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Gravity
- Universality:


   all bodies are subject to gravity


   independent of their nature or   


   composition



- Equivalence principle: 


   all bodies fall with the 


   same gravitational acceleration

Experiment by 


Simon Stevin and


Jan de Groot (1586)

Laet nemen (soo den hoochgheleerden  H.  I A N   C O R N E T S   D E   G R O O T  vlietichste ondersoucker der Naturens 
verborghentheden, ende ick ghedaen hebben) twee loyen clooten d'een thienmael grooter en swaerder als d'ander, die laet 
t'samen vallen van 30 voeten hooch, op een bart oft yet daer sy merckelick gheluyt tegen gheuen, ende sal blijcken, dat de 
lichste gheen thienmael langher op wech en blijft dan de swaerste, maer datse t'samen so ghelijck opt bart vallen, dat haer 
beyde gheluyden een selue clop schijnt te wesen. S'ghelijcx beuint hem daetlick oock also, met twee euegroote lichamen in 
thienvoudighe reden der swaerheyt, daerom Aristoteles voornomde eueredenheyt is onrecht.

Galileo (Discorsi, 1638)Stevin (Weeghconst, 1586)

Wednesday, September 21, 2011

Laet nemen (soo den hoochgheleerden  H.  I A N   C O R N E T S   D E   G R O O T  vlietichste ondersoucker der Naturens 
verborghentheden, ende ick ghedaen hebben) twee loyen clooten d'een thienmael grooter en swaerder als d'ander, die laet 
t'samen vallen van 30 voeten hooch, op een bart oft yet daer sy merckelick gheluyt tegen gheuen, ende sal blijcken, dat de 
lichste gheen thienmael langher op wech en blijft dan de swaerste, maer datse t'samen so ghelijck opt bart vallen, dat haer 
beyde gheluyden een selue clop schijnt te wesen. S'ghelijcx beuint hem daetlick oock also, met twee euegroote lichamen in 
thienvoudighe reden der swaerheyt, daerom Aristoteles voornomde eueredenheyt is onrecht.

Galileo (Discorsi, 1638)Stevin (Weeghconst, 1586)

Wednesday, September 21, 2011

Discussion in Discorsi 
by Galilei (1638)
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Newton:  gravitational acceleration by 


            instantaneous action at a distance


            absolute space and time 

Einstein:  geometrical interpretation of gravity


            gravitational effects propagate at 


            finite speed (c in vacuum)


            dynamical space and time 

Dynamical geometry: 


- cosmology: expansion of the universe


- astrophysics: gravitational collapse


                         black holes/horizons 


- cosmic messengers: gravitational waves
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Gravity as space-time geometry

fundamental ingredients:                            


  metric     , connection      , curvature

1
The dual nature of gravity

- Gravity = geometry of space-time

! metric gµ⌫, connection � �
µ⌫ , curvature R �

µ⌫

· line element

�d⌧2 = gµ⌫(x) dx
µdx⌫, uµ = ẋµ =

dxµ

d⌧
· geodesics

D⌧u
µ = u̇µ + � µ

�⌫ (x)u�u⌫ = 0

· geodesic deviation

D2
⌧ nµ = R

µ
⌫� (x)uu�n⌫
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• The metric converts co-ordinate intervals into 
space-time intervals (c = 1):
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The dual nature of gravity

- Gravity = geometry of space-time

! metric gµ⌫, connection � �
µ⌫ , curvature R �

µ⌫

· line element

�d⌧2 = gµ⌫(x) dx
µdx⌫, uµ = ẋµ =

dxµ

d⌧
· geodesics

D⌧u
µ = u̇µ + � µ

�⌫ (x)u�u⌫ = 0

· geodesic deviation

D2
⌧ nµ = R

µ
⌫� (x)uu�n⌫

• The connection defines geodesics (free fall) by 
parallel transport of 4-velocity:
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2

Mathematical relations:

· inverse metric gµ�g�⌫ = �µ⌫

· connection � �
µ⌫ =

1

2
g� (@µg⌫ + @⌫gµ � @gµ⌫)

· Riemann tensor R �
µ⌫ = @µ�

�
⌫ � @⌫�

�
µ � � �

µ � �
⌫� + � �

⌫ � �
µ�

· Ricci tensor Rµ⌫ = R �
µ�⌫

· curvature scalar R = R µ
µ = gµ⌫Rµ⌫

Mathematical relations

1
The dual nature of gravity

- Gravity = geometry of space-time

! metric gµ⌫, connection � �
µ⌫ , curvature R �

µ⌫

· line element

�d⌧2 = gµ⌫(x) dx
µdx⌫, uµ = ẋµ =

dxµ

d⌧
· geodesics

D⌧u
µ = u̇µ + � µ

�⌫ (x)u�u⌫ = 0

· geodesic deviation

D2
⌧ nµ = R

µ
⌫� (x)uu�n⌫

• The curvature gives the relative 
covariant acceleration of geodesics:
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Einstein equations

3

Dynamical geometry:

Einstein equations

Gµ⌫ = Rµ⌫ � 1
2 gµ⌫R = �2Tµ⌫

Here 2 = 8⇡G
c4

= 2.1⇥ 10�41 kg�1 m�1 s2

and Tµ⌫ is the energy-momentum tensor of matter and radiation

rµ Tµ⌫ = 0

where

3
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Dynamical geometry:

Einstein equations

Gµ⌫ = Rµ⌫ � 1
2 gµ⌫R = �2Tµ⌫

Here 2 = 8⇡G
c4

= 2.1⇥ 10�41 kg�1 m�1 s2

and Tµ⌫ is the energy-momentum tensor of matter and radiation

rµ Tµ⌫ = 0
The dynamics of matter and radiation 
follows from the consistency condition 

3

Dynamical geometry:
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Geometry of empty space-time
Large number of vacuum solutions: 

4

- Gravity = field theory of massless spin-2 fields

· symmetric tensor field hµ⌫ = h⌫µ

· free field equation in Minkowski space-time

2hµ⌫ � @µ@
�h�⌫ � @⌫@

�h�µ + @µ@⌫h
�
� = 0

· local gauge invariance

h0µ⌫ = hµ⌫ + @µ⇠⌫ + @⌫⇠µ

· Consistent self-interactions (no ghosts, no tachyons)

gµ⌫ = ⌘µ⌫ +2hµ⌫ with R �
µ�⌫ ⌘ Rµ⌫ = 0

[Feynman; Fronsdal; Veltman]

B. Vacuum solutions with curvature: decompose Riemann 


curvature in traceless components (Weyl tensor)

17
Beyond flat space-time

Weyl tensor:

decompose Riemann tensor in traceless components:

Rµ⌫� = Wµ⌫� +
1

(d� 2)

⇣
gµW⌫� � g⌫Wµ� � gµ�W⌫ + g�Wµ⌫

⌘

+
1

d(d� 1)

⇣
gµg⌫� � gµ�g⌫

⌘
R

where

Wµ⌫ = Rµ⌫ � 1

d
gµ⌫R

s.t. W �
µ�⌫ = 0 and W

µ
µ = 0.

Note also: Wµ⌫� = �Wµ⌫� = W�µ⌫ and W[µ⌫]� = 0

with
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Beyond flat space-time
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Note also: Wµ⌫� = �Wµ⌫� = W�µ⌫ and W[µ⌫]� = 0,

A. Minkowski space-time: no curvature Rµ⌫� = 0
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Number of components 18

Number of components:

N
h
Rµ⌫�

i
=

d2(d2 � 1)

12
! 20

=
1

12
d(d+1)(d+2)(d� 3) +

1

2
d(d+1)

= N
h
Wµ⌫�

i
+N [Wµ⌫] + 1 ! 10+ 9+ 1

Therefore

Wµ⌫� 6= 0 ! Rµ⌫� 6= 0

consistent with Rµ⌫ = Wµ⌫ = 0: curvature without matter.

Non-vanishing Weyl tensor implies non-vanishing 
curvature: 
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Number of components:

N
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d(d+1)(d+2)(d� 3) +

1

2
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Therefore

Wµ⌫� 6= 0 ! Rµ⌫� 6= 0
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Curvature in the absence of matter
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Example: PP-waves

Exact gravitational-wave solution; 


in light-cone co-ordinates 

19Example: PP-waves

Exact gravitational wave solution in light-cone co-ordinates
u = t� z, v = t+ z:

d⌧2 = dudv ��(u, x, y)du2 � dx2 � dy2

Non-vanishing components of Riemann and Ricci tensors

Ruiuj =
1

2

@2�

@xi@xj
Ruu =

1

2

⇣
@2x + @2y

⌘
�

Non-trivial solutions of Ruu = 0 in complex co-ordinates
⇣ = x+ iy, ⇣̄ = x� iy:

� =
X

n

Z
dk

2⇡

⇣
"n(k)e

�iku⇣n + "̄n(k)e
iku⇣̄n

⌘

n=2�! h+(u)(x2 � y2) + 2h⇥(u)xy
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Non-vanishing components of Riemann and 


Ricci tensors
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Regular vacuum solutions            : 
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Small-curvature waves

reduction of GR to field theory of massless spin-2 fields
・symmetric tensor field 

4

- Gravity = field theory of massless spin-2 fields

· symmetric tensor field hµ⌫ = h⌫µ

· free field equation in Minkowski space-time

2hµ⌫ � @µ@
�h�⌫ � @⌫@

�h�µ + @µ@⌫h
�
� = 0

· local gauge invariance

h0µ⌫ = hµ⌫ + @µ⇠⌫ + @⌫⇠µ

· Consistent self-interactions (no ghosts, no tachyons)

gµ⌫ = ⌘µ⌫ +2hµ⌫ with R �
µ�⌫ ⌘ Rµ⌫ = 0

[Feynman; Fronsdal; Veltman]

・free field equation in Minkowski space-time
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・local gauge invariance 

4
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・unique consistent extension with self-interactions 



   (no ghosts, no tachyons)

4

- Gravity = field theory of massless spin-2 fields

· symmetric tensor field hµ⌫ = h⌫µ

· free field equation in Minkowski space-time
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�
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· local gauge invariance
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· Consistent self-interactions (no ghosts, no tachyons)

gµ⌫ = ⌘µ⌫ +2hµ⌫ with R �
µ�⌫ ⌘ Rµ⌫ = 0

[Feynman; Fronsdal; Veltman]

with

Rµ⌫� = 0

Rµ⌫[g] = 0

[Feynman, Fronsdal, Veltman]
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Gauge fixing 5
Gauge fixing

Use local gauge invariance to impose⇤

@�h0�µ � 1

2
@µh

0 �
� = 0 ) 2h0µ⌫ = 0

The spin-2 tensor field satisfies the massless wave equation

e.g., linear waves along the z-direction:
⇣
@2z � @2t

⌘
h = 0 ) h = h+(z + t) + h�(z � t)

! solutions describe quadrupole waves (s = 2) propagating at

speed of light c = 1 in the �z or +z direction

�������������
⇤ This is achieved by taking �2⇠µ = @�h�µ � 1

2
@µh �

�

Use local gauge invariance to impose ❊

❊ by taking

5
Gauge fixing

Use local gauge invariance to impose⇤

@�h0�µ � 1

2
@µh

0 �
� = 0 ) 2h0µ⌫ = 0

The spin-2 tensor field satisfies the massless wave equation

e.g., linear waves along the z-direction:
⇣
@2z � @2t

⌘
h = 0 ) h = h+(z + t) + h�(z � t)

! solutions describe quadrupole waves (s = 2) propagating at

speed of light c = 1 in the �z or +z direction

�������������
⇤ This is achieved by taking �2⇠µ = @�h�µ � 1

2
@µh �

�

massless wave equation; (1+1)-dimensional reduction

5
Gauge fixing

Use local gauge invariance to impose⇤

@�h0�µ � 1

2
@µh

0 �
� = 0 ) 2h0µ⌫ = 0

The spin-2 tensor field satisfies the massless wave equation

e.g., linear waves along the z-direction:
⇣
@2z � @2t

⌘
h = 0 ) h = h+(z + t) + h�(z � t)

! solutions describe quadrupole waves (s = 2) propagating at

speed of light c = 1 in the �z or +z direction

�������������
⇤ This is achieved by taking �2⇠µ = @�h�µ � 1

2
@µh �

�

waves propagating at the speed of light (c = 1) 


in the +z or -z direction
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Reformulation

Field redefinition

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0

field equation and gauge condition for the redefined field:

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0

redefined gauge transformations:

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0
gauge condition respected if

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0
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Momentum representation
7

Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p

k

2

! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

Field equations:

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)
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solution
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and kµ = (!k,k) with !k =
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k

2
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Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

solution:

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)
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k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
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and kµ = (!k,k) with !k =
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! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

implying                with

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p
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! hµ⌫(x) =
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d3k
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⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p

k

2

! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p

k

2

! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµwith

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p

k

2

! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ



14

The amplitudes         are defined up to a final 


gauge transformation with            (        ): 

7
Momentum representation:

h̄µ⌫(x) =
Z

d4k

(2⇡)2
"µ⌫(k)e

�ik·x "⇤µ⌫(k) = "µ⌫(�k)

Field equations

k2"µ⌫(k) = 0 k�"�µ = 0

solution

"µ⌫(k) = eµ⌫(k) �(k
2)

and kµ = (!k,k) with !k =
p

k

2

! hµ⌫(x) =
Z

d3k

8⇡2!k

⇣
eµ⌫(k)e

�i(k·x�!kt) + e⇤µ⌫(k)ei(k·x�!kt)
⌘

subject to !ke0µ = kieiµ

8
Gauge transformations with k2 = 0 are still allowed:

⇠µ = i
Z

d3k

8⇡2!k

⇣
aµ(k)e

�i(k·x�!kt) � a⇤µ(k)ei(k·x�!kt)
⌘

e000 = e00 + !ka0 + k · a

e00i = e0i + !kai + kia0

e0ij = eij + kiaj + kjai � �ij (k · a � !ka0)

Special choice

a0 = � 1
4!k

⇣
e00 +

P
j ejj

⌘
ai = � 1

!k
e0i +

ki
!k

⇣
e00 +

P
j ejj

⌘

! e000 = e00i = 0,
P

j e
0
jj = 0 and kje

0
ji = 0

8
Gauge transformations with k2 = 0 are still allowed:

⇠µ = i
Z

d3k

8⇡2!k

⇣
aµ(k)e

�i(k·x�!kt) � a⇤µ(k)ei(k·x�!kt)
⌘

e000 = e00 + !ka0 + k · a

e00i = e0i + !kai + kia0

e0ij = eij + kiaj + kjai � �ij (k · a � !ka0)

Special choice

a0 = � 1
4!k

⇣
e00 +

P
j ejj

⌘
ai = � 1

!k
e0i +

ki
!k

⇣
e00 +

P
j ejj

⌘

! e000 = e00i = 0,
P

j e
0
jj = 0 and kje

0
ji = 0

6
Field redefinition:

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫ h

�
�

! field- and gauge-fixing equations become

2 h̄µ⌫ � 1

2
⌘µ⌫ 2 h̄ �

� = 0 @�h̄�µ = 0

equivalent to

2 h̄µ⌫ = 0 @�h̄�µ = 0 (⇤)
Under gauge transformations

h̄0µ⌫ = h̄µ⌫ + @µ⇠⌫ + @⌫⇠µ � ⌘µ⌫ @ · ⇠
Such gauge transformations respect equations (⇤) if

2⇠µ = 0

These gauge transformations take the form

8
Gauge transformations with k2 = 0 are still allowed:

⇠µ = i
Z

d3k

8⇡2!k

⇣
aµ(k)e

�i(k·x�!kt) � a⇤µ(k)ei(k·x�!kt)
⌘

e000 = e00 + !ka0 + k · a

e00i = e0i + !kai + kia0

e0ij = eij + kiaj + kjai � �ij (k · a � !ka0)

Special choice

a0 = � 1
4!k

⇣
e00 +

P
j ejj

⌘
ai = � 1

!k
e0i +

ki
!k

⇣
e00 +

P
j ejj

⌘

! e000 = e00i = 0,
P

j e
0
jj = 0 and kje

0
ji = 0

with the following choice:

8
Gauge transformations with k2 = 0 are still allowed:

⇠µ = i
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�i(k·x�!kt) � a⇤µ(k)ei(k·x�!kt)
⌘

e000 = e00 + !ka0 + k · a
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e0ij = eij + kiaj + kjai � �ij (k · a � !ka0)

Special choice

a0 = � 1
4!k

⇣
e00 +

P
j ejj

⌘
ai = � 1

!k
e0i +

ki
!k

⇣
e00 +

P
j ejj

⌘

! e000 = e00i = 0,
P

j e
0
jj = 0 and kje

0
ji = 0this results in

8
Gauge transformations with k2 = 0 are still allowed:
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d3k
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e00i = e0i + !kai + kia0
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⌘
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⌘
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⇠µ = i
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⇣
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Example: 

Monochromatic wave with wave vector 


travelling in the z-direction implies

9Example: momentum in the z-direction ! kµ = (k,0,0, k)
then

eµ⌫(k) = A+(k)e+µ⌫ +A⇥(k)e⇥µ⌫
with transversely polarized waves

e+µ⌫ =

0

B@

0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

1

CA e⇥µ⌫ =

0

B@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1

CA

with transversely polarised amplitudes

9Example: momentum in the z-direction ! kµ = (k,0,0, k)
then

eµ⌫(k) = A+(k)"+µ⌫ +A⇥(k)"⇥µ⌫
with transversely polarized waves

"+µ⌫ =

0

B@

0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

1

CA "⇥µ⌫ =

0

B@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1

CA

9Example: momentum in the z-direction ! kµ = (k,0,0, k)
then

eµ⌫(k) = A+(k)"+µ⌫ +A⇥(k)"⇥µ⌫
with transversely polarized waves

"+µ⌫ =

0

B@

0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

1

CA "⇥µ⌫ =

0

B@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1

CA
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Space-time representation
TT-gauge:

Rµ⌫� = 0

Rµ⌫[g] = 0

hµ⌫ =

 
0 0
0 hij

!
X

j

hjj = 0
X

j

rjhji = 0

Energy and momentum density

10
Energy and flux density

Energy density of waves

E =
1

2

 
1

c

@hij

@t

!2
+

1

2

⇣
rhij

⌘2

⇧ =
@hij

@t
rhij

Equation of continuity

@E
@t

= r · ⇧ ) dE

dt
=

{

d2�⇧n

the rate of change of energy inside a volume V through the
bounding surface �. For a sphere of radius D the flux is

� =
dE

4⇡D2 dt
=

1

4⇡

x

d2⌦

 
@hij

@t

@hij

@r

!

D

10
Energy and flux density

Energy density of waves

E =
1

2

 
1

c

@hij

@t

!2
+

1

2

⇣
rhij

⌘2

⇧ =
@hij

@t
rhij

Equation of continuity

@E
@t

= r · ⇧ ) dE

dt
=

{

d2�⇧n

the rate of change of energy inside a volume V through the
bounding surface �. For a sphere of radius D the flux is

� =
dE

4⇡D2 dt
=

1

4⇡

x

d2⌦

 
@hij

@t

@hij

@r

!

D

Equation of continuity:

10
Energy and flux density

Energy density of waves

E =
1

2

 
1

c

@hij

@t

!2
+

1

2

⇣
rhij

⌘2

⇧ =
@hij

@t
rhij

Equation of continuity

@E
@t

= r · ⇧ ) dE

dt
=

{

d2�⇧n

the rate of change of energy inside a volume V through the
bounding surface �. For a sphere of radius D the flux is

� =
dE

4⇡D2 dt
=

1

4⇡

x

d2⌦

 
@hij

@t

@hij

@r

!

D

Integral form:

10
Energy and flux density

Energy density of waves

E =
1

2

 
1

c

@hij

@t

!2
+

1

2

⇣
rhij

⌘2

⇧ =
@hij

@t
rhij

Equation of continuity

@E
@t

= r · ⇧ ) dE

dt
=

{

d2�⇧n

the rate of change of energy inside a volume V through the
bounding surface �. For a sphere of radius D the flux is

� =
dE

4⇡D2 dt
=

1

4⇡

x

d2⌦

 
@hij

@t

@hij

@r

!

D

energy flux through spherical surface with radius D:

10
Energy and flux density

Energy density of waves

E =
1

2

 
1

c

@hij

@t

!2
+

1

2

⇣
rhij

⌘2

⇧ =
@hij

@t
rhij

Equation of continuity

@E
@t

= r · ⇧ ) dE

dt
=

{

d2�⇧n

the rate of change of energy inside a volume V through the
bounding surface �. For a sphere of radius D the flux is

� =
dE

4⇡D2 dt
=

1

4⇡

x

d2⌦

 
@hij

@t

@hij

@r

!

D
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Rµ⌫� = 0

Rµ⌫[g] = 0

hµ⌫ =

 
0 0
0 hij

!
X

j

hjj = 0
X

j

rjhji = 0

h =
q
A2
+ +A2⇥

hij = Re
h⇣
A+"+ij +A⇥"

⇥
ij

⌘
ei2⇡f(z�t)

i
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Sources of gravitational waves

・There are no laboratory sources of gravitational waves

・The only plausible sources are astrophysical or cosmological

They can be classified in 3 broad categories


 a. periodic: millisecond pulsars, compact binaries


 b. transient: supernovae, stellar collisions 


 c. stochastic: background of galactic binaries,


                 early universe
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Generation of gravitational waves
Small curvature: inhomogeneous wave equation

12Generation of gravitational waves

Inhomogeneous wave equation

2hµ⌫ = �Tµ⌫ @�T�µ = 0

Physical components

hij = � 

4⇡

Z
d3x0

Tij(x0, t� |x � x

0|)
|x � x

0|

' � 

4⇡r

Z
d3x0 Tij(x0, t� r)

= � 

8⇡r

@2

@t2

Z
d3x0 x0ix0j T00(x0, t� r) ⌘ Q̈ij(t� r)

and
@hij

@r
= �@hij

@t
= �˙̇Q̇ij

Propagating physical components
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@r
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(compact sources)

hij = Re

h⇣
A
+

"+ij +A⇥"⇥ij
⌘
ei2⇡f(z�t)

i

¯Rµ⌫� =

1

12

⇣
gµg⌫� � gµ�g⌫

⌘
R !

✓
� ¯D�

¯D� +

1

3

R
◆
hµ⌫ = Tµ⌫

mod O()

hij = Re

h⇣
A
+

"+ij +A⇥"⇥ij
⌘
ei2⇡f(z�t)

i

¯Rµ⌫� =

1

12

⇣
gµg⌫� � gµ�g⌫

⌘
R !

✓
� ¯D�

¯D� +

1

3

R
◆
hµ⌫ = Tµ⌫

mod O()

⇣
@tT

00

= @0kTk0
⌘
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Non-relativistic limit:
13

Non-relativistic limit:

dE

dt
= �h˙̇Q̇ij ˙̇Q̇iji ! � G

5c5

�����
d3Iij

dt3

�����

2

with quadrupole moment

Iij(t) =
Z

d3x

✓
xixj �

1

3
�ijx

2
◆
⇢(x, t)

Observe:
G

5c5
= 0.55⇥ 10�53 kg�1 m�2 s3
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Newtonian binaries 14
Newtonian binaries

r̈ = �GM

r3
r

= �!2
r for constant r

Circular orbits:

r1 =
m2r

M
(cos!t, sin!t,0) r2 = �m1r

M
(cos!t, sin!t,0)

Quadrupole moment

Iij =
µr2

2

0

@
cos 2!t+ 1

3 sin 2!t 0
sin 2!t � cos 2!t+ 1

3 0
0 0 �2

3
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�����
d3Iij

dt3
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15
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r
GM

r3
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=

G2µM

c4rD



23

Binary pulsar 1913+16
16

Binary pulsar 1913+16

m1 = 1.44M� m2 = 1.39M�

P = 2.79⇥ 104 s

r =
p
r+r� = 1.53⇥ 106 km

D = 6.4kpc = 2⇥ 1017 km

Expect f = 0.7⇥ 10�4 Hz and h = 0.6⇥ 10�22.
Expect frequency                     


and dimensionless amplitude
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Beyond flat space-time:


waves in a curved background

Background metric

20
Waves in curved background

Background metric ḡµ⌫ used to raise and lower indices, whilst

gµ⌫ = ḡµ�
⇣
��⌫ +2h�⌫

⌘

The Einstein tensor expanded to order O(2) reads

Gµ⌫ = Ḡµ⌫ � R̄hµ⌫ + 
�
R̄µ�h

�
⌫ + R̄⌫�h

�
µ

� � 2R̄µ⌫�h
� + ḡµ⌫R̄�h

�

+
⇥
D̄�D̄�hµ⌫ � D̄µD̄�h

�
⌫ � D̄⌫D̄�h

�
µ + D̄µD̄⌫h�

�

+ ḡµ⌫
�
D̄D̄�h

� � D̄�D̄�h



�⇤

In vacuum background space-time with Ḡµ⌫ = R̄µ⌫ = 0:

�D̄�D̄�hµ⌫ + D̄µD̄�h
�
⌫ + D̄⌫D̄�h

�
µ � D̄µD̄⌫h

�
� +2R̄µ⌫�h

� = Tµ⌫

local true metric
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�
D̄D̄�h

� � D̄�D̄�h



�⇤

In vacuum background space-time with Ḡµ⌫ = R̄µ⌫ = 0:

�D̄�D̄�hµ⌫ + D̄µD̄�h
�
⌫ + D̄⌫D̄�h

�
µ � D̄µD̄⌫h

�
� +2R̄µ⌫�h

� = Tµ⌫

Use background metric for raising/lowering indices;


expand Einstein tensor in powers of   :
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Gauge transformations
21

Gauge transformations

�gµ⌫ = D̄µ⇠⌫ + D̄⌫⇠µ

�hµ⌫ = ⇠�D̄�hµ⌫ + hµ�D̄⌫⇠� + h⌫�D̄µ⇠�

After gauge fixing

D̄µD̄�h
�
⌫ + D̄⌫D̄�h

�
⌫ � D̄µD̄⌫h

�
� = 0

it reduces to the wave equation

�D̄�D̄�hµ⌫ +2R̄µ⌫� h
� = Tµ⌫

Curvature acts like (anisotropic) index of refraction

After the gauge choice
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�hµ⌫ = ⇠�D̄�hµ⌫ + hµ�D̄⌫⇠� + h⌫�D̄µ⇠�

After gauge fixing

D̄µD̄�h
�
⌫ + D̄⌫D̄�h

�
⌫ � D̄µD̄⌫h

�
� = 0

it reduces to the wave equation

�D̄�D̄�hµ⌫ +2R̄µ⌫� h
� = Tµ⌫

Curvature acts like (anisotropic) index of refractionthe curvature acts as an (anisotropic) index of refraction


e.g. lensing of gravitational waves; e.g.

hij = Re
h⇣
A+"+ij +A⇥"

⇥
ij

⌘
ei2⇡f(z�t)

i

R̄µ⌫� =
1

12

⇣
gµg⌫� � gµ�g⌫

⌘
R !

✓
�D̄�D̄� +

1

3
R
◆
hµ⌫ = Tµ⌫
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Extreme mass-ratio binaries

Supermassive black 
hole in galactic center

22

Extreme mass ratio binaries

Supermassive black hole
in galactic center

MBH ' 4⇥ 106M�

These images/animations were created by Prof. Andrea Ghez and her research 
team at UCLA and are from data sets obtained with the W. M. Keck Telescopes.
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Background space-time: Schwarzschild metric 23

Background space-time: Schwarzschild metric

ds2 = �
✓
1� 2M

r

◆
dt2 +

dr2

1� 2M
r

+ r2d✓2 + r2 sin2 ✓ d'2

(or Kerr metric to include rotation)

Perturbation by orbiting compact star: white dwarf, neutron star
of stellar-mass black hole:

Tµ⌫(x) = m
Z

d⌧ uµu⌫
1p�g

�4 (x�X(⌧))

Here uµ(⌧) is the 4-velocity

uµ =
dXµ

d⌧

Perturbation by orbiting compact companion:


white dwarf, neutron star, stellar-mass black hole
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Perturbation by orbiting compact star: white dwarf, neutron star
of stellar-mass black hole:

Tµ⌫(x) = m
Z

d⌧ uµu⌫
1p�g

�4 (x�X(⌧))

Here uµ(⌧) is the 4-velocity

uµ =
dXµ

d⌧

Observe:

Here κ is a parameter determining the strength of the Stern-Gerlach force. With this

extension the equations of motion become

Duµ

Dτ
=

1

2m
ΣκλR µ

κλ νu
ν −

κ

4
ΣκλΣρσ ∇µRκλρσ,

DΣµν

Dτ
= κΣρσ

(

R µ
ρσ λΣ

νλ −R ν
ρσ λΣ

µλ
)

.

(7)

The hamiltonian system summarized above describes the motion of a spinning test body in

an external gravitational field represented by the metric gµν . However, such bodies also act

as a source for dynamical gravitational fields, e.g. gravitational waves. Compact binary star

systems like PSR B1913+16 and others provide relevant examples. To obtain the source

terms of the Einstein equations

Rµν −
1

2
gµνR = −8πGTµν , (8)

it is necessary to construct an effective energy-momentum tensor satsfying the consistency

condition

∇µT
µν = 0. (9)

For the case of non-spinning test masses moving on geodesics the energy momentum tensor

is given by the world-line integral

T µν(x) = m
∫

dτ uµuν 1
√
−g

δ4 (x−X(τ)) . (10)

Note that in our conventions the δ-function is a scalar density with weight 1/2; therefore

the inclusion of the square root of the metric determinant implies that the expression on the

right-hand side defines a proper tensor field. Taking the divergence, using

uµ∂µ δ
4 (x−X) = −uµ ∂

∂Xµ
δ4 (x−X) = −

d

dτ
δ4 (x−X) , (11)

and performing a partial integration w.r.t. proper time indeed results in

∇µT
µν = m

∫

dτ
Duν

Dτ

1√
−g

δ4 (x−X(τ)) = 0, (12)

upon using the equation of motion for a simple test mass.

The modification of the expression (10) for spinning particles depends on the dynamics,

i.e. the choice of the hamiltonian. For the minimal case the following expression provides

the correct results

T µν
0 = m

∫

dτ uµuν 1
√
−g

δ4 (x−X) +
1

2
∇λ

∫

dτ
(

uµΣνλ + uνΣµλ
) 1
√
−g

δ4 (x−X) . (13)

4

by equation of motion
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Inspiral phase: quasi-stable orbits

scattering
orbit

Plunge
Orbit

Precession
Orbit

precession of apastron/periastron


determined by eccentricity

Power of gravitational waves in two polarisation modes

24
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Figure 4.6: Left: the evolution of the eccentricity e of the adiabatically related bound orbits, as explained
in the main text, as a function of Schwarzschild time t. The best linear fit of the data points is given by
e = 0.14925�0.001054 · t. Right: the evolution of the semi-major axis a of the adiabatically related bound
orbits, as explained in the main text, as a function of the Schwarzschild time t. The best exponential fit
of the data points is given by a = 135.05 � 14.25 · exp(0.0486 t). In both plots, the time t is measured in
units 1011 seconds.

of the semi-major axis proceeds more rapidly than the process of circularization should be
of little consequence on the accuracy of the expansion. Rather, the epicycle expansion is
expected to become increasingly accurate for successive orbits, and indeed this is seen to
be the case. To wit: the radial orbital function r becomes almost twice as accurate in the
course of the orbits considered. In contrast, the angular coordinate � does not improve in
accuracy, but instead remains mostly fixed. An increase in angular accuracy was not to
be expected. This is because the second-order epicycle expansion allows for four boundary
conditions to restrict the orbital functions, two of which are needed to make sure succes-
sive periastra are reached in a given time interval and with a given value for the periastron
shift, leaving only two boundary conditions to restrict the orbital functions r and �. In
the calculation presented, these remaining two boundary conditions were used to fix the
values of the radial positions of the periastron and apastron, which in practice also makes
the orbital function � very accurate, but a priori does not guarantee that this accuracy
increases with decreasing eccentricity. Indeed, the table shows that the absolute di�erence
between the orbital function � as calculated by the second-order epicycle expansion and
its purely numerically calculated counterpart, is around the value of 0.008 radians. For
almost all practical applications, this accuracy is excellent.
Finally, the fact that the semi-major axis decreases under influence of the emission of gravi-
tational waves suggests (for example by assuming the Peters-Mathews equation, Eq. (1.46),
to give reasonably accurate results in the Schwarzschild spacetime, as was quantitatively
demonstrated in section 4.3.2) that the emission of energy will increase exponentially. This
is indeed the case, and likewise so for the angular momentum, as can be seen in figure 4.7.
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Figure 4.7: Left: the evolution of the average power P of the adiabatically related bound orbits, as
explained in the main text, as a function of Schwarzschild time t. The best exponential fit of the data
points is given by P = 2.283 + 0.3766 · exp(0.1395 t), and P is given in units 10�15 (M/µ)2. Right: the
evolution of the average time derivative dL/dt of the adiabatically related bound orbits, as explained in
the main text, as a function of the Schwarzschild time t. The best exponential fit of the data points is
given by a = 0.8726 + 0.1536 · exp(0.1139 t), and dL/dt is given in units 10�12

�
M/µ2

�
. In both plots, the

time t is measured in units 1011 seconds.

4.5 Summary

In this chapter, the methods developed throughout this thesis have been used to calcu-
late gravitational waves for bound eccentric orbits in an EMRI system. In chapter 2, the
epicycle expansion was used to obtain analytical expressions for the orbits in the time
domain, which then lead to analytical expressions for the sources of the Zerilli-Moncrief
and Regge-Wheeler di�erential equations; by using the methods of chapter 3, the two dif-
ferential equations were solved numerically.
A number of test cases were investigated first: by calculating the average power and an-
gular momentum emitted by an EMRI with a perfectly circular orbit and comparing the
outcomes to those stated in the literature, the correct working of the code was confirmed.
It was seen that the intrinsic numerical error could easily be made of the order of 0.1%
and smaller still. As the circular orbit can be calculated analytically without needing the
epicycle expansion, this error was concluded to be purely intrinsic to the code. Next, the
error due to the fact that the epicycle expansion is an approximation itself, was quantified.
This rule was tested by calculating the average power and angular momentum emitted by
an EMRI system for one specific well-known eccentric orbit. It was found that here too
the results agree well with those stated in the literature, with a relative di�erence of the
order of 0.1%; this was in agreement with the error estimate rule.
The methods were then used to straightforwardly calculate the gravitational waves for a
number of eccentric orbits that were not known in the literature, all of which have a total
error (i.e intrinsic and extrinsic) of the order of 0.1% to a percent. The results for the pow-
ers were compared to the ones obtained by using the Peters-Mathews equation, showing,
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Detection

Energy transfer between wave and detector

- Resonant detection:  


  GW changes the length of a spring

- Interferometric detection:  


  GW changes the armlength of an interferometer
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Detection in space

- eLISA space craft


  with laser tracking 


  in solar orbit

- Pulsar timing:


  tracking timing


  variations of an 


  array of pulsars in


  our region of the galaxy  
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CMB

CMB temperature map


measured by PLANCK

Spectrum of density 
fluctuations
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Tensor modes

Polarization of CMB


              E,B modes

(Keating & Miller)
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