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Plan of the lectures

*brief introduction to relativistic hydrodynamics
*what we understand about BNSs

*characteristic frequencies and quasi-universality

inspiral: frequency at amplitude peak

merger/post-merger: EOS information from PSD peaks
*MHD simulations and EM counterparts

HMNS: MRl and magnetically driven winds

MRS KM HE)

extended x-ray emission

No good/bad questions. There are only questions: ask them!
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VWhy study binary neutron stars!

* \We know they exist (as opposed
to binary BHs) and are among the
strongest sources of GWs

* \We expect them related to
short gamma-ray bursts; energies
released are huge: 107" erg

e No self-consistent model has yet
been produced to explain them.

e [ heoretical modelling has now
reached level of maturity to shed

~ short GRB,’I'.'
artist Impression

OV |ight on central engine of SGRBs




Broadbrush picture
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A binary (< 1kHz) black hole + torus(5 — 6kHz) black hole (6 — 7kHz)
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binary (< 1kHz) HMNS (2 — 4kHz) black hole + torus(5 — 6kHz) black hole(6 — TkHz)
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The equations of numerical relativity

(field equations)
(cons. energy /momentum)

cons. rest mass)

(
(equation of state)
(Maxwell equations)

«t ... (energy — momentum tensor)

N vacuum space times the theory Is complete and the
truncation error Is the only error: “CALCULATION”




The equations of numerical relativity

1
i 3 g R =8rT,,, (field equations)
V,T"" =0, (cons. energy/momentum)

v,u (IOU’M) 5 O y

(cons. rest mass)
p=p(p,e,Ye,...), (equation of state)
(

NepEEE= N e e ) e N ascwell equiations)

fa e g -+ (energy — momentum tensor)
(8 s 11 Y Rt

In non-vacuum space times the truncation error is the only
measurable error; “SIMULATION”

t's our approximation to “redlity”: improvable via microphysics,
magnetic fields, viscosity, radiation transport, ...




The two-body problem in GR

* For BHs we know what to expect:

BH + BH === B + oravitational waves (GWs)

* For NSs the question Is more subtle: the merger leads to an
hyper-massive neutron star (HMNS), ie a metastable equilibrium:

NSNS e LIV o ) e B e P ) e

All complications are in the intermediate stages; the rewards high:

e studying the HMNS will show strong and precise imprint on the EOS
* studying the BH+torus will tell us on the central engine of GRBs

NOTE: with advanced detectors we expect to have a realistic
rate of ~40 BNSs inspirals a year,ie ~ | a week  (Abadie+ 2010)



‘merger - (H/|NS w—)p B + torus”

Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- differences induced by the EOS:
a binary with an EOS with large thermal capacity (ie hotter after
merger) will have more pressure support and collapse later



Animations: Kaehler, Giacomazzo, Rezzolla
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T[M] = 0.05

Hot EOS: high-mass binary
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Anatomy of the GW signal

Mn

—
—
—
—

GNH3. M =1.350M,,

_III|III||“:‘!"|

—9 0 D 10 15 20 25
t [ms|



Anatomy of the GWV signal
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Inspiral: well approximated by PN/EOB; tidal effects important



Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible



Anatomy of the GW signal
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post-merger: quasi-periodic emission of bar-deformed HMNS



Anatomy of the GW signal
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Collapse-ringdown: signal essentially shuts off.



Anatomy of the GW signa
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‘merger - (H/|NS w—)p B + torus”

Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away

from the stability threshold and will collapse at a later time

- differences induced by the EOS:
a binary with an EOS with large thermal capacity (ie hotter after
merger) will have more pressure support and collapse later

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; may lead to prompt BH



0.00 2255 Animations: Glacomazzo, Koppitz, LR

time [ms)

Total mass : 3.37 Ms; mass ratio :0.80;

the torii are generically more massive

the toril are generically more extended

the toril tend to stable quasi-Keplerian configurations
overall uneqgual-mass systems have all the ingredients

= needed to create a GRB




lorus properties: density Rezzolla+ (2010)

spacetime diagram of rest-mass density along x-direction
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Jorus properties: bound matter

spacetime diagram of local fluid energy: uy
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beriodic reglons r-processes can take place



Jorus properties: specific ang. momentum

spacetime diagram of specific angular mom.: ¢ = —uy /uy
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* specific angular momentum has very different behaviour in the two

cases:df/dx > 0 for stability

* equal-mass binary has exponential differential rotation while the

unequal-mass Is essentially Keplerian



Jorus properties: size

equal-mass binary unequal-mass binary
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Note that although the total mass is very similar, the unequal-mass binary
yields a torus which is about ~ 4 times larger and ~ 200 times more massive



lorus properties: unegual-masses

......... Model Mtotal q Mtorus

M7 (M) l I 0.4 (M) (Mg
_. l'M3.6q1.00 | 3558 | 1 | 0.0010

0.4 | . 3 ¢ o . 94 | 0.
With suitable choice of parameters it is | us aco.o1 | 3401 | 001 | 00994

- ' ' M3.4q0.80 | 3.375 | 0.80 | 0.2088
possible to obtain tori of mass < 0.4 M seeE e e

[t's much harder to produce such M3.490.70 | 3.371 | 0.70 | 0.2116
massive tori BH-NS binaries. e o

2.8

> decreases with the
M) 5200 Mlkss=———= ¥ mass ratio and with
the total mass; at

lowest order:

sun) 3.4 X ===

Mioelg, Mic) = (Mas= Myt feifl = g) 03]

where Mmax 1s the maximum (baryonic) mass of the binary
and cj, ¢z are coefficients computed from the simulations.
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‘merger - (H/|NS w—)p B + torus”

Quantitative differences are produced by:

- differences induced by the gravitational MASS:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- differences induced by the EOS:
a binary with an EOS with large thermal capacity (ie hotter after
merger) will have more pressure support and collapse later

- differences induced by MASS ASYMMETRIES:
tidal disruption before merger; may lead to prompt BH

- differences induced by MAGNETIC FIELDS:

the angular momentum redistribution via magnetic braking or
MRI can increase/decrease time to collapse; EM counterparts!

- differences induced by RADIATIVE PROCESSES:
radiative losses will alter the equilibrium of the HMNS



How to constrain the EOS




Anatomy of the GWV signal

Inspiral

llllllllllllllllllllllll /I‘\Il - :
1 waveform _ _ﬂﬂg o
ST i
= I

T
—0.52— UUUUUUUHI |
A :,t,m,a,x

t/M



fow at peak amplitude (Hz)

Hints of quasi-universality

Takami. LR. Baiotti (2014)
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Anatomy of the GW signal
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°rototypical simulation corotating frame:
H4 EOS, M=1.30 Me

y [km]

x [km] Takami, LR
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extracting information from the EOS

Takami, LR, Baiotti, 20 14
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A new approach to constrain the EOS

Takami, LR, Baiotti (2014)

We have carried out numerical-relativity simulations of NS binaries
with nuclear EOS and thermal contribution via ideal-fluid contribution
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A new approach to constrain the EOS

VWe have carried out numerical-relativity simulations of NS binaries
with nuclear EOS and thermal contribution via ideal-fluid contribution
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A new approach to constrain the EOS

VWe have carried out numerical-relativity simulations of NS binaries
with nuclear EOS and thermal contribution via ideal-fluid contribution

t
PSD of post-merger GW S5 0 5 lo 15 20
signal has number of peaks
(Oechslin+2007, Baiotti+2008 )
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f, [kHz]

A new approach to constrain the EOS

[t Is possible to correlate the values of the peaks with the properties
of the progenitor stars, 1.e. M, R, and combinations thereof.
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Fach cross refers to a given mass
ARd: CrOSSESOLRNe SamE-coIor
refer to the same EOS

The high-freq. peak 2 has been
shown to correlate with stellar

properties, e.8., Rmax, R16,. €tC
(Bauswein+ 201 1, 2012, Hotokezaka+ 2013).
The correlation depends on mass

The low-freq. peak f| shows a
much tighter correlation;
most importantly, it does not

depend on the EOS



An example: start from equilibria

Assume that the GW
signal from a binary
NS Is detected and
with a SNR high
enough that the two
peaks are clearly
measurable.

Consider your best
cholces as candidate

EOSs
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An exam

The measure of the
f1 peak will fix a
M(Rf1) relation anc
nence a single line In
the (M, R) plane.

All EOSs will have

ohe constraint
(crossing)

ble: use the M(Rf1) relation
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An example: use the M(Rf2) relations

1 he measure of the {7
peak will Tix a relation
M(R12,EQS) for each
EOS and hence a
number of lines In the
(M, R) plane.

The right EOS will
have three different
constraints (APR,
GNH3, SLy excluded)
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An example: use measure of the mass

f the mass of the
DINary 1S measurec
from the inspiral, a

B

additional constraint

canh be imposed,

The right EOS wil
have four different

constraints. Ideally,
single detection

d

would be sufficient.
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This works for all EOSs considerec

In reality things will be
more complicated. [ he
lines will be stripes;
Bayesian probability to
oet precision on M, R.

Some numbers:

St Mpeiree)
uncertainty from Fisher
matrix is |00 Hz

e at SNNR=2, the event rate
s 0.2-2 yr'for different
EESs
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What produces the peaks!?

* f, peak obviously related to long-term periodic rotation
of bar-deformed HMNS (I=2=m fundamental oscillation
Shibata 05, Baiotti+ 08, Bauswein+ | |, |2, Stergioulas+ | |, Hotokezaka+ | 3).

*f| peak Is less obvious but there Is a possible explanation.

e [hick lines are PSDs when first 3ms are removea.
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*f| is formed only in short time window after merger!



A mechanical toy model

Q(t)

spring ~

e| et disk ro

*If no friction Is present, system will
spin between two fregs: low (fi)

when masses are far apart, and
(f3) when masses are close.

*If friction Is present, system will

‘ate ana

high

tend

asymptotically to spin at frequency

fo~ (f1+f3)/2.

» Consider disk with 2 masses moving
along a shaft and connected via a

MINS with 2 ste

lar cores
mass osclllate

while conserving angular momentum




A mechanical toy model

» Consider disk with 2 masses moving
along a shaft and connected via a
spring ~ HMNS with 2 stellar cores

o | et disk rotate and mass:oscillate
while conserving angular momentum

Q(t)

*|[f no friction is present, system will <o\ ApAAI o]

\ | \ /
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*If friction Is present, system will tend

asymptotically to spin at frequency
fo~ (fi1+13)/2. L

t [ms]
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The system emits GWs with

A mechanical toy model

features tha-t can be Computed & VNS YN T YN XY

via quadrupole formula

log [ 2h(f) f1/?]

L] ; I

— t€[0,200]
— t€0,70]
— t € [70,200]

' GNH3-q10-M1200 |

|1 Also in this case: three peaks

bresent and low-frequency
beak disappears after transient.




Quasl-universal or not!

e Consensus there

e Recent calculatio

S "quasl-universality’” in inspiral.

NS (Bauswein and Stergioulas 2015) suggest

that there Is no @

uasi-universal behaviour for fi (fspiral).

. 1.2-12M
sun
1.35-1.35 M$un
* 1.5_1 .5 Msun

* Also Iinterpreted peak in
°SD as coupling between
the quadrupolar mode f;
(foeak) and axisymmetric
quasi-radial mode: f-0.

* Given the scatter; this may
be a matter of definition.

0.12 013 0.14 0.15 0.16
M/R

0.17 0.18 0.19



Quasl-universal or not!

dentification of mode In
PSP s clearly very

- delicate, especially for f
which Is created In short
- time window.




2.8

1.6

P

Quasl-universal or not!

0.12

0.14

M/R

0.16

0.18

dentification of mode In
PSP is delicate, especially

for f; which Is created In
short time window.

Recent calculations of

Bernuzzi+ 1504.01266
seem to confirm the

quasi-universalrty.

s universality lost at very
OW Masses!

ls SPH not accurate
enough to measure fi?



Conclusions

*Modelling of binary NSs in full GR is mature: GWs from the inspiral
can be computed with precision of binary BHS.

*Spectra of post-merger shows clear peaks: cf lines for stellar
atmospheres. Some peaks are "universal”.

XIf observed, post-merger signal will set tight constraints on EOS.

Binary neutron stars are a rich lab of physics and astrophysics.
Numerical relativity is a perfect tool to explore it.



