,\Omega_R A_T \, \left(\frac{f}{f_*}\right)^{n_T} \,, \qquad (f \gg f_{\rm eq})$$

The factors f^2 canceled and, for $f \gg f_{eq}$, $\Omega_{gw}(f)$ is almost flat, with its only dependence on the frequency given n_T .

Write $A_T = rA_R$ and use the value of A_R and the limit on *r* determined by Planck

$$h_0^2 \Omega_{\rm gw}(f) \simeq 1.43 \times 10^{-16} \left(\frac{A_{\mathcal{R}}}{2.14 \times 10^{-9}}\right) \left(\frac{r}{0.1}\right) \left(\frac{f}{f_*}\right)^{-r/8}$$

Introduction

Cosmological perturbations

Basics of FRW cosmology Scalar-vector-tensor decomposition Evolution of cosmological perturbations Power spectra, r, Ω_{gw}

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved pace

Quantization of scalar field in RW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial calar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today

For frequencies $f < f_{eq}$ there is a further $1/f^2$ enhancement due to the fact that they enter the horizon later, in MD

Introduction

Cosmological perturbations

Basics of FRW cosmology

Scalar-vector-tensor lecomposition Evolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation

Quantum fields in curved

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

The inflationary background that we have studied is just an element of a larger picture of theoretical predictions and existing bounds:

LIGO and Virgo coll., PRL 2014

Introduction

Cosmological perturbations

Basics of FRW cosmology

calar-vector-tensor lecomposition ivolution of cosmological

Power spectra, r, Ω_{gw} Summary

nflationary cosmology

Slow-roll inflation Large- and small-field models Starobinsky inflation Summary

Quantum fields in curved space

Quantization of scalar field in FRW

Bogolubov transformation

Vacuum fluctuations of scalar fields

Prediction for primordial scalar and tensor spectra

Scalar power spectrum

Tensor power spectrum

Comparison of inflationary models with Planck data

The relic GW background today