# So, what do we do with this?

Deirdre Shoemaker Center for Relativistic Astrophysics Georgia Tech





AEGEAN SUMMER SCHOOL Rethymno, Crete, 29 June - 4 July 2015

**RAVITATIONAL WAVES: FROM THEORY TO OBSERVATIONS** 

### Testing GW Searches with NR ...

- Use solutions of NR to detect and interpret gravitational waves from compact object coalescence (my focus BBH)
- Preparing NR output for DA input
- Length of waveforms
- Higher Modes
- Parameter coverage
- Is there any other path?





### Binary Black Hole Problem "Solved"

#### 2005 Pretorius Binary inspiral and merger

Phys.Rev.Lett. 95 (2005) 121101



#### 2006 RIT and NASA Moving Punctures Method

Campanelli, Lousto, Zlochower Phys.Rev.Lett. 96 (2006) 111101

Baker, Centrella, Choi, Koppitz, van Meter Phys.Rev.Lett. 96 (2006) 111102



### Gravitational Waves Encode Physics



crucial as advanced detectors are preparing for science runs

### **Optimal Matched Filtering**



### Matched Filter



### Prepare NR output for DA input



Extracting radiation Reisswig & Pollney CQG 2011

$$\Psi_4 = \ddot{h} \qquad rM\Psi_4(\iota,\phi,t) = \sum_{l,m} {}_{-2}Y_{\ell m}(\iota,\phi)C_{\ell m}(t)$$

### NR meets DA

Take the time series, h(t) and take the Fourier transform to get

$$\tilde{h}(f) = \int_{-\infty}^{+\infty} e^{2\pi i f t} h(t) dt$$



Detector spectral noise density is  $S_n(f)$ .



compute physical units! introduce a mass scale and distance



### How are NR waveforms used in DA?

What are the requirements on the numerical waveforms that are needed in the detection of gravitational waves?

- Numerical accuracy (e.g. convergence, truncation errors)
- Astrophysical accuracy (e.g. initial data)

What are the requirements on the numerical waveforms that are needed in the characterization of the sources of gravitational waves?

- Source parameters (e.g. mass, spins, eccentricity, etc)
- Testing theories of gravity

NR waveforms are rarely used directly in searches, rather modeled first and then template banks are built out of the model.

### Roadmap



### Roadmap



### Roadmap



### Inspiral-Merger-Ringdown (IMR) Models

- 1. Phenomenological Phem Series
  - Ajith et al PRL 2011, Santamaria et al PRD 2010
  - fits to PN–NR hybrid waveforms
- 2. Effective One Body EOBNR Series
  - Damour et al PRD 2013, Taracchini et al PRD 2014
  - combines PN expansion, re-summation techniques, and perturbation theory
  - model parameters calibrated against NR waveforms



### State of the Art for IMR Models

- Parameter Coverage
  - EOBNR has a precessing (generic) series (Taracchini et al PRD 2014) when black-hole spins are aligned with the orbital angular momentum and calibrated to 2 precessing NR waveforms
  - PhemP Hannam et al PRL 2014 (no NR was used)
- Higher Modes EOBNR has higher modes (Pan PRD 2010) for nonprecessing
- Template banks as a function of mass Kumar et a PRD 89 (2014), Privitera et al PRD 89 (2014), Taracchini et al PRD 89 (2014)
- Placement Methods
  - Geometric methods (Brown et al ...)
  - Placement methods fast for spinning (nonprecessing waveforms) see Capano talk Monday - Ajith et al PRD 2014
- Surrogate & Reduced Order Modeling (Blackman et al arXiv: 1502.07758, Smith et al PRD 87 2013, Caudill et al CQG 29 2012)



### How long do NR waveforms need to be? How long can we trust PN?

- Unequal mass binaries: current PN potentially fail hundreds of orbits before merger (Damour et al PRD 2011, Ohme et al PRD 2011, MacDonald et al PRD 2013)
- Spinning: earlier (Nitz et al PRD 2013)
- NR simulations have been able to cover only tens of orbits (Buchman et al PRD 2012, Mroue et al PRL 2013, Hinder and NRAR CQG 2014)
- GAP!



### The case for/against Long NR Waveforms



350 NR GW cycles 45.5 M q=7 arXiv:1502.04953 Szilagyi et al

EOB formalism accurately describes the inspiral dynamics 20 to 176 orbits before merger for this case (some caveats about the merger)

# Where do we stand on parameter coverage?

| Parameter                     | Astrophysics                          | Gravitational<br>Wave Detector                 | Numerical<br>Relativity                        |
|-------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------|
| total system<br>mass in solar | 1.5-40<br>40-100s?                    | noise/sensitivity<br>sets a mass scale         | BH mass scale<br>invariant                     |
| BH spin<br>magnitude          | no strong<br>constraints              | sensitive to all spin<br>magnitudes            | struggling with<br>close-to-maximal<br>BH spin |
| BH spin direction             | no strong<br>constraints at<br>birth* | preferential to<br>aligned                     | good at any spin<br>direction                  |
| mass ratio                    | "expect q of a<br>few"                | SNR decreases<br>with decreasing<br>mass-ratio | struggling with<br>mass-ratios<br>beyond 1:20  |
| eccentricity                  | e>0? possible                         | sensitive                                      | good at any<br>eccentricity                    |

come up with parameters

L = r x P

θ1

θ2

Φ

**S1** 

**S2** 

\*see Gerosa et al PRD 2013; Schnittman PRD 2004

### Parameter Coverage in NR

- 171 generic runs Mroue et al PRL 2013 & More coming
- 600 generic runs GT catalog paper K. Jani et al in prep
- decent coverage of aligned spins, unequal masses q<15</li>
- we have generic, precessing systems, but arbitrarily sampled







Precession adds a time dependence to an already large parameter space.

# Examples of Precession

#### Jani in prep related work O'Shaugnessy et al PRD 2012



typically, dominate radiation follows, J (Apostolatos 1994) - there are exceptions - it does better around L (O'Shaughnessy et al PRD 2013)

### Here be dragons

| Case                                                       | C-1  | C-2  | C-3  |
|------------------------------------------------------------|------|------|------|
| energy radiated                                            | 7%   | 8%   | 1%   |
| final spin magnitude                                       | 0.84 | 0.69 | 0.24 |
| angle between initial and final total<br>angular momentum* | 0.40 | 0.5° | 90   |



- Different physics Polarization and-preferential beaming of E and L (O'Shaughnessy et al PRD 2013, Boyle et al arXiv 1409.4431)
- But, can we model these signals as non-precessing? (Pekowsky et al PRD 2013, Schmidt et al PRD 2012 & Hannam PRL 2014)



### Higher Modes



$$rM\Psi_4(\iota,\phi,t) = \sum_{l,m} -2Y_{lm}(\iota,\phi)C_{lm}(t)$$

Why not worry about this before? equal-mass, non-spinning or aligned spins radiate in 2,2 almost exclusively

### Gravitational Radiation decomposed into spherical harmonics



 $q=m_1/m_2=10$ , nonspinning

### Painting the sky in radiation

Match the (2,2) mode against a full mode signal as a function of orientation, requiring the match to exceed 0.97 (Healy et al PRD 2013 & Pekowsky et al PRD 2013)



### Higher Modes: To Be or Not to Be?



- modes contain angular dependence on the inclination, the orientation of the orbit in the plane of the sky (polarization), and the orbital phase of the binary
- present for (2, 2) mode
- but additional modes breaks degeneracies in the observed waveform as these angles vary

### Intermediate, Unequal Mass



- inclusion of modes improves parameter estimation of the source mass, distance and orientation angles
- region where contributions from modes important for detection and parameter estimation
- loss of detection rate due to neglecting modes > 10%
- and/or the systematic bias in the estimated parameters

### Status on Higher Modes

- More important for IMBH
- More important as q increases but volume decreases
- Hybrids (Calderon et al arXiv 1501.00918) and EOBNR have included modes for non-precessing cases
- We saw importance for precessing cases this will have to be thread through the models, template banks ... to get to searches



## IMBBH Sources for both Bursts and CBC



- The "best" method to detect BBHs uses exquisite details of BBH models
- Hard work, slow to get from NR to GW search (\*but CRUCIAL)
- Is there any alternative? IMBBH (100's of M) signals have few cycles in band, higher modes are more impactful and could be precessing
- Can we do coarse parameter estimation from a burst (unmodeled) search?

# Sources of Gravitational Waves



Gravitational Waves from Collision of 2 Black Holes: GT Simulation (Shoemaker, Laguna)



Electromagnetic Waves from Supernova: Observations



### Can we identify bulk features?

#### Principal Component Analysis





### Identify Bulk Features in BBH Mergers

- Can we distinguish BBH morphologies using PCA & and model selection "good enough" for astro?
  - non-spinning, spinning & precession
  - construct catalogs from NR BBH waveforms and apply PCA machinery
  - Preliminary proof-of-concept to distinguish BBH signal morphologies using (Clark et al arXiv:1406.5426) with Glasgow (Siong Heng) and GT (Cadonati, Clark, Shoemaker) and students
  - Method based on work by Logue et al (arXiv:1202.3256) and inspired by Engles et al PRD 90 2014





### Two PCs capture features



Develop a methodology that will recognize BH signals with as little information as possible

# Results from our catalog



# Model Selection is Possible



- Proof of concept that we can identify features of BBH mergers
- Could be useful with work to use in identifying mergers in the data and classifying them broadly

# Future NR Code for DA

- fast
- on demand based on coarse parameter estimation
- opportunities to cut corners
- future detectors may need more accuracy

# Conclusions: Imagining the Future



Fundamental Physics, Engineering, Data, Computing, Astrophysics



- NR predict gravity's role in universe
- Better, longer, more parameters in NR
- Trends
  - precession is beginning to be modeled and templated
  - higher modes important for PE, increases importance with mass ratio, total mass and precession
- Future Innovations Needed
  - predicting next NR run and on demand simulation
  - speeding up template creation
  - IMBH opportunity to use less exquisitely modeled
- Yes, ready for GW data to confront theory