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Testing GR: Motivation
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e GR has passed all tests to date
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e But: up to now, all tests were in weak field
regime and/or involving slow-moving sources
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e Binary Pulsar: M/R~10°, v/c~10- - Veor

e Gravitational waves from CBC will probe
strong field gravity ( M/R~0.2 ) and relativistic
sources (v/c~0.4)
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* These sources are perfect candidates for
detection with aLigo/AdVirgo
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¢ The transition to the era of Advanced
Interferometers (mid 2015) is expected to provide
us with the first detections of GW signals

¢ Neutron Star binaries of M ~ a few Msun radiate
within the frequency bucket of Adv LIGO/VIRGO
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us with the first detections of GW signals
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EXxpected rates for advanced detectors
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The Post-Newtonian approximation

* The PN expansion gives approximate solutions to
the 2-body problem in GR

e \We consider binary neutron star (BNS) systems where we know this
approximation to be very accurate for the best part of the inspiral stage.

e Simple frequency-domain waveform (TaylorF2) for systems with no spins:

~

h(f) = Af~7C cos(20(f;m1, ma) + ¢o) v = (rMf)"/?

o= (1) "y o] ()

: C
1 =0

e Deviation from GR should give a different functional dependence of the PN
phase coefficients i (m1, mz, S1, S2), Yi) (M1, m2, S+, S2) on masses & spins
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Testing General Relativity with GW

 If GR is violated the orbital evolution will
different than what GR predicts.

be

- With a few realistically quiet detections we

will be able to test GR like never before!

* e.g. consider a heuristic phase modification

Bnt(rM.f)°
| Yunes & Hughes 2010]

- With single GW detection we can beat
binary pulsar constraints by many
orders of magnitude
Li et al 2011 [arXiv:1110.0530]

Li et al 2011 [arXiv:1111.5274]
Agathos et al 2013 [arXiv:1311.0420]

Agathos et al 2013 [arXiv:1305.2963]
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Desiderata

e Need a “theory independent” test for GR, not based on a particular
alternative. If GR is violated, it may be in a way that has not yet been
envisaged.

e Should be as generic as possible, parametrizable and computationally
feasible.

e Has to be reliable for “quiet” sources.

e Should have ability to combine information from multiple sources, so as to
arrive at a more stringent test of GR.

e Should not be tied to a particular waveform approximant.

Aegean Summer School, Rethymno June 30" 2015



GW data analysis

- Data is dominated by noise

- Need to use stochastic properties of noise to dig out signal

2.01(-3—22

Ap)=")+ S
S\B\wﬂa

deta Mo\

1.5

1.0 &

0.5

0.0
-0.5 "
-1.0
-1.5f
-2.0
-2.5

200
2.0

400

600

800

1000

1.5

1.0

0.5

= 00
= -0.5
-1.0§
-1.5§
-2.0
-2.5

— Noise + PP signal

PP signal
YT IR ATSRI TR TIIR

200
2.0 —

400

600

800

1000

15
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5

—— Noise + MS1 signal

MS1 signal
L I AL B R IR ] ]

200

Aegean Summer School, Rethymno June 30" 2015

400

600
f{Hz]

800

1000

/

|



GW data analysis A=)+ S @)
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- Signal recovery from noisy data is possible because:

- we know how the stochastic properties of our noise
1

G (F)A(f) = 58(f = £)5a(f)

- we know how a signal should look like
- each signal gives many data points

- Signal recovery is terribly complicated because:
- there are many (~15) free parameters that define each source
- noise can often mimic a GW (false alarm)
- GR equations are hard to solve accurately

- Parameters for compact binary sources: {mi, mp, S1, S2, D, 6, ¢, |, Y, tc, dc}

- Noise-weighted inner product for matched filtering: {(a,b) = R <
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“P(A|B)P(B) = P(B|A)P(A)

7

Sayesian inference in GW data analysis

e CBC waveforms encompass a high-dimensional parameter space

e \We want to calculate the evidence of the model hypothesis by marginalizing the
likelihood over the parameter space:

P(d|H,I) = /dé‘p(

—

\H,I) p(d|0, H,I)

—

e Also interested in posterior PDF for parameter estimation: p( ‘d, H, I)

o Efficiently sample parameter space and obtain both evidence and posterior using the
Nested Sampling algorithm [Skilling 20006] [Veitch & Vecchio 2009]

e Combine information from independent events:
p(dla d2’H7 I) — p(d1’H7 I)p(d2|H7 I)
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Sayesian inference in GW data analysis

e | ikelihood:

p(d|0, H, T) =p(d — hg|Hnoise, I) = N exp | — / Y \d(f)—h({; )|

(d—hgz,d—hg)

_ 0
:Ne 2

¢ Nested sampling explores the parameter space by climbing up the likelihood
function
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e Evidence is numerically accumulated

L®)
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Bayesian Model Selection  piaip) p(p) = p(B14)

P(A)

e For competing hypotheses, given a set of data d, calculate the
posterior probability for each hypothesis:

evidence prior
——
P H, 1) P

P(H;|d,I) =
e Define the odds ratio between a pair of hypotheses:
P(Hy|d,T) _ P(H,|I) P(d|H,,T)
P(Hz|d,TI)  P(H|I) P(d|H2,T)

o} =

e Combine information from multiple sources:

0} =

P(Hildy,...,dn,1)  P(Hi|T) y7 P(di|H1, 1)
y 115

P(Hsldy, ... dy, 1) P(Hz|I) 1+ P(d;|Hz,T)
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TIGER
(Test Infrastructure for GEneral Relativity)

e Define the GR and modGR hypotheses for the phase evolution:
4

Hcr : All PN phase coefficients have the functional dependence on the masses
(and spins) that is predicted by GR

Hmodar : One or more of the phase coefficients are not as predicted by GR,
without specifying which Wi = Y+ 6x;)

e Reformulate Hmodgr a@s union of testable disjoint sub-hypotheses:
Hopoacr = \/ Hi -, P(Huoacrld, 1) = Z P(Hiy.eip|d, 1)

k: 7,1
H;,...i, is the model where {¥;,, -+ , i, } are free to eviate away from

GR, but not the others

e Combine information from multiple sources to Catalog s odds ratio

OmodGR o Z H dA|H11 Ak I)

oNT _ ] d
i1 <. <in:k<Np A=1 (d[Her, 1)
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Simulations

1. Simulated signals:

Generate simulated GR/modGR signals from BNS inspiral and simulate detector
response and noise for 3 advanced detectors (HLV)

2. Recovery:

Estimate evidence for the GR and modGR hypotheses for each source, by integrating
the likelihood over the parameter space using the nested sampling algorithm

3. Post-process:

Combine evidence from multiple sources to cumulative odds ratio between GR and
modGR for catalogues of sources

The set of GR injections is used to form the background distribution of the statistic,
within which deviations from GR are not measurable
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Background, foreground and efficiency

e The threshold for concluding that GR is violated is not at OmOdGR 11

e Efficiency. how much of the foreground is above a given fraction of the

background? 00
¢ = P(InO|k, Hnon—ar,1)dIn O
In Op
IZI GR background | | | : | | 1 dR backgrotmd
B FAP=1-0, : B FAP=1-4,
£=3 GR-violating scenario| |
_ I Efficiency ¢4,
_;U’ G
.§
1 Og%dGR S |€§ 56 QS InO"oIGR
e where B is agiven FAP (= P(InO|k,Hgr,I)dIn O

In Og
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Li et al 2011 [arXiv:1110.0530]

First results : 10% shift at 1.5PN
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For a constant shift of 10% at 1.5PN, the
efficiency is close to 100% for catalogs
of 15 sources each

T




—fficiency for 10% shift at 1.5PN

e How does our performance go with an increasing number of sources per
catalog?
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Testing different types of G

Li et al 2011 [arXiv:1110.0530]
Li et al 2011 [arXiv:1111.5274]

R-violations
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qObUStneSS Agathos et al 2013 [arXiv:1311.0420]

¢ Tidal effects of unknown magnitude

e Effect of instrumental calibration errors

e \Waveform mismatch, truncated PN expansion

e Effect of spins (aligned or generic)

e Real (hon-gaussian, non-stationary) noise
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Tidal effects ol

50
= /50 1000 1500 B
e For BNS systems, tidal effects will become important -100 —
at high frequencies (>450Hz) V¥ =VYpp + VYiidal :;(5)3 — s '

[Hinderer et al 2010]

e \We cut off our analysis at 400Hz with a minor SNR loss ~1%

e Turn on tidal effects and see how performance is affected
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Vitale et al 2011 [arXiv:1111.3044]

Instrumental calibration errors

e Errors in the calibration of one or more parts of the
detector may lead to “misinterpretation” of the data.

e No severe impact on parameter estimation

¢, [Rads]

_—0.05 _
S _g.10b

e \What is the impact on TIGER?
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Waveform mismatch/missing PN terms

e For the BNS part of the parameter space (low masses) our waveform models
are reliable and their mismatch is tiny [Buonanno et al. 2009]
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Fully precessing spins

2
e Spin contributions enter the phase at 1.5PN _ 1_12 3 [113( ) + 7577] iP5
order and beyond i=1
e From the known NS binaries [O’Shaughnessy & 3 = [—167 + 4B)(7 M) ~2/?
Kim 2009] we expect spins to be small Kidder et &l 1993

0.45

e Use SpinTaylorT4 to simulate sources |
with spins of magnitude following a ol (e | |
gaUSS|an d|Str|bUt|On (“=O, 0=OO5) and 0.35H precessing | e SRS

. - (828 sources) ]
of random orientation | b |

e Recover with (anti-)aligned spinning
TaylorF2
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Putting everything together
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Realistic noise

e The above results used synthetic Gaussian noise based on design

sensitivities

e |n reality, noise will be non-Gaussian (glitchy) and non-stationary (varying

PSD). Filter data by applying “vetoes”.

1.0 . . . ' .
GR in real noise VIHI1L1
e Used S6,VSR2/3 data, recolored to - B 10gBSE >32.0 (1215 sources)
alLIGO/AdVirgo noise curves after | —
filtering out glitchy data segments & |
25
O
e Estimate PSD “on the fly” in the A 04
vicinity of the detection ~ -
e Ready for O1 0.0 =—&¢ . — T E
ln(?rélﬁdGR
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Realistic noise (cont.)

e Non-Gaussian noise features (glitches) may
compromise our GR test

e Glitches can be caused by environmental factors
or temporary misbehaviour of detector
component

e Rely on data quality algorithms to veto bad data
segments and exclude glitches from analysis

e Correlate candidate glitches with data from
auxiliary channels (microphones, magnetic
sensors, accelerometers, etc.) to identify source
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—xtending TG

SBBH/NS

—R to

BH (preliminary)

¢ need faithful waveforms that capture precession

for background injections

(e.g. SEOBNR, Pan et al. 2013 [arXiv:1307.6232])

¢ need fast waveforms that capture precession for
recovery (e.g. IMRPhenomP by Hannam et al.

2013 [arXiv:1308.3271])

e shorter waveforms but richer parameter space

to be covered

e more susceptible to glitch contamination

# of catalogs

e possibly use Reduced Order Modeling methods
(Canizares et al. 2014 [arXiv:1404.6284])
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What comes next?

e Possible outcomes for observed set of sources
- GR seems to be favoured: start placing bounds on modGR parameters
- marginal: wait for more data to arrive
- GR seems to be violated: follow up with tailor-made tests to pinpoint the
nature of violation; model selection against alternative theories, parameter
estimation on their parameter space

e Alternative theories come with their own extended parameter space:
- choose appropriate parameterization
- identify locus not excluded by current bounds
- identify locus that is distinguishable from GR
- identify locus that does not modify signal “too much”

e [nteresting scenarios: theories that predict no effect at weak/non-relativistic
regime but may be observeable towards compact binary coalescence (phase
transition e.g. spontaneous scalarization)
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Conclusions

e TIGER is a Bayesian post-detection pipeline for BNS that accumulates
evidence for finding possible violations of GR with unprecedented precision

¢ In the case of an observed GR-violation, more specific follow-up tests can be
performed to narrow down the nature of the deviation (model selection &
parameter estimation)

e Many different possible concerns have been addressed and the pipeline is
shown to be robust

e extending TIGER to BBH/NSBH.:
- need faithful waveforms for background injections
- need fast waveforms for recovery
- Reduced Order Modeling methods
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