On the saturation of rotational instabilities in neutron stars and the associated gravitational wave emission

> Pantelis Pnigouras in collaboration with K. D. Kokkotas

8th Aegean summer school Gravitational waves: from theory to observations

Rethymno, 30.6.2015

Outline

- Fluid equations
- Classes of modes

2 The CFS instability

• The instability window

3 Mode coupling

- Quadratic perturbation equations
- Equations of motion
- Parametric resonance instability
- Saturation conditions

4 Results and remarks

On the saturation of rotational instabilities in neutron stars
Oscillation modes
Fluid equations

Oscillation modes

• Fluid equations (in corotating frame):

$$\dot{
ho} +
abla \cdot (
ho oldsymbol{v}) = 0$$

 $\dot{oldsymbol{v}} + (oldsymbol{v} \cdot
abla)oldsymbol{v} + 2oldsymbol{\Omega} imes oldsymbol{v} + oldsymbol{\Omega} imes (oldsymbol{\Omega} imes oldsymbol{r}) = -rac{
abla p}{
ho} -
abla \phi$
 $abla^2 \phi = 4\pi G
ho$
 $p = p(
ho, \mu)$

• Linearly perturbed fluid equations:

$$\begin{split} \delta\rho + \nabla \cdot (\rho \boldsymbol{\xi}) &= 0\\ \ddot{\boldsymbol{\xi}} + 2\boldsymbol{\Omega} \times \dot{\boldsymbol{\xi}} &= -\frac{\nabla \delta p}{\rho} + \frac{\nabla p}{\rho^2} \delta\rho - \nabla \delta\phi\\ \nabla^2 \delta\phi &= 4\pi G \delta\rho\\ \\ \Delta p \\ p &= \left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{\mu} \frac{\Delta \rho}{\rho} + \left(\frac{\partial \ln p}{\partial \ln \mu}\right)_{\rho} \frac{\Delta \mu}{\mu} \end{split}$$

Eulerian (δ) and Lagrangian (Δ) perturbations related via $\Delta f = \delta f + (\boldsymbol{\xi} \cdot \nabla) f$

On the saturation of rotational instabilities in neutron stars Oscillation modes Fluid equations

Oscillation modes

• Fluid equations (in corotating frame):

$$\dot{
ho} +
abla \cdot (
ho oldsymbol{v}) = 0$$

 $\dot{oldsymbol{v}} + (oldsymbol{v} \cdot
abla)oldsymbol{v} + 2oldsymbol{\Omega} imes oldsymbol{v} + oldsymbol{\Omega} imes (oldsymbol{\Omega} imes oldsymbol{r}) = -rac{
abla p}{
ho} -
abla \phi$
 $abla^2 \phi = 4\pi G
ho$
 $p = p(
ho, \mu)$

• *Linearly* perturbed fluid equations:

$$\begin{split} \delta\rho + \nabla \cdot (\rho \boldsymbol{\xi}) &= 0 \\ \ddot{\boldsymbol{\xi}} + 2\boldsymbol{\Omega} \times \dot{\boldsymbol{\xi}} &= -\frac{\nabla \delta p}{\rho} + \frac{\nabla p}{\rho^2} \delta\rho - \nabla \delta\phi \\ \nabla^2 \delta\phi &= 4\pi G \delta\rho \\ \frac{\Delta p}{p} &= \left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{\mu} \frac{\Delta \rho}{\rho} + \left(\frac{\partial \ln p}{\partial \ln \mu}\right)_{\rho} \frac{\Delta \mu}{\mu} \end{split} \right\} \quad \begin{aligned} &\text{Assuming } \boldsymbol{\xi}(\boldsymbol{r},t) &= \boldsymbol{\xi}(\boldsymbol{r})e^{i\omega t}: \\ \hline -\omega^2 \boldsymbol{\xi} + i\omega \boldsymbol{\mathcal{B}}(\boldsymbol{\xi}) + \boldsymbol{\mathcal{C}}(\boldsymbol{\xi}) &= \boldsymbol{0} \\ + \\ \text{boundary conditions} \\ \psi \\ \omega, \boldsymbol{\xi} \end{split}$$

Eulerian (δ) and Lagrangian (Δ) perturbations related via $\Delta f = \delta f + (\boldsymbol{\xi} \cdot \nabla) f$

On the saturation of rotational instabilities in neutron stars Oscillation modes Classes of modes

Oscillation modes

$$\boldsymbol{\xi}(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[U_l^m(r) Y_l^m(\theta,\phi) \hat{\boldsymbol{e}}_r + V_l^m(r) \nabla Y_l^m(\theta,\phi) + W_l^m(r) \hat{\boldsymbol{e}}_r \times \nabla Y_l^m(\theta,\phi) \right]$$

• Polar modes: $W_l^m = 0$ • Axial modes: $U_l^m = V_l^m = 0$ as $\Omega \to 0$

l:

m:

n:

degree

order

overtone

Mode name	Mode class	Mode type	Restoring force
<i>p</i> -mode	Polar	Sound wave $(\omega \to \infty \text{ as } n \to \infty)$	Prossure gradient
f-mode	Polar	Low- ω sound wave $\int_{n} - 0$	i ressure gradient
		High- ω gravity wave $\int n = 0$	Buoyancy
$g ext{-mode}$	Polar	Gravity wave $(\omega \to 0 \text{ as } n \to \infty)$	
r-mode	Axial	Inertial wave	Coriolis
Hybrid mode	Combination	Zero-buoyancy limit or r - and g -modes	
• Only for non-zero rotation		• Only for non-zero buoyancy	

└─Oscillation modes

└─ Classes of modes

Oscillation modes

$$\boldsymbol{\xi}(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[U_l^m(r) Y_l^m(\theta,\phi) \hat{\boldsymbol{e}}_r + V_l^m(r) \nabla Y_l^m(\theta,\phi) + W_l^m(r) \hat{\boldsymbol{e}}_r \times \nabla Y_l^m(\theta,\phi) \right]$$

Mode name	Mode class	Mode type	Restoring force	
p-mode	Polar	Sound wave $(\omega \to \infty \text{ as } n \to \infty)$	Drossumo mus diant	
$f ext{-mode}$	Polar	Low- ω sound wave $\int_{\infty} - 0$	r ressure gradient	
		High- ω gravity wave $\int n = 0$	Buoyancy	
$g ext{-mode}$	Polar	Gravity wave $(\omega \to 0 \text{ as } n \to \infty)$		
r-mode	Axial	Inertial wave	Coriolis	
$Hybrid \mod$	Combination	Zero-buoyancy limit or r - and g -modes		
• Only for no	n-zero rotation	• Only for non-zero buoyancy		

The CFS instability

Are the perturbations stable?

Rapidly rotating stars are prone to *secular instabilities*, i.e. instabilities related to dissipation mechanisms (viscosity, gravitational radiation).

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\sum_{l\geq 2}^{\infty} N_l \,\omega \left(\omega - m\Omega\right)^{2l+1} \left(\left|\delta D_l^m\right|^2 + \left|\delta J_l^m\right|^2\right)$$

• Polar (axial) modes emit through the mass (current) multipoles

• If
$$\omega(\omega - m\Omega) < 0$$
, then $\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} > 0$

CFS instability

For any rotation rate Ω there is always a mode driven unstable by gravitational radiation emission [Chandrasekhar, 1970, Friedman and Schutz, 1978].

• f-modes and r-modes are the most susceptible to GW-driven instabilities

The CFS instability

Are the perturbations stable?

Rapidly rotating stars are prone to *secular instabilities*, i.e. instabilities related to dissipation mechanisms (viscosity, gravitational radiation).

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\sum_{l\geq 2}^{\infty} N_l \,\omega \left(\omega - m\Omega\right)^{2l+1} \left(\left|\delta D_l^m\right|^2 + \left|\delta J_l^m\right|^2\right)$$

• Polar (axial) modes emit through the mass (current) multipoles

• If
$$\omega \left(\omega - m\Omega \right) < 0$$
, then $\left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)_{\mathrm{GW}} > 0$

inertial-frame frequency

CFS instability

For any rotation rate Ω there is always a mode driven unstable by gravitational radiation emission [Chandrasekhar, 1970, Friedman and Schutz, 1978].

• f-modes and r-modes are the most susceptible to GW-driven instabilities

On the saturation of rotational instabilities in neutron stars $\hfill \Box$ The CFS instability

└─ The instability window

The instability window

- └ Mode coupling
 - └─Quadratic perturbation equations

Mode coupling

Do the unstable modes grow boundlessly?

Non-linear mode coupling inhibits the instability's growth [Dziembowski, 1982, Schenk et al., 2002, Arras et al., 2003, Brink et al., 2004]

• Quadratically perturbed fluid equations:

$$\begin{split} \delta\dot{\rho} + \nabla \cdot (\rho \boldsymbol{v}) + \nabla \cdot (\delta\rho \, \boldsymbol{v}) &= 0\\ \ddot{\boldsymbol{\xi}} + \boldsymbol{\mathcal{B}}(\dot{\boldsymbol{\xi}}) + \boldsymbol{\mathcal{C}}\left(\boldsymbol{\xi}\right) + \boldsymbol{\mathcal{N}}\left(\boldsymbol{\xi}, \boldsymbol{\xi}\right) &= \mathbf{0}\\ \nabla^2 \delta\phi &= 4\pi G \delta\rho \\ \\ \frac{\Delta p}{p} &= \Gamma_1 \frac{\Delta \rho}{\rho} + \frac{1}{2} \left[\Gamma_1(\Gamma_1 - 1) + \left(\frac{\partial \Gamma_1}{\partial \ln \rho}\right)_{\mu} \right] \left(\frac{\Delta \rho}{\rho}\right)^2, \quad \left[\Gamma_1 = \left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{\mu} \right] \end{split}$$

Eulerian (δ) and Lagrangian (Δ) perturbations related via $\Delta f = \delta f + (\boldsymbol{\xi} \cdot \nabla) f + (\boldsymbol{\xi} \cdot \nabla) \delta f + \frac{1}{2} \boldsymbol{\xi} \cdot [\boldsymbol{\xi} \cdot \nabla (\nabla f)]$

• Perturbation decomposition:

$$\boldsymbol{\xi}(\boldsymbol{r},t) = \sum_{lpha} Q_{lpha}(t) \, \boldsymbol{\xi}_{lpha}(\boldsymbol{r}) e^{i\omega_{lpha}t}$$

- └ Mode coupling
 - Quadratic perturbation equations

Mode coupling

Do the unstable modes grow boundlessly?

Non-linear mode coupling inhibits the instability's growth [Dziembowski, 1982, Schenk et al., 2002, Arras et al., 2003, Brink et al., 2004]

• Quadratically perturbed fluid equations:

$$\begin{split} \delta\dot{\rho} + \nabla\cdot\left(\rho\boldsymbol{v}\right) + \nabla\cdot\left(\delta\rho\,\boldsymbol{v}\right) &= 0\\ \ddot{\boldsymbol{\xi}} + \boldsymbol{\mathcal{B}}(\dot{\boldsymbol{\xi}}) + \boldsymbol{\mathcal{C}}\left(\boldsymbol{\xi}\right) + \boldsymbol{\mathcal{N}}\left(\boldsymbol{\xi},\boldsymbol{\xi}\right) &= \mathbf{0}\\ \nabla^{2}\delta\phi &= 4\pi G\delta\rho\\ \\ \frac{\Delta p}{p} &= \Gamma_{1}\frac{\Delta\rho}{\rho} + \frac{1}{2}\left[\Gamma_{1}(\Gamma_{1}-1) + \left(\frac{\partial\Gamma_{1}}{\partial\ln\rho}\right)_{\mu}\right]\left(\frac{\Delta\rho}{\rho}\right)^{2}, \quad \boxed{\Gamma_{1} = \left(\frac{\partial\ln p}{\partial\ln\rho}\right)_{\mu}} \end{split}$$

Eulerian (δ) and Lagrangian (Δ) perturbations related via $\Delta f = \delta f + (\boldsymbol{\xi} \cdot \nabla) f + (\boldsymbol{\xi} \cdot \nabla) \delta f + \frac{1}{2} \boldsymbol{\xi} \cdot [\boldsymbol{\xi} \cdot \nabla (\nabla f)]$

• Perturbation decomposition:

$$\boldsymbol{\xi}(\boldsymbol{r},t) = \sum_{\substack{\alpha \\ \text{amplitude}}} \boldsymbol{Q}_{\alpha}(t) \boldsymbol{\xi}_{\alpha}(\boldsymbol{r}) e^{i\omega_{\alpha}t}$$

Mode coupling

 \bullet Modes couple in triplets

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i \omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i \Delta \omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i \omega_{\beta} \mathcal{H} Q_{\gamma}^{*} Q_{\alpha} e^{i \Delta \omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i \omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{*} e^{i \Delta \omega t} \end{split}$$

Mode coupling

 \bullet Modes couple in triplets

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i\omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i\Delta\omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i\omega_{\beta} \mathcal{H} Q_{\gamma}^{*} Q_{\alpha} e^{i\Delta\omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i\omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{*} e^{i\Delta\omega t} \end{split}$$

• Detuning
$$\Delta \omega \equiv \omega_{\alpha} - \omega_{\beta} - \omega_{\gamma} \approx 0$$

resonance condition

The system exhibits internal resonances

Mode coupling

 \bullet Modes couple in triplets

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i \omega_{\alpha} \mathcal{H} \, Q_{\beta} Q_{\gamma} \, e^{-i \Delta \omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i \omega_{\beta} \mathcal{H} \, Q_{\gamma}^{*} Q_{\alpha} \, e^{i \Delta \omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i \omega_{\gamma} \mathcal{H} \, Q_{\alpha} Q_{\beta}^{*} \, e^{i \Delta \omega t} \end{split}$$

• Detuning
$$\Delta \omega \equiv \omega_{\alpha} - \omega_{\beta} - \omega_{\gamma} \approx 0$$

resonance condition

• Coupling coefficient $\mathcal{H} \neq 0$ if

$$\begin{array}{c} m_{\alpha} = m_{\beta} + m_{\gamma} \\ l_{\alpha} + l_{\beta} + l_{\gamma} = \text{even number} \\ |l_{\beta} - l_{\gamma}| \leq l_{\alpha} \leq l_{\beta} + l_{\gamma} \end{array} \right\} \hline \text{coupling selection rules}$$

Mode coupling

• Modes couple in *triplets*

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i \omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i \Delta \omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i \omega_{\beta} \mathcal{H} Q_{\gamma}^{*} Q_{\alpha} e^{i \Delta \omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i \omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{*} e^{i \Delta \omega t} \end{split}$$

• Detuning
$$\Delta \omega \equiv \omega_{\alpha} - \omega_{\beta} - \omega_{\gamma} \approx 0$$

• Coupling coefficient $\mathcal{H} \neq 0$ if

• Growth/damping rates $\gamma_i = \frac{1}{2E_i} \frac{\mathrm{d}E_i}{\mathrm{d}t} \gtrless 0$

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} + \left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{BV}} + \left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{SV}} \gtrless 0$$

└_Mode coupling

└─Parametric resonance instability

Parametric resonance instability

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i\omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i\Delta\omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i\omega_{\beta} \mathcal{H} Q_{\gamma}^{*} Q_{\alpha} e^{i\Delta\omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i\omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{*} e^{i\Delta\omega t} \\ \end{split}$$
 Detuning $\Delta\omega$
Coupling coefficient \mathcal{H}
Growth/damping rates γ_{i}

- Parent mode: unstable f-mode $(\gamma_{\alpha} > 0)$
- Daughter modes: other (stable) polar modes $(\gamma_{\beta,\gamma} < 0)$

└ Mode coupling

└─Parametric resonance instability

Parametric resonance instability

$$\begin{aligned} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i\omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i\Delta\omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i\omega_{\beta} \mathcal{H} Q_{\gamma}^{\lambda} Q_{\alpha} e^{i\Delta\omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i\omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{\lambda} e^{i\Delta\omega t} \end{aligned}$$
Coupling coefficient \mathcal{H}

Growth/damping rates γ_{i}

- Parent mode: unstable f-mode $(\gamma_{\alpha} > 0)$
- Daughter modes: other (stable) polar modes $(\gamma_{\beta,\gamma} < 0)$

No mode interaction: $\mathcal{H} = 0$ or $\Delta \omega \gg 0$

- Modes evolve independently
- No non-linear interaction

$$\dot{Q}_{\alpha} = \gamma_{\alpha} Q_{\alpha}$$
$$\dot{Q}_{\beta} = \gamma_{\beta} Q_{\beta}$$
$$\dot{Q}_{\gamma} = \gamma_{\gamma} Q_{\gamma}$$

└ Mode coupling

Parametric resonance instability

Parametric resonance instability

$$\begin{split} \dot{Q}_{\alpha} &= \gamma_{\alpha} Q_{\alpha} + i \omega_{\alpha} \mathcal{H} Q_{\beta} Q_{\gamma} e^{-i \Delta \omega t} \\ \dot{Q}_{\beta} &= \gamma_{\beta} Q_{\beta} + i \omega_{\beta} \mathcal{H} Q_{\gamma}^{*} Q_{\alpha} e^{i \Delta \omega t} \\ \dot{Q}_{\gamma} &= \gamma_{\gamma} Q_{\gamma} + i \omega_{\gamma} \mathcal{H} Q_{\alpha} Q_{\beta}^{*} e^{i \Delta \omega t} \\ \end{split}$$
 Detuning $\Delta \omega$
Coupling coefficient \mathcal{H}
Growth/damping rates γ

- Parent mode: unstable f-mode $(\gamma_{\alpha} > 0)$
- Daughter modes: other (stable) polar modes $(\gamma_{\beta,\gamma} < 0)$

Parametric resonance instability: $\mathcal{H} \neq 0$ and $\Delta \omega \approx 0$

- Parent feeds daughters and makes them grow
- Parametric instability threshold: daughters grow when

$$\left|Q_{\alpha}\right|^{2} > \left|Q_{\mathrm{PIT}}\right|^{2} \equiv rac{\gamma_{eta}\gamma_{\gamma}}{\omega_{eta}\omega_{\gamma}\mathcal{H}^{2}}\left[1 + \left(rac{\Delta\omega}{\gamma_{eta} + \gamma_{\gamma}}
ight)^{2}
ight]$$

• Parent saturation amplitude ≈ parametric instability threshold

 ${{{\sqcup}_{\rm{Mode \ coupling}}}}$

∟_{Saturation} conditions

Saturation conditions

$$\begin{array}{l} \dot{Q}_{\alpha} = \gamma_{\alpha} Q_{\alpha} + i \omega_{\alpha} \mathcal{H} \, Q_{\beta} Q_{\gamma} \, e^{-i \Delta \omega t} \\ \dot{Q}_{\beta} = \gamma_{\beta} Q_{\beta} + i \omega_{\beta} \mathcal{H} \, Q_{\gamma}^{*} Q_{\alpha} \, e^{i \Delta \omega t} \\ \dot{Q}_{\gamma} = \gamma_{\gamma} Q_{\gamma} + i \omega_{\gamma} \mathcal{H} \, Q_{\alpha} Q_{\beta}^{*} e^{i \Delta \omega t} \end{array} \right| \quad \begin{array}{l} \gamma_{\alpha} > 0, \ \gamma_{\beta,\gamma} < 0 \\ |Q_{\mathrm{PIT}}|^{2} \equiv \frac{\gamma_{\beta} \gamma_{\gamma}}{\omega_{\beta} \omega_{\gamma} \mathcal{H}^{2}} \left[1 + \left(\frac{\Delta \omega}{\gamma_{\beta} + \gamma_{\gamma}} \right)^{2} \right] \end{array} \right| \quad \begin{array}{l} \text{Detuning } \Delta \omega \\ \text{Coupling coefficient } \mathcal{H} \\ \text{Growth/damping rates } \gamma_{i} \end{array}$$

• Saturation successful if:

$$|\gamma_eta+\gamma_\gamma|\gtrsim\gamma_lpha \quad ext{and}\quad\Delta\omega\gtrsim|\gamma_lpha+\gamma_eta+\gamma_\gamma|$$

- $\bullet~{\rm GW}$ signal from $f{\rm -mode}$ depends on saturation amplitude
- Neutron star equation of state probing: GW asteroseismology
- Promising sources: post-merger remnants

Results and remarks

Saturation amplitude Saturation amplitude of the l = m = 2 f-mode of the l = m = 3 f-mode 100.0 100 **|Q|** 99 10⁻⁵ 99.5 10-5 98 99.0 10-6 Ω/Ω_K(%) $\Omega/\Omega_K(\%)$ 10-6 97 98.5 96 10-7 10^{-7} 98.0 95 10-8 94 97.5 10-8 7.5 8.0 8.5 9.0 9.5 10.0 7.5 8.0 8.5 9.0 9.5 10.0 logT(K) logT(K)

- $\bullet~{\rm GW}$ signal from $f{\rm -mode}$ depends on saturation amplitude
- Neutron star equation of state probing: GW asteroseismology
- Promising sources: post-merger remnants
- Competing mechanisms: r-mode instability, magnetic field

Results and remarks

- $\bullet~{\rm GW}$ signal from $f{\rm -mode}$ depends on saturation amplitude
- Neutron star equation of state probing: GW asteroseismology
- Promising sources: post-merger remnants
- Competing mechanisms: *r*-mode instability, magnetic field

Results and remarks

- $\bullet~{\rm GW}$ signal from $f{\rm -mode}$ depends on saturation amplitude
- Neutron star equation of state probing: GW asteroseismology
- Promising sources: post-merger remnants
- Competing mechanisms: r-mode instability, magnetic field