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Stochastic backgrounds of GWs can be a vast
SUbj ect Tntroduction

Basics of FRW cosmology

Evolution of cosmological

» Experimental searches D
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- existing limits and sensitivities of adv. LIGO/Virgo, eLISA Slow-roll inflation
Large- and small-field models
¢ CMB Starobinsky inflation
- temperature anisotropies, polarization (E- and B-modes) B
- Planck, Bicep2
< pulsar timing arrays Quantization of scalar feld in
FRW
» Cosmological production mechanisms Bogolubos ransformatior
Vacuum fluctuations of scalar
¢ inflation el

< phase transition
< cosmic strings
(o

The relic GW background



we will develop only one topic:

Introduction
Stochastic GWs and inflation

... but (hopefully) we will do it well !

Final aims:
» compute the production of stochastic GWs during inflation
> understand the Planck results in the (ng, r) plane

» compute the relic background today
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Cosmological perturbations
Basics of FRW
ds* = —df* + d®(t)dx?, H=2ad/a (spatially flat) :

Horizon scale \y = H~'. Today HO_l ~ 4.3 Gpc

Physical coordinates x,, = a(f)x
ds* = — (1 — Hx}y)) dr* + dxy, — 2HXp-dXpndt

Newtonian intuition applies at xpn < Ay

compare TT gauge and proper detector frame for the metric of a GW!

Correspondingly, we have comoving momentum k and physical momentum
ko = x/af(?)



Dynamics:
perfect fluid: 0 =—p(t), Ty=0, T/ =pt)
eq. of state: p=wp
V. TH=0 = p+3H(p+p)=0
p=v=0 = H? = %6,
IRNCREG
radiation 1/3 ] a* | t'/2
matter 0 a3 1?/3
vacuum energy | —1 | const. | e

Basics of FRW cosmolog



Conformal time 7:

d n=—= Basics of FRW cosmoloy

FRW metric:
ds* = d*(n) (—dn* + dx?)

When using conformal time, one also introduces

H="=

a

notation:  f' =df/dn, f=df/dt



Scalar-vector-tensor decomposition

Helicity decomposition in flat space: g, = Ny + A

Scalar-vector-tensor
decomposition

hoo = 29, hoi = 1, + Oy
hyj = =260 + [0:0; — (1/3)6;VIN + (1/2)(0ye, + Oje.) + hy.

8i = O’ 6,’ = 07 8/h;5T = Oa 5”]1? =0

In Fourier space 9; <> ik;, e. g.
hoi(K) = Bi(k) + ikiy(K) ,

where k- B (k) = 0. Is a decomposition in helicity eigenstates



Gauge transformation:

i () = Py (x) — (O + 0uE,)

fO :A7 é-i = + 61'C7 (aiBi = 0)
w — w_A — 9
¢ — o+ (1/3)VC — ,
Yy = A—C
A — A=2C h;l;T—>h?;T

hET

;j 1s gauge-inv for trivial reasons: no tensor part in &,



> Synchronous gauge:
hoo = ho; = 0,  ie. Yv=y=p5=0 e
Residual gauge transformation:
A=—f(x), C=f(x)t, B;=Bix)

= spurious gauge modes

» Newtonian gauge: N=~v=0;=0
no residual gauge freedom

scalar pert: ds®> = —(1 —2¢)de* + (1 — 2¢)dx*



Better approach: gauge-inv variables (Bardeen variables)

7? — w—A @:_¢_1V2)\7
¢ — o+(1/3)VC o oo
y = y—A-C ‘1’2—1#4-&—5/\
8 : A ZC’ =G %éh
— hit

In the Newtonian gauge: U=—y &=—0¢
s0, in the scalar sector:  ds* = —(1 +2W)dr* + (1 + 2®)dx>
Is quite convenient to work in the Newtonian gauge:

> no residual gauge freedom, so no spurious gauge mode

> the equations that one obtains for ® and V are valid in any gauge



Linearized Einstein eqs

Too = p, Toi =5, +0;S
Ty = pdy + [0:0; — (1/3)6; Vo + (1/2)(0ic; + 0jo1) + o)

0i0t=0, 85 =0, 8%?20, JUUgT:O

V® = —4nGp

VU = +47G(p—2V?%0)
V’E, = -—167GS;

Oh;" = —l6xGoy"

> 4 pure gauge dof

» 4 physical but non-propagating dof: ®,V,
notethat ® + ¥V = —81Go = Y =-0 ifo=0

» 2 physical propagating dof: hgT



Similar construction in FRW:  ds® = a*(n) (1, + hy, )dxtdx”

2 1dX
P = —¢—-VA+H|(y— z—
6 2dn gauge-invariant
U = —p+4 - i _ 1@ Bardeen variables
adn 2 dn

conformal Newtonian gauge:

ds* = a*(n) [—(1+2W)dn* + (1 +2®)dx> + )" dx'd|

vector perts decay with time and are irrelevant

extract the predictions from a model

e.g. prediction in the (ny, r) plane, see later

scalar and tensor perts evolve separately but we must study both to

Scalar-vector-tensor
decomposition



Evolution of cosmological perturbations

0Gl = 87G 6TH
Scalar sector
> U =—-difc=0
» & still a non-propagating dof
V2 = —4nGad?(5p — 3HSS) (Toi = :S)

> but time-evolving. Master eq for ® (), k):

" +3H(1 + )@ + [BHAH (2 —w) + 2] @ =0

(p = wp,0p = c;0p)

Evolution of cosmological
perturbations



Results:

the evolution depends on whether k < H(n) or k > H(n)
and on whether we are in RD, MD, or dark-energy dominance

H~"and a(r)\/(27) 1000
for different values of A 10
01
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0.0
-15

Evolution of cosmological
perturbations



Tensor perturbations
(RS + 2K (R — V°hT = 167Ga’o"
note: perfect fluids are not sources for GWs!

go in momentum space and expand

By (n,k) = ¢ (K)ha(n, k)
A=+4,X
ef (k) = Wiy — vivj, e (k) = WV, + vy

- L (1 0 « _ (0 1
whenk = (0,0, 1), eah—(o 1 >ah, enb—<l o).

Evolution of cosmological
perturbations



Then:

Ry 4 2HI, + Khy = 167Ga*G4 set G4 =0
12 RDIMD Evolution of cosmological
~ ~ . perturbations
i h(n, k) = hin () 252 RD)
£ - - )
2 o h(n, k) = hin (k) 2592 vy
E o2 -
00 = h(n) o< 1/a(n)
-0.2

-15

both in RD and MD, inside the horizon,

pew o< (h*) oca”

4

the notion of graviton only makes sense inside the horizon!



Effect of stochastic GWs on the CMB

» Only GW modes with kngec < 1 contribute

> A GW with wave-number k imprints anisotropies on the CMB on a
length-scale A = 27 /k 2, 27 Ndec

> An observer at the Earth sees the corresponding perturbations under an
angle

bs _(V2)

N7~

A
R — e 2m (m0 = 13.7Gpe, 10 /Maee = 49.4)
ec

Thus, GWs can only affect large-angle anisotropies. Numerically

0= 3.6deg

which corresponds to CMB multipoles with

[~

< 0(50)

S

Evolution of cosmological
perturbations



Power spectra, r, and (g,

Initial conditions in cosmology are stochastic

for gaussian initial conditions all information is contained in the 2-point
correlator

(@in(k) @5, (K)) = (271)*6) (k — K')Pa in(k)
P& in(k) is the (primordial) power spectrum

@upa)) = [ F55 K Bl )

d3k ik (x—x'
= [ et

@h0) = [ GePant) = 5 [ G RPealt

Define

Power spectra, 7, £2,,



The initial power spectrum is parametrized as

k ng—1
Po,in(k) = As <k7)

» n, = 1 Harrison-Zeldovich spectrum S
> ng > 1 “blue”, ny < 1 “red" spectrum

» The pivot scale k. is a parameter chosen by the experimentalist.

L. k nl\.71+%(d‘(g££)log(k/k.\.)
> running index: Po in(k) = Ao (,7) )

» a technical point: instead of ® one uses the curvature perturbation R = ® + Hv, where
the velocity potential v is defined by 67} = — (5 + j)d'v. For adiabatic initial conditions it
is constant on super-horizon scales (even at the RD-MD transition). Deep in RD
R = (3/2)®. Then

ng—1
Pralt) =Ar (£)" . A = (9/49)Ae



Tensor perturbations

(im0 1K) = (210 (= K)ow 3 Prin(h)
Then

(" (o, ) (") (i, K)) = (2m)*8) (K = K')Prin(K).
Define again

k3
—Pra(k
2 Prin(k)

k nr
Pr,n(k) = Ar <E>

The tensor-to-scalar ratio r is

PT,in (k) =

We parametrize it as

PT in (k)
r(k) = ’
( ) PR,in (k)
In particular, setting k = k.
r=rks) = Ar

Power spectra, r, 2,



Relation to the GW energy density

l : : U
Pev = 355 (hih”)
=00 dpgw .
= d(logf perturbations
/f—o ( g ) dlogf ]jtc:s‘?ew“' Q.
The critical density of the Universe is
3H} B
Pec= o~ Summa
8tG
Define L
pow Quantiz lar field
Qow = — =
ow () o dlogf
Then

2
Qpu(f) = },ﬁf%m




Summary

» degrees of freedom of the gravitational field
- 4 pure gauge dof,
- 4 physical but non-propagating dof: ,V, =,
- 2 physical propagating dof: h,-TjT

> evolution egs for ®, 4" in FRW S

(while typically ¥ = —&, and =, only has decreasing modes) SR

» stochasticity enters through the initial conditions
- def of scalar and tensor power spectra; Pr,o(f), Pr,o(f)
- amplitudes and tilts Ag (or AR), ns; Ar, nr; r = Ar /AR .
- Qgw(f) and relation to Pr o (f) e




Inflationary cosmology

Single-field slow-roll inflation
[
S = / d'xy/=g [—Eg“ 0udDup — V(¢)

1.
ps = S8 +V(9)
1.
Pe = 54’2 —V(e)
effectively acts as a fluid with

po _ (1/2)¢* — V(9)

w=—-—= =

po (1/2)§* +V(9)

(1/2)¢* « V(¢) = w~—1 = accelerated expansion




eq. of motion
3H? = 871G py
d+3Ho+V =0

2
first slow-roll condition — 1 K/ 1
! 52 ST Tee \v) ©
307 < V(9) u
11
second slow-roll condition n = g ]G v < 1 Stowrol ifaion
6] < [V'(9)] T

Inflation ends when one of the two conditions is violated.

Number of e-folds:

de Slttel a(lz)
N(t, 1) H(t lo
2,11 /] 0og a(n)

The number of e-folds N, (¢) to the end of inflation is

Jo) VC
N.(¢p) = -
© =810 | a0 e



Large- and small-field models

Large-field models: typical example: V(¢) = g,¢"

M o — 1) b2

T Ton ¢ "= T8 R

Inflation takes place at ¢ 2, Mp, !

Slow-roll inflatios

Consistency problems with quantum gravity ? Non-trivial to embed in a S .
fundamental theory faton

Trading ¢ for N,

4N,
n—1
2N, Se




Small-field models: typical example: V(¢) ~ Vo — %d)“

V@) Aslong as (\/4)¢* < Vo:
3 MMy’
n - 87 Vo
e = —n(xe"/Vo)
¢ =& <

The slow-roll conditions are satisfied for sufficiently small ¢, and inflation
ends when

2 8 V()
%= 3
Since we assumed (\/4)¢* < Vp, this is consistent as long as
(\/4)ds < Vo, ie.

3 2
Vo < (7) M,
4

Large- and small-field models



In thiS mo del

and we get

‘The relic GWibackground!
today

«O> Fr o«

Q>



Starobinsky inflation

6M?

167TG /d“x\ﬁ {R+R—2}

where M is a new mass scale. It belongs to a more general class of theories

~ o [ ®)

Starobinsky inflation

Equivalence to scalar-tensor theories: see De Felice-Tsujikawa 2010

Slgu x] = / v/ =g [F(0) + (R— )f ()]

16 G
In fact, the variation with respect to x gives
f"OOR=x)=0

so, as long as f"'(x) # 0, we have Y = R.



Define ¢ = f'(X). 8uv = ©gyuv- Then

~ 1"’1/
Sl = /dxf{w SR 15 0,00,0 - V(0)

where
V(g) = Mo x(9)e ~ fIx(e)]
167 ©?
For Starobinsky model 15 -
V(g) = 2B (1 Va2 -
>
¢e ~ (.19 Mp 05
¢i ~ Mpi (1.07 + 0.24 log £22') 00L M .
$/Mp “ o
In terms of N,: e
€ ~ 3 Scalar
o 4N3 Tensor

=
12
\



Summary

» small-field and large-field inflation, super-Planckian problem
» definition of the slow-roll parameters €, 7

» relation of €,7 to N,
- &€ = O(1/N.) in large-field models of the form V(¢) x ¢"
- € = O(1/N?) in Starobinsky model
- and possibly even smaller in small-field models




Quantum fields in curved space

Consider a real massive scalar field ¢ in curved space

5= [ a5z [¢ 0000+ ']

The equation of motion is the KG equation

(O-m)p=0

06 = V. V"6 = —=0, (V=5"0.) ¢

ﬁ

Quantum fields in curved

In flat space the solutions are the plane waves space
ug (x) = L g iwntikx
vV Zwk

60 = [ 5 nanto) + alui 0]



In FRW, using conformal time

o+ 2Hey + Kb =0

Introduce

X("]v X) = a(’l)¢(77» X)

(o)

For de Sitter a(n) = —1/(Hn) (with n < 0):

2
x2’+(k277)><k—0




Two independent solutions of this equations are f(n) and ;" (), with

T ( i )
n)=—=e 11— —
The quantum field is
d’k

x(n,x) = / W (k(n)eik.xak +ﬁ*(n)e—ik.xal>

with
lax, af,] = (27)°6) (k — K')

ak|0)a =0

This choice of modes defines the Bunch-Davies vacuum.

Quantization of scalar field in
FRW



Bogolubov transformation

One could choose the modes
Fi(n) = afe(n) + Bific ()
write ;
X0 = [ S5 (Rl Fime™a])
(2m)?
and define a vacuum state from Ax|0)4 = 0
NB. The modes are chosen orthonormal wrt the scalar product

(0 |un) = i / A5 [} Dyutty — (Dt} )]
>

This requires
lowl* = 16> = 1

Bogolubov transformation



Expressing Fy in terms of fi, fi” we get

&K .
ax = / @y [ak’kAk’ +5k'kAl/]

or
37/ +
* *
Ak = / W [akk/ak/ — ﬁkk/ak/}
Then ,
37,/
" _ d’k )
ualanion) = [ S 16us
The vacuum state wrt to ak is not a vacuum state wrt Ax Bogolubov transformation

The Bunch-Davies vacuum is selected physically by the fact that, well inside
the horizon, where |kn| > 1, it reduces to a positive frequency mode with
respect to Minkowski space

Because of the cosmological red-shift, it is a very sensible choice for all
momenta relevant today



Vacuum fluctuations of scalar fields

‘We now compute in FRW the quantum expectation value

(016" (n,%)(0)

zbmwmm

(
1 &k
ﬁ%/()m”'

a

1 3 2
s 7 CIo)

Recalling the definition of the power spectrum

000 = [ E Pt

we get

~ 2n2a? (n)

L Blm)P




In Minkowski space, |fi| = (2]()*1/2’ SO

k2

Py(k) = 2

In de Sitter space, with a Bunch-Davies vacuum

HYE (5 1
Pot) = 5 (7 + ;)

42

> at sufficiently early time |kn| > 1, the mode is well inside the horizon
and fluctuations of field x = a~'¢ approaches the Minkowski value.

» when the mode is well outside the horizon,

2

Pyk) ~ 1

42

so the power spectrum approaches a constant value.

Vacuum fluctuations of scalar
fields



Prediction for primordial scalar and tensor spectra

Scalar power spectrum

start from SGH = 8rG 6TH e
metric sector: ¥ (n,x) (® =—-0) =

inflaton perturbations: d(n,x) = ¢o(n) + dp(n, x)

For the inflaton TV = g"?0,00,¢ — 0% [18"70,00-¢ + V()] R
SO :1\, it
0 _ i (A2 sl dv(¢0)
T = o [+ ghae] - T 60 P
6Ty = %(ﬁ()&-&ﬁ I ——
a

Using 0T}, = —(p + p)9'v, we get the velocity potential vy = f‘;—‘?
0




from the definition R = ® + Hyv it follows that

H6¢ 3asics of FRW cosmolog
R=-VU—
2
/
define: z2(n) = %b" u(n,x) = —zR

Large- and small-field mode

Then arobinsky in "
1
vl

W —u—Vu=0
z
To leading order in the slow-roll expansion ¢/ is constant. ” ;‘ -
Then 7"’ /z ~d" /a B
= u satisfies the same eq as the scalar field that we called x !

(and its action has the canonical normalization)




on super-horizon scales its power spectrum is then

H?
Basics of FRW cosmology

472 tocomposion
Evolution of cosmological
perturbat
tra, r, 2
We use ,
a H nflation
Large- and small-field models
. . . Starobinsky inflation
80, passing to cosmic time, -

Quantization of scalar field in

R=—-———"72 FRW
¢0 a Bogolubov transformation

Vacuum fluctuations of scalar

Then, the primordial spectrum of R for super-horizon modes is given by

Scalar power spectrum

H\? H \’
Pr(k) = (%) Puja(k) = (%) S

GW background




This result is valid to lowest order in the slow-roll expansion, i.e. assuming
that H and ¢, are exactly constant

In this approximation we find n;, = 0
To next order in the slow-roll expansion:

- as long as the mode is well inside the horizon, 7" /z ~ d"’ /a is
negligible and the solution reduces to the standard Minkowski modes
(2k) —1/2 e*ikn

- When the wavelength of the mode becomes of order of the horizon size
we can no longer neglect the term a’’ /a. However, for a limited number
of e-folds near horizon crossing, the solution that matches the mode
(2k)_l/ 2 ¢~ inside the horizon is obtained replacing H is the value at
time of horizon crossing, Hx = H(n«), where the conformal time of
horizon exit, 7, is the solution of

0=

To first order in the slow-roll expansion, the result for the power spectrum is
obtained simply replacing H by H; and similarly ¢o by (¢0)x = ¢o(x)

Scalar power spectrum



The result for the primordial power spectrum of R on super-horizon scales is

then

Pri) = (2:;0>j

1287 (V3
Prk) = (—)
3M}6’l Vlz k

using the slow-roll egs.

The amplitude at a pivot scale k. is then
1287 [V
3Mp, \V?/,.

log Pr (k) = logAr + (n, — 1) log(k/k.)

Writing

we get _dlogPr(k) _ dlog(V?/V?);

s —1= ==
ns (k) dlogk dlogk

and then ns = ny(ks)




the dependence of V and V' on k follows from the fact that they are functions
of ¢(n), and ¢(n) must be evaluated at the time 7

Next transform the derivative with respect to k into a derivative with respect

to ¢x = P(r)

Let 7 be the cosmic time corresponding to conformal time 7, and 7, = f;, be the cosmic time at
which the mode with momentum k.. equal to the pivot scale crosses the horizon. Integrating the

slow-roll eq from an initial time ¢, to # = t, + dt; we get

de Mo ( s ) d
= ————= | 575 k
V2dr \V'V2 /)y,

where do = ¢(1x) — ¢(t«). In slow-roll inflation H(r) is to first approximation constant, while
a(t) evolves exponentially with 7. Therefore, to lowest order, # is approximately determined by the

equation a(tx) ~ k/H,, so
(da) dk
- dt ~
dt /), H,

dk
(aH)l* dlk >~ %

*

Therefore

which gives
dk Scalar power spectrum

dip =
k= k

*

Finally
de My (V/> 1log k
by = ——2L og
Pk S V) alog



Then we get

Ma [V (Vv

sr [\v) v v )]
My |V (VY

§r |7V v

o<}

Recalling the definition of the slow-roll parameters, we finally find

ng — 1 =2n— 6e

where it is understood that 1 and € are evaluated at the time 7(k.).

Scalar power spectrum



Tensor power spectrum

We already saw that, when the anisotropic stress o4 = 0:
Ry + 2HR, + Khy =0
This is exactly the same as the equation of motion of a scalar field ¢!

Normalization determined looking at the action. Expanding to quadratic
order

1 v
Sa[h] = 321G Z/d4x\/ —88""0uha0uha
A

where g,,, = a’n),,, is the background FRW metric. Then

I
wa(n,x) = Witrre ha(n,x)

Tensor power spectrum



3Pran(8) = (insn()F) = 167G P (K

Using the result for P, (k) we get

16 H;
k) = — —-
Pr(k) T M2
and, using the slow-roll egs. Stovrol inflto
128 V, Starbinsky infiatir
Prk) = — —+
"O=5
This gives the amplitude and tilt {‘.ﬂ‘\\ ar | -

16 HI 128 Vi,

A = —_—
LMy 3, e
dlogV e
= = —25 models with Planck
" (dlogk)k* The relic GW backgrour



Summary

Single-field slow-roll inflation predicts

1287 (V3
AR = & vz
3Mp, \ V"™ /.
ng—1 = 2n—06¢
128 V,
Ar = ==k
3 Mg,
nr = —2e
Therefore A
r="L = 1l6e
R

Observe also that ¥ = —8n7 independently of the potential V(¢)




Comparison of inflationary models with Planck
data

€ = e(k.) depends on N, = N, (¢, ). We take N, as the free parameter of
the model (typically N. ~ 60 for having sufficient inflation)

o For V(¢) o ¢", we found e = n/(4N.), n = (n — 1)/(2N.)

_n—|—2
2N.

P 4n_£@
TN, 15\ N,

- A¢* ruled out by far (already by WMAP)
- m*¢* almost ruled out by Planck

ny— 1

< For Starobinsky model,

2
ng—1 o~ A
* Starobinsky (1980),
roo~ 12 Mukhanov and Chibisov (1981)
NZ

Consistent with the Planck 2015 data (at 95% c.1.) for 54 < N, < 62

Scalar

Tensor power spectrum
Comparison of inflationary
models with Planck data
The relic GW ba Tour
oday



Temperature anisotropies

Tensor-to-scalar ratio (ro.002)

0.00

0.96
Primordial tilt (ny)

Planck TT-+lowP
Planck TT+lowP+BKP
Planck TT-+lowP+BKP+BAO
Natural Inflation

Hilltop quartic model

« attractors

Power law inflation

Low scale SB SUSY

R? Inflation

Vx¢?

V x ¢?

V o V3

V xo¢

V o ¢?/3

N,=50

N,=60

Planck, paper XX (2015)
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Polarization anisotropies

B ]

0T . . , i
aonl. — Biensr - 02

o2
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The extrapolation of the Planck
measurement of dust polarization at the
BICEP2 frequency and in the BICEP2
field of view (vertical bands) compared
to a primordial GW signal with r = 0.2
(black line).

Planck Collaboration (2014)

Joint analysis of data from BICEP2/Keck Array and Planck:

» strong evidence for dust and no statistically significant evidence for

| 2

tensor modes

ro.0s < 0.12 at 95% c.l.

(k+ = 0.05Mpc™")
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The relic GW background today

We now evolve the relic inflationary background to the present epoch, to
make contact with the searches at GW interferometers

As long as a GW is outside the horizon, its amplitude stays constant, inside
the horizon it decays

Depending on its comoving momentum, the mode will then re-enter the
horizon during RD or during MD.

Which mode re-enters at the RD-MD transition? Solving keq = H(7eq), We
get keq >~ 0.015 (ho/Mpc).

= fog = keg/(27) >~ 1.62 x 10" Hz

(comoving quantities are the same as physical quantities today, since a(ty) = 1)

LIGO/Virgo, eLISA, PTA, etc. are therefore potentially sensitive to
primordial GWs with f >> f.q, S0 A < A¢q, which re-entered the horizon deep
in the RD era.
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Recall that, in RD,

~ ~ sin(kr
h(n, k) = hin(k) k(n )

and a(n) o 1, so in RD h(n, k) o sin(kn) /a(n)
the scaling (77, k) o 1/a(n) persists in MD

- 1o [a.(k)\’
= hi (o) = 5/1,2(71,1 < ( )>

do

where

- fz/@in is the primordial value of the tensor perturbation, determined when
it is well outside the horizon

- a. (k) is the value of the scale factor when the mode with comoving
momentum k re-enters the horizon, and agp = 1

- the factor of 1/2 comes from <Sin2 (km)) (precise numerical factors require

numerical integration) The relic GW background

today



The tensor power spectrum today Pr,o(k) is related to the primordial power

spectrum Pr in (k) by

Pro(k) = %a (K Pran(k)

a« (k) is determined by

k
Hla.(k)] =
[a. (k)] a(®
H(a) is determined by the Friedmann eq
&G
H =2~
3
define
3H3 PRO PM,0
= —_— Q = 2 Q = —
Lo 8nG R 2 M 20

Since pr(a) o< a=*, pu(a) o a=>, we have

pr(a) = poQ%ka™,  pu(a) = poQua™
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Then, in RD, H(a) ~ HoQY* /d*

More precisely, taking into account the effective number of relativistic
species, deep in RD

106.75) o HoQ?

H(a) ~ 0.62 ( o (T

a2

Then

106.75)1/6 HoQY?

as (k) ~0.62 (g*(Tk) T

(g« (Ty) is the value of g, (T') when the mode with comoving momentum k re-enters the horizon)

Then

106.75)”3 H2Ox (k
T

Pro(k) ~0.38 (g*(Tk) T .

nr
) k> k)
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Recalling that

Quu(f) = f “Pro(f)

3H2

we get (setting henceforth g (Tx) = 106.75)

gw(f) % QR AT (ffj) ’ (f >>feCI)

The factors £~ canceled and, for f >> Jeqs Qew(f) is almost flat, with its only
dependence on the frequency given ny.

Write Ar = rAr and use the value of Az and the limit on r determined by
Planck

—r/8
2 — AR r f
OQe(f) = 143 %1070 (2R ) () (L
FioS Y (f) <10 (2.14>< 10*9> (0.1) (f)
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For frequencies f < fq there is a further 1/f* enhancement due to the fact
that they enter the horizon later, in MD
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The inflationary background that we have studied is just an element
of a larger picture of theoretical predictions and existing bounds:

3asics of FRW cosmolog;
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